首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tbr1 regulates differentiation of the preplate and layer 6   总被引:32,自引:0,他引:32  
  相似文献   

2.
W Q Gao  E R Macagno 《Neuron》1988,1(4):269-277
During leech embryogenesis, interactions between homologous neurons in neighboring segments lead to the selective retraction of longitudinal axonal projections by midbody AP and AE neurons, which maintain lateral axonal projections to the periphery. Results of experiments reported here show that disconnecting the lateral projections from the periphery rescues the projections normally fated to retract. We propose that these neurons normally progress through two states during early development, one in which they are insensitive to interactions with their homologs (state A) and a second in which they are sensitive (state B). Establishment of lateral connections with their targets triggers the switch from state A to state B; cutting these projections puts neurons back to state A.  相似文献   

3.
The cerebral cortex is composed of a large variety of different neuron types. All cortical neurons, except some interneurons, are born in two proliferative zones, the cortical ventricular (VZ) and subventricular (SVZ) zones. The relative contribution of both proliferative zones to the generation of the diversity of the cortical neurons is not well understood. To further dissect the underlying mechanism, molecular markers specific for the SVZ are required. Towards this end we performed a subtraction of cDNA libraries, generated from E15.5 and E18.5 mouse cerebral cortex. A novel cDNA, Svet1, was cloned which was specifically expressed in the proliferating cells of the SVZ but not the VZ. The VZ is marked by the expression of the Otx1 gene. Later in development, Svet1 and Otx1 were expressed in subsets of cells of upper (II-IV) and deep (V-VI) layers, respectively. In the reeler cortex, where the layers are inverted, Svet1 and Otx1 label precursors of the upper and deeper layers, respectively, in their new location. Interestingly, in the Pax6/small eye mutant, Svet1 activity was abolished in the SVZ and in the upper part of the cortical plate while the Otx1 expression domain remained unchanged. Therefore, using Svet1 and Otx1 as cell-type-specific molecular markers for the upper and deep cortical layers we conclude that the Sey mutation affects predominantly the differentiation of the SVZ cells that fail to migrate into the cortical plate. The abnormality of the SVZ coincides with the absence of upper layer cells in the cortex. Taken together our data suggest that while the specification of deep cortical layers occurs in the ventricular zone, the SVZ is important for the proper specification of upper layers.  相似文献   

4.
The GnRH gene is expressed exclusively in a highly restricted population of approximately 800 neurons in the mediobasal hypothalamus in the mouse. The Otx2 homeoprotein has been shown to colocalize with GnRH in embryonic mouse brain. We have identified a highly conserved bicoid-related Otx target sequence within the proximal promoter region of the GnRH gene from several species. This element from the rat GnRH promoter binds baculovirus-expressed Otx2 protein and Otx2 protein in nuclear extracts of a hypothalamic GnRH-expressing neuronal cell line, GT1-7. Transient transfection assays indicate that the GnRH promoter Otx/bicoid site is required for specific expression of the GnRH gene in GT1-7 cells and that it can confer specificity to a neutral Rous sarcoma virus (RSV) promoter in GT1-7 cells but not in NIH3T3 cells. Overexpression of mouse Otx2 in GT1-7 cells induces expression of a GnRH promoter plasmid, an effect that is dependent upon the Otx binding site. Thus, the GnRH proximal promoter is regulated by the Otx2 homeoprotein. Finally, we have now demonstrated the presence of Otx2 protein in the GnRH neurons of the adult mouse hypothalamus. These data suggest that Otx2 is important in the development of the GnRH neuron and/or in the maintenance of GnRH expression in the adult mouse hypothalamus.  相似文献   

5.
6.
7.
The mes-metencephalic boundary (isthmus) works as an organizer for the tectum, and the organizing molecule may be Fgf8. The region where Otx2, En1, and Pax2 are expressed overlappingly may differentiate into the mesencephalon. The di-mesencephalic and mes-metencephalic boundaries are determined by repressive interaction of Pax6 and En1/Pax2 and of Otx2 and Gbx2, respectively. The optic tectum is a visual center in lower vertebrates. The tectum and the retina should be regionalized and be positionally specialized for the proper retinotopic projection. Gradient of En2 plays a crucial role in rostrocaudal polarity formation of the tectum. En2 confers caudal characteristics of the retina by inducing ephrinA2 and A5, which are the repellant molecules for the growth cones of temporal retinal ganglion cells. Grg4 antagonizes the isthmus-related genes, and is involved in the formation of di-mesencephalic boundary and tectal polarity formation at an early phase of development. Then, Grg4 plays a role in tectal laminar formation by controlling the migration pathway. Migration pathway of tectal postmitotic cells changes after E5. The late migratory cells split the early migratory neurons to form laminae h-j of SGFS. Grg4 is expressed in the ventricular layer after E5, and forces postmitotic cells to follow the late migratory pathway, though retinal fibers terminate at laminae a-f of SGFS. Misexpression of Grg4 disrupts the lamina g, and in such tecta retinal arbors invade deep into the tectal layer, indicating that lamina g is a nonpermissive lamina for the retinal arbors.  相似文献   

8.
GnRH is the central regulator of reproductive function responding to central nervous system cues to control gonadotropin synthesis and secretion. GnRH neurons originate in the olfactory placode and migrate to the forebrain, in which they are found in a scattered distribution. Congenital idiopathic hypogonadotropic hypogonadism (CIHH) has been associated with mutations or deletions in a number of genes that participate in the development of GnRH neurons and expression of GnRH. Despite the critical role of GnRH in mammalian reproduction, a comprehensive understanding of the developmental factors that are responsible for regulating the establishment of mature GnRH neurons and the expression of GnRH is lacking. orthodenticle homeobox 2 (OTX2), a homeodomain protein required for the formation of the forebrain, has been shown to be expressed in GnRH neurons, up-regulated during GnRH neuronal development, and responsible for increased GnRH promoter activity in GnRH neuronal cell lines. Interestingly, mutations in Otx2 have been associated with human hypogonadotropic hypogonadism, but the mechanism by which Otx2 mutations cause CIHH is unknown. Here we show that deletion of Otx2 in GnRH neurons results in a significant decrease in GnRH neurons in the hypothalamus, a delay in pubertal onset, abnormal estrous cyclicity, and infertility. Taken together, these data provide in vivo evidence that Otx2 is critical for GnRH expression and reproductive competence.  相似文献   

9.
Midbrain neurons synthesizing the neurotransmitter dopamine play a central role in the modulation of different brain functions and are associated with major neurological and psychiatric disorders. Despite the importance of these cells, the molecular mechanisms controlling their development are still poorly understood. The secreted glycoprotein Wnt1 is expressed in close vicinity to developing midbrain dopaminergic neurons. Here, we show that Wnt1 regulates the genetic network, including Otx2 and Nkx2-2, that is required for the establishment of the midbrain dopaminergic progenitor domain during embryonic development. In addition, Wnt1 is required for the terminal differentiation of midbrain dopaminergic neurons at later stages of embryogenesis. These results identify Wnt1 as a key molecule in the development of midbrain dopaminergic neurons in vivo. They also suggest the Wnt1-controlled signaling pathway as a promising target for new therapeutic strategies in the treatment of Parkinson's disease.  相似文献   

10.
In mouse Otx2 plays essential roles in anterior-posterior axis formation and head development in anterior visceral endoderm and anterior mesendoderm. The Otx2 expression in these sites is regulated by VE and CM enhancers at the 5' proximal to the translation start site, and we proposed that these enhancers would have been established in ancestral sarcoptergians after divergence from actinopterigians for the use of Otx2 as the head organizer gene (Kurokawa et al., 2010). This would make doubtful an earlier proposal of ours that a 1.1 kb fragment located at +14.4 to +15.5 kb 3' (3'En) of fugu Otx2a gene harbors enhancers phylogenetically and functionally homologous to mouse VE and CM enhancers (Kimura-Yoshida et al., 2007). In the present study, we demonstrate that fugu Otx2a is not expressed in the dorsal margin of blastoderm, shield and early anterior mesendoderm, and that the fugu Otx2a 3'En do not exhibit activities at these sites of fugu embryos. We conclude that the fugu Otx2a 3'En does not harbor an organizer enhancer, but encodes an enhancer for the expression in later anterior mesendodermal tissues. Instead, in fugu embryos Otx2b is expressed in the dorsal margin of blastoderm at blastula stage and shield at 50% epiboly, and this expression is directed by an enhancer, 5'En, located at -1000 to -800 bp, which is uniquely conserved among teleost Otx2b orthologues.  相似文献   

11.
12.
The relationship among neuronal type, position, and time course of development of identified neurons was examined in the zebrafish (Brachydanio rerio). The cells studied, the reticulospinal neurons Mauthner, MiM1, and MiV1, are located within the same small region in the hindbrain, differ stereotypically in their positions within this region and also in their axonal projections. All of the cell types were generated and had initiated axonal outgrowth by the second day after fertilization. The time that these events occurred was specific for each cell type, with axonal outgrowth occurring about 10 hr after the neuronal birthday. Furthermore, the time of the events varied systematically according to the dorsoventral location of the neuron within the set.  相似文献   

13.
Cell recognition molecules are involved in nervous system development and participate in synaptic plasticity in the adult brain. The close homolog of L1 (CHL1), a recently identified member of the L1 family of cell adhesion molecules, is expressed by neurons and glia in the central nervous system and by Schwann cells in the peripheral nervous system in a pattern overlapping, but distinct from, the other members of the L1 family. In humans, CHL1 (also referred to as CALL) is a candidate gene for 3p- syndrome-associated mental impairment. In the present study, we generated and analyzed CHL1-deficient mice. At the morphological level, these mice showed alterations of hippocampal mossy fiber organization and of olfactory axon projections. Expression of the mRNA of the synapse-specific neural cell adhesion molecule 180 isoform was upregulated in adult CHL1-deficient mice, but the mRNA levels of several other recognition molecules were not changed. The behavior of CHL1-deficient mice in the open field, the elevated plus maze, and the Morris water maze indicated that the mutant animals reacted differently to their environment. Our data show that the permanent absence of CHL1 results in misguided axonal projections and aberrant axonal connectivity and alters the exploratory behavior in novel environments, suggesting deficits in information processing in CHL1-deficient mice.  相似文献   

14.
15.
At the time of synaptogenesis typically 50% of the neurons die. The biological role of this is still unclear, but there is evidence in the visual system that many neurons projecting to topographically inappropriate parts of their target are eliminated to improve the accuracy of the mapping. The signaling that determines neuronal survival involves electrical activity and trophic factors. Based on these observations, we have elaborated a computational model for the self-organization of a two-layered neural network. We observe changes in the topographical organization between the two layers. In layer 1, a traveling wave of electrical activity is used as input. Activity transmission to layer 2 can generate, according to a Hebbian rule, a retrograde death signal that is compensated by a trophic survival signal generated by the target cells. Approximately 50% of the neurons die, and we observe refinement in the topography between the two layers. In alternative versions of the model, we show that an equivalent reorganization can occur through Hebbian synaptic modification alone, but with less precision and efficiency. When the two mechanisms are combined, synaptic modification provides no further improvement over that produced by neuronal death alone. This computational study supports the hypothesis that neuronal death during development can play a role in the refinement of topographical projections in the nervous system. Received: 9 November 1998 / Accepted in revised form: 14 April 1999  相似文献   

16.
17.
Neurons in the medial superior olive (MSO) analyze interaural time differences (ITDs) by comparing the arrival times of the two excitatory inputs from each ear using a coincidence detection mechanism. They also receive a prominent inhibitory, glycinergic projection from the ipsilateral medial nucleus of the trapezoid body (MNTB), which contributes to the fine-tuning of ITD analysis. Here, we investigated developmental changes of the axonal arborisation pattern of single Microruby-labeled MNTB neurons projecting to the MSO region. During the first 2 weeks after hearing onset, the axonal arborisation of MNTB neurons was significantly refined resulting in a narrowed projection area across the tonotopic axis of the MSO and a redistribution of the axonal endsegments to a mostly somatic location. Rearing the animals in omnidirectional noise prevented the structural changes of single MNTB projections. These results indicate that the functional elimination of inhibitory inputs on MSO neurons after hearing onset, as described previously, is paralleled by a structural, site-specific refinement of the inputs and is dependent on the normal acoustic experience of the animal.  相似文献   

18.
19.
20.
S Park  J Frisén    M Barbacid 《The EMBO journal》1997,16(11):3106-3114
We have generated mice homozygous for a mutation that disrupts the gene encoding EphA8, a member of the Eph family of tyrosine protein kinase receptors, previously known as Eek. These mice develop to term, are fertile and do not display obvious anatomical or physiological defects. The mouse ephA8/eek gene is expressed primarily in a rostral to caudal gradient in the developing tectum. Axonal tracing experiments have revealed that in these mutant mice, axons from a subpopulation of tectal neurons located in the superficial layers of the superior colliculus do not reach targets located in the contralateral inferior colliculus. Moreover, ephA8/eek null animals display an aberrant ipsilateral axonal tract that projects to the ventral region of the cervical spinal cord. Retrograde labeling revealed that these abnormal projections originate from a small subpopulation of superior colliculus neurons that normally express the ephA8/eek gene. These results suggest that EphA8/Eek receptors play a role in axonal pathfinding during development of the mammalian nervous system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号