共查询到20条相似文献,搜索用时 0 毫秒
1.
Previous studies have demonstrated that raloxifene induces apoptosis in a variety of cancer cell lines. We aimed to determine if this effect was enhanced by combining raloxifene with epigallocatechin gallate (EGCG). Results demonstrated that EGCG (25 microM) and raloxifene (1-5 microM) produced enhanced cytotoxicity toward MDA-MB-231 breast cancer cells compared to either drug alone following 7 days of treatment. The combination of 5 microM raloxifene and EGCG was the most effective as it decreased cell number by 96% of control, and time-course studies demonstrated that significant cytotoxicity began 36 h after treatment. Potential mechanisms for this effect were then investigated. Flow cytometry experiments demonstrated that apoptosis was significantly increased following 12 h of combination treatment compared to all other treatment groups. A maximal increase in the proportion of cells in the G(1)-phase of the cell cycle (116% of control) occurred following 24 h of combination treatment, 12 h after the significant increase in apoptosis, and thus was not considered to be a viable mechanism for the enhancement of apoptosis. While raloxifene was a competitive inhibitor of microsomal UDP-glucuronosyltransferase activity (K(i) of 24 microM), it did not decrease the metabolism of EGCG as the rate of disappearance of EGCG from the media was the same for cells treated with either EGCG or EGCG+raloxifene. Finally, the combination treatment reduced the phosphorylation of EGFR and AKT proteins by 21.2+/-3.3% and 31.5+/-1.7% from control, respectively. In conclusion, the synergistic cytotoxicity elicited by the combination of EGCG and raloxifene results from an earlier and greater induction of apoptosis. This is likely to be a result of reduced phosphorylation of EGFR and AKT signaling proteins. 相似文献
2.
Lin LY Bao YL Chen Y Sun LG Yang XG Liu B Lin ZX Zhang YW Yu CL Wu Y Li YX 《Chemico-biological interactions》2012,199(2):63-73
The high biological activity of dehydroabietylamine derivatives has been reported previously. In this study, we aimed to screen 73 dehydroabietylamine derivatives as potential candidate inhibitors in liver cancer cells. Initially, the compounds structural activity relationship analysis was explored and N-benzoyl-12-nitrodehydroabietylamine-7-one (compound 81) was shown to have significant growth inhibitory activity in the human liver carcinoma cell line, HepG2. Further research into the anti-proliferative effect on HepG2 cells mediated by compound 81 was undertaken. The results suggest that compound 81 effectively induced apoptosis in HepG2 cells characterized by nuclear staining of DAPI, TUNEL assay and the activation of caspase-3. A decreased level of anti-apoptotic protein Bcl-2 and increased apoptotic Bax were also observed. Furthermore, Ki-67 protein staining and the BrdU incorporation assay showed that compound 81 significantly inhibited the proliferation of HepG2 cells. Cell cycle components analysis found that expression of cyclin D1 and cyclin B1 was reduced in HepG2 cells with compound 81 treatment, whereas the content of p21(Waf1/Cip1) was increased. Taken together, our data indicate that compound 81 induces apoptosis and inhibits proliferation in HepG2 cells, and may be a promising candidate in the development of a novel class of antitumor agents. 相似文献
3.
4.
Transmembrane protein 106A (TMEM106A) has been found to function as tumor suppressor in gastric and renal cancer. However, the role of TMEM106A in nonsmall-cell lung carcinoma (NSCLC) has not been investigated. In this study, we evaluated the expression profile of TMEM106A in NSCLC tissues and cell line, and explored the roles of TMEM106A in NSCLC cell lines. Our results showed that TMEM106A expression was significantly decreased in human NSCLC tissues. In vitro assays showed that TMEM106A expression in NSCLC cell lines was much lower than that in the bronchial epithelial cell line. Besides, overexpression of TMEM106A reduced cell proliferation, migration, and invasion, while induced cell apoptosis in NSCLC cells. TMEM106A overexpression repressed epithelial-mesenchymal transition (EMT), which was illustrated by increased E-cadherin expression and decreased the expressions of N-cadherin, and vimentin. In addition, TMEM106A overexpression suppressed the activation of phosphoinositide 3-kinase/protein kinase B/nuclear factor-κB (PI3K/Akt/NF-κB) signaling pathway in NSCLC cells. Our results indicated that TMEM106A acted as a tumor suppressor in NSCLC, and could be a therapeutic target for the management of NSCLC. 相似文献
5.
Alok A Mukhopadhyay D Karande AA 《The international journal of biochemistry & cell biology》2009,41(5):1138-1147
Glycodelin A (GdA), is a lipocalin with an immunomodulatory role, secreted by the endometrium under progesterone regulation and proposed to play a role in protecting the fetus from maternal immune attack. Glycodelin A has an inhibitory effect on the proliferation of T cells and B cells and also on the activity of natural killer cells. We have earlier demonstrated that the inhibitory effect of glycodelin A on T cell proliferation is due to apoptosis induced in these cells through the caspase-dependent intrinsic mitochondrial pathway. Studies reported until now have shown that glycodelin modulates the adaptive immune responses. We, therefore, decided to look at its effect, if any, on the innate immune system. The effect of glycodelin on monocytes was studied using human monocytic cell lines, THP1 and U937, and primary human monocytes as model systems. We demonstrated that glycodelin inhibited the proliferation of THP1 and U937 and induced apoptosis in these cells as well as in primary monocytes. We found that this signaling was caspase-independent but followed the intrinsic mitochondrial pathway of apoptosis. No effect of glycodelin was seen on the phagocytic ability of monocytes post-differentiation into macrophages. These observations suggest that, at the fetomaternal interface, glycodelin plays a protective role by deleting the monocytes that could become pro-inflammatory. Importantly, leaving the macrophages untouched to carry on with efficient clearance of the apoptotic cells. 相似文献
6.
Chia-Chien Hsieh Blanca Hernández-Ledesma Ben O. de Lumen 《Chemico-biological interactions》2010,186(2):127-134
Breast cancer is one of the most common tumors in women of Western countries. The high aggressiveness and therapeutic resistance of estrogen-independent breast tumors have motivated the development of new strategies for prevention and/or treatment. Combinations of two or more chemopreventive agents are currently being used to achieve greater inhibitory effects on breast cancer cells. This study reveals that both aspirin and lunasin inhibit, in a dose-dependent manner, human estrogen-independent breast cancer MDA-MB-231 cell proliferation. These compounds arrest the cell cycle in the S- and G1-phases, respectively, acting synergistically to induce apoptosis. To begin elucidating the mechanism(s) of action of these compounds, different molecular targets involved in cell cycle control, apoptosis and signal transduction have been evaluated by real-time polymerase chain reaction (RT-PCR) array. The cell growth inhibitory effect of a lunasin/aspirin combination is achieved, at least partially, by modulating the expression of genes encoding G1 and S-phase regulatory proteins. Lunasin/aspirin therapy exerts its potent pro-apoptotic effect is at least partially achieved through modulating the extrinsic-apoptosis dependent pathway. Synergistic down-regulatory effects were observed for ERBB2, AKT1, PIK3R1, FOS and JUN signaling genes, whose amplification has been reported as being responsible for breast cancer cell growth and resistance to apoptosis. Therefore, our results suggest that a combination of these two compounds is a promising strategy to prevent/treat breast cancer. 相似文献
7.
Impaired G2/M cell cycle arrest induces apoptosis in pyruvate carboxylase knockdown MDA-MB-231 cells
Khanti Rattanapornsompong Janya Khattiya Phatchariya Phannasil Narumon Phaonakrop Sittiruk Roytrakul Sarawut Jitrapakdee Chareeporn Akekawatchai 《Biochemistry and Biophysics Reports》2021
BackgroundPrevious studies showed that suppression of pyruvate carboxylase (PC) expression in highly invasive breast cancer cell line, MDA-MB-231 inhibits cell growth as a consequence of the impaired cellular biosynthesis. However, the precise cellular mechanism underlying this growth restriction is unknown.MethodsWe generated the PC knockdown (PCKD) MDA-MB-231 cells and assessed their phenotypic changes by fluorescence microscopy, proliferation, apoptotic, cell cycle assays and proteomics.ResultsPC knockdown MDA-MB-231 cells had a low percentage of cell viability in association with accumulation of abnormal cells with large or multi-nuclei. Flow cytometric analysis of annexin V-7-AAD positive cells showed that depletion of PC expression triggers apoptosis with the highest rate at day 4. The increased rate of apoptosis is consistent with increased cleavage of procaspase 3 and poly (ADP-Ribose) polymerase. Cell cycle analysis showed that the apoptotic cell death was associated with G2/M arrest, in parallel with marked reduction of cyclin B levels. Proteomic analysis of PCKD cells identified 9 proteins whose expression changes were correlated with the degree of apoptosis and G2/M cell cycle arrest in the PCKD cells. STITCH analysis indicated 3 of 9 candidate proteins, CCT3, CABIN1 and HECTD3, that form interactions with apoptotic and cell cycle signaling networks linking to PC via MgATP.ConclusionsSuppression of PC in MDA-MB-231 cells induces G2/M arrest, leading to apoptosis. Proteomic analysis supports the potential involvement of PC expression in the aberrant cell cycle and apoptosis, and identifies candidate proteins responsible for the PC-mediated cell cycle arrest and apoptosis in breast cancer cells.General significanceOur results highlight the possibility of the use of PC as an anti-cancer drug target. 相似文献
8.
We investigated the cytotoxic and apoptotic effects of a methanol extract of Centaurea nerimaniae, a plant endemic in Turkey, on HeLa and MDA-MB-231 cells. Eight concentrations of C. nerimaniae extract were applied to cells, and cytotoxic effects were measured using the xCELLigence system. The TUNEL assay was used to assess apoptotic cell death and immunohistochemistry was used to determine active caspase-3 using the effective cytotoxic doses of the extract. Doses of 1.42 mg/ml C. nerimaniae inhibited the growth of HeLa cells and 3.67 mg/ml C. nerimaniae inhibited the growth of MDA-MB-231 cells in a dose- and time-dependent manner. The apoptotic indexes for HeLa and MDA-MB-231 cells were increased significantly compared to control groups. Immunohistochemistry showed that the number of caspase-3 immunostained cells increased in the extract treatment groups for both HeLa and MDA-MB-231 cells. In the MDA-MB-231 cell line, caspase-3 immunostaining was observed in nuclei and/or cytoplasm in the extract treated group. Caspase-3 activation was greater in HeLa cells than in MDA-MB-231 cells. We found that the extract of C. nerimaniae had a strong antiproliferative effect and induced apoptosis via caspase-3; MDA-MB-231 cancer cells were more resistant than HeLa cells. 相似文献
9.
Li W Tian H Li L Li S Yue W Chen Z Qi L Hu W Zhu Y Hao B Gao C Si L Gao F 《生物化学与生物物理学报(英文版)》2012,44(7):577-583
Lung cancer is the leading cause of cancer-related mortality all over the world. In recent years, pulmonary adenocarcinoma has surpassed squamous cell carcinoma in frequency and is the predominant form of lung cancer in many countries. Epidemiological investigations have shown an inverse relationship between garlic (Allium sativum) consumption and death rate from many cancers. Diallyl trisulfide (DATS) is one of the garlic-derived compounds (also known as: organosulfer compounds, OSC). DATS can induce apoptosis and inhibit the growth of many cancer cell lines. Our study demonstrated that the apoptotic incidents induced by DATS were a mitochondria-dependent caspase cascade through a significant decrease of the anti-apoptotic Bcl-2 that resulted in up-regulation of the ratio of Bax/Bcl-2 and the activity of caspase-3, -8, and -9. Eventually, DATS induced the apoptosis and inhibited the proliferation in a concentration- and time-dependent manner. Furthermore, by establishing an animal model of female BALB/c nude mice with A549 xenografts, we found that oral gavage of DATS significantly retarded growth of A549 xenografts in nude mice without causing weight loss or any other side effects compared with the control group. All the evidence both in vitro and in vivo suggested that DATS could be an ideal anti-cancer drug. 相似文献
10.
Jian Ge Qianxue Chen Baohui Liu Long Wang Shenqi Zhang Baowei Ji 《Cellular & molecular biology letters》2017,22(1):30
Background
Gliomas are commonly malignant tumors that arise in the human central nervous system and have a low overall five-year survival rate. Previous studies reported that several members of Rab GTPase family are involved in the development of glioma, and abnormal expression of Rab small GTPases is known to cause aberrant tumor cell behavior. In this study, we characterized the roles of Rab21 (Rab GTPase 21), a member of Rab GTPase family, in glioma cells.Methods
The study involved downregulation of Rab21 in two glioma cell lines (T98G and U87) through transfection with specific-siRNA. Experiments using the MTT assay, cell cycle analysis, apoptosis assay, real-time PCR and western blot were performed to establish the expression levels of related genes.Results
The results show that downregulation of Rab21 can significantly inhibit cell growth and remarkably induce cell apoptosis in T98G and U87 cell lines. Silencing Rab21 resulted in significantly increased expression of apoptosis-related proteins (caspase7, Bim and Bax) in glioma cells.Conclusions
We inferred that Rab21 silencing can induce apoptosis and inhibit proliferation in human glioma cells, indicating that Rab21 might act as an oncogene and serve as a novel target for glioma therapy.11.
Arginine is classified as a conditionally essential amino acid required exogenously during catabolic disease states and periods of rapid growth, both characterized by increased arginine utilization. Arginine plays an important role in the intestine, where it is extensively metabolized, and enhances its immune-supportive function and mucosal repair. Cell proliferation is important for the latter process. This study aimed for a better molecular insight in the response to arginine deprivation/supplementation of preconfluent and 5-day-confluent, differentiated Caco-2 intestinal cells. The potential of citrulline to counteract the effects of arginine deprivation was investigated in preconfluent cells. 2-DE combined with MALDI-TOF-MS and the antibody microarray technology were applied. Evidence is provided that arginine deficiency modulates the protein expression profiles of preconfluent Caco-2 cells differently than that of postconfluent differentiated cells. In preconfluent cells, certain proteins changed in direct response to arginine deficiency, whereas other proteins did not, but instead responded during the recovery phase after an arginine/citrulline resupplementation. The protein changes suggest that arginine deprivation decreases cell proliferation and heat shock protein expression, and enhances the cells susceptibility to apoptosis. These processes are critical for proper cell function, and hence a state of arginine deficiency can be detrimental for intestinal cells which proliferate actively in vivo. 相似文献
12.
Özgür Aykut Kara Altan Gökşen Tosun Nazan Tekin Şaban Gökçe İsa 《Molecular biology reports》2021,48(4):3439-3449
Molecular Biology Reports - Heat shock protein 90 (Hsp90) is a key chaperone that is abnormally expressed in cancer cells, and therefore, designing novel compounds to inhibit chaperone activities... 相似文献
13.
Kandasamy Palanivel Veerasamy Kanimozhi Balamuthu Kadalmani Mohammad Abdulkader Akbarsha 《Biotechnology letters》2013,35(9):1395-1403
Verrucarin A (VA), a protein synthesis inhibitor, derived from the pathogen fungus Myrothecium verrucaria, inhibits growth of leukemia cell lines and activates caspases and apoptosis and inflammatory signaling in macrophages. We have investigated VA-induced growth inhibition in breast cancer cells MDA-MB-231 and T47D and, particularly, the mechanism of VA-induced apoptosis. VA treatment brought about apoptotic cell death in a dose- and time-dependent manner which was associated with chromatin condensation, cell shrinkage, nuclear fragmentation and intracellular ROS production. Mitochondrial membrane depolarization, activation of caspase-3, down-regulation of Bcl-2 expression and up-regulation of Bax and p53 expression were observed. VA thus affects the viability of both the breast cancer cells by triggering ROS-mediated intrinsic mechanism of apoptosis. 相似文献
14.
15.
香烟烟雾提取物抑制肺泡上皮细胞的增殖并诱导其凋亡 总被引:2,自引:0,他引:2
香烟烟雾提取物(cigarette smoke extract,CSE)中含有丰富的氧化剂和自由基,由它所引起的氧化应激可导致肺泡壁的损伤进而发展为肺气肿.近年来,围绕CSE损伤肺泡壁作用机制的研究较为活跃,但其结果却一直存在着分歧.本实验的目的是观察CSE对肺泡Ⅱ型上皮细胞的损伤作用并探讨与其相关的分子机制.MTT比色法的结果显示,CSE以时间和剂量依赖性的方式降低细胞的增殖活力,流式细胞术的分析结果表明细胞增殖周期被阻滞在G1/S期.Hoechst 33258染色以及透射电镜观察从形态上确认CSE诱导细胞凋亡的发生,DNA梯的出现和Annexin V-FITC/碘化丙啶双染色的结果从分子水平得到进一步的证实.同时,运用流式细胞术检测到CSE诱导的凋亡伴随着Fas受体的高表达和caspase-3的显著活化.另外,使用H2DCFDA染色,经激光共聚焦显微镜术测得细胞内氧自由基在细胞受到CSE刺激以后大量快速积累.结果表明CSE能够抑制肺泡Ⅱ型上皮细胞来源的A549细胞的生长和增殖,并诱导细胞凋亡,由Fas受体所介导的死亡受体途径参与此凋亡过程,而CSE所引起的氧化应激则可能是阻止肺泡上皮细胞生长增殖并诱导其凋亡的始动因素. 相似文献
16.
17.
This study investigated the potential of shikonin as an anticancer agent against liver cancer and an in vitro human hepatoma cancer model system. The HepG2 cell line was the hepatoma cancer model in the present study. The inhibitory effect of shikonin on the growth of HepG2 cells was measured by MTT assay. To explore the underlying mechanism of cell growth inhibition of shikonin, the cell cycle distribution, DNA fragmentation, mitochondrial membrane potential (ΔΨm) disruption, and expression of Bax and Bcl-2 were measured in HepG2 cells. The activity of shikonin in inducing apoptosis was investigated through the detection of Annexin V signal and CD95 expression by flow cytometry and electron microscopy, respectively. Shikonin inhibited the growth of HepG2 cells in a dose-dependent manner. The IC50 value (inhibiting cell growth by 50%) was 4.30 mg/mL. Shikonin inhibited cell growth in a dose-dependent manner and blocked HepG2 cell cycle progression at the S phase. The changes in mitochondrial morphology, dose-dependently decreased in ΔΨm, were observed in different concentrations of the drug treatment group. Western blot analysis showed that cajanol inhibited Bcl-2 expression and induced Bax expression. Furthermore, we show that shikonin increases Annexin V signal and CD95 (Fas/APO) expression, resulting in apoptotic cell death of HepG2 cells. In addition, lump formation of intranuclear chromatin, pyknosis of cell nucleus, deletion of microvillus, vacuolar degeneration of mitochondria, reduction of rough endoplasmic reticulum, and resolution of free ribosome, etc., associated with apoptosis were discovered by electron microscopy in HepG2 cells after 48 h treatment. Shikonin inhibited HepG2 cells, possibly through the pathway of inducing early apoptosis, and was beneficial for restoring the apoptotic sensitivity of HepG2 cells by CD95, and should therefore be considered as a candidate agent for the prevention or treatment of human hepatoma. 相似文献
18.
Earlier studies identified testes-specific protease 50 (TSP50), which encodes a threonine protease, and showed that it was abnormally reactivated in many breast cancer biopsies. Further, it was shown to be negatively regulated by the p53 gene. However, little is known about the biological function of TSP50. In this study, we applied RNA interference to knockdown TSP50 gene expression in P19 murine embryonal carcinoma stem cells and tested whether this modulated the cell phenotype. The results showed that downregulation of TSP50 expression not only reduced cell proliferation, colony formation, and migration but also induced cell apoptosis. Further investigation revealed that knockdown of TSP50 resulted in greater sensitivity to doxorubicin-induced apoptosis and that activation of caspase-3 was involved in this process. 相似文献
19.
Mohamed A. Elkady Ahmed S. Doghish Ahmed Elshafei Mostafa M. Elshafey 《Saudi Journal of Biological Sciences》2021,28(4):2581-2590
MicroRNA-567 (miR-567) plays a decisive role in cancers whereas its role in non-small cell lung cancer (NSCLC) is still unexplored. This study was therefore planned to explore the regulatory function of miR-567 in A549 NSCLC cells and investigate its possible molecular mechanism that may help in NSCLC treatment. In the current study, miR-567 expression was examined by quantitative real time-polymerase chain reaction (qRT-PCR) in different NSCLC cell lines in addition to normal cell line. A549 NSCLC cells were transfected by miR-567 mimic, miR-567 inhibitor, and negative control siRNA. Cell proliferation was evaluated by MTT and 5-bromo-2′deoxyuridine assays. Cell cycle distribution and apoptosis were studied by flow cytometry. Bioinformatics analysis programs were used to expect the putative target of miR-567. The expression of cyclin-dependent kinase 8 (CDK8) gene at mRNA and protein levels were evaluated by using qRT-PCR and western blotting. Our results found that miR-567 expressions decreased in all the studied NSCLC cells as compared to the normal cell line. A549 cell proliferation was suppressed by miR-567 upregulation while cell apoptosis was promoted. Also, miR-567 upregulation induced cell cycle arrest at sub-G1 and S phases. CDK8 was expected as a target gene of miR-567. MiR-567 upregulation decreased CDK8 mRNA and protein expression while the downregulation of miR-567 increased CDK8 gene expression. These findings revealed that miR-567 may be a tumor suppressor in A549 NSCLC cells through regulating CDK8 gene expression and may serve as a novel therapeutic target for NSCLC treatment. 相似文献
20.
Trimethoprim (TMP), an inhibitor of dihydrofolate reductase, decreases the level of tetrahydrofolate supplying one-carbon units for biosynthesis of nucleotides, proteins, and panthotenate. We have demonstrated for the first time that one of the effects of the TMP action in E. coli cells is protein aggregation and induction of heat shock proteins (Hsps). TMP caused induction of DnaK, DnaJ, GroEL, ClpB, and IbpA/B Hsps. Among these Hsps, IbpA/B were most efficiently induced by TMP and coaggregated with the insoluble proteins. Upon folate stress, deletion of the delta ibpA/B operon resulted in increased protein aggregation but did not influence cell viability. 相似文献