首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
《Gene》1997,185(1):49-54
Gram+ aniline-assimilating Rhodococcus erythropolis AN-13 (AN-13) produces catechol 1,2-dioxygenase (C12O) showing high enzymatic activities for 3- and 4-methylcatechols [Aoki et al. (1984) Agric. Biol. Chem. 48, 2087–2095]. A 3.0 kb Sau3AI fragment carrying a gene encoding C12O (catA) was cloned by selection of transformants showing C12O activity from a gene library of AN-13. Furthermore, we specified a 1.6 kb SalI fragment containing catA from the Sau3AI fragment by subcloning. Sequence analysis revealed that the 1.6 kb SalI fragment carried a 855 bp open reading frame (ORF) encoding the entire AN-13 catA, preceded by a potential ribosome binding site (RBS). From comparison of the deduced amino acid (aa) sequence of C12O from AN-13 with other C12O reported previously, it was found that the AN-13 enzyme shares 56.0% aa sequence identity with C12O from Arthrobacter sp. mA3 (mA3) [Eck and Belter (1991) Gene 123, 87–92] compared with less than 36.4% aa sequence identities with others. In conclusion, we classified all C12O including the AN-13 enzyme into three subfamilies on the basis of similarity of aa sequences, numbers of aa residues, and substrate specificity.  相似文献   

2.
Aims: Catechol 1,2-dioxygenase is a key enzyme in the degradation of monoaromatic pollutants. The detection of this gene is in focus today but recently designed degenerate primers are not always suitable. Rhodococcus species are important members of the bacterial community involved in the degradation of aromatic contaminants and their specific detection could help assess functions and activities in the contaminated environments. To reach this aim, specific PCR primer sets were designed for the detection of Rhodococcus related catechol 1,2-dioxygenase genes. Methods and Results: Primers were tested with genetically well-characterized strains isolated in this study and community DNA samples were used as template for Rhodococcus specific PCR as well. The sequences of the catabolic gene in question were subjected to multiple alignment and a phylogenetic tree was created and compared to a 16S rRNA gene based Rhodococcus tree. A strong coherence was observed between the phylogenetic trees. Conclusions: The results strongly support the opinion that there was no recent lateral gene transfer among Rhodococcus species in the case of catechol 1,2-dioxygenase. Significance and Impact of the Study: In gasoline contaminated environments, aromatic hydrocarbon degrading Rhodococcus populations can be identified based upon the detection and sequence analysis of catechol 1,2-dioxygenase gene.  相似文献   

3.
Liao Y  Zhou X  Yu J  Cao Y  Li X  Kuai B 《Plant physiology》2006,142(2):620-628
Transgenic exploitation of bacterial degradative genes in plants has been considered a favorable strategy for degrading organic pollutants in the environment. The aromatic ring characteristic of these pollutants is mainly responsible for their recalcitrance to degradation. In this study, a Plesiomonas-derived chlorocatechol 1,2-dioxygenase (TfdC) gene (tfdC), capable of cleaving the aromatic ring, was introduced into Arabidopsis (Arabidopsis thaliana). Morphology and growth of transgenic plants are indistinguishable from those of wild-type plants. In contrast, they show significantly enhanced tolerances to catechol. Transgenic plants also exhibit strikingly higher capabilities of removing catechol from their media and high efficiencies of converting catechol to cis,cis-muconic acid. As far-less-than-calculated amounts of cis,cis-muconic acid were accumulated within the transgenic plants, existence of endogenous TfdD- and TfdE-like activities was postulated and, subsequently, putative orthologs of bacterial tfdD and tfdE were detected in Arabidopsis. However, no TfdC activity and no putative orthologs of either tfdC or tfdF were identified. This work indicates that the TfdC activity, conferred by tfdC in transgenic Arabidopsis, is a key requirement for phytoremoval and degradation of catechol, and also suggests that microbial degradative genes may be transgenically exploited in plants for bioremediation of aromatic pollutants in the environment.  相似文献   

4.
18O labeling studies on the catechol 1,2-dioxygenase-catalyzed oxidative cleavage of pyrogallol demonstrate that the enzyme functions both as a dioxygenase and a monooxygenase in this reaction. Two products are observed, 2-pyrone-6-carboxylic acid, 99% singly labeled at the carboxylate, and 2-hydroxy-cis,cis-muconic acid, 74% doubly labeled (one 18O at each carboxylate) and 24% single labeled (one 18O at either carboxylate). The labeling pattern observed shows that 2-pyrone-6-carboxylic acid cannot be derived enzymatically from the lactonization of the 2-hydroxy-cis,cis-muconic acid, thus eliminating the dioxetane as an intermediate in the dioxygenase mechanism. The observations are interpreted to indicate the intermediacy of 2-hydroxymuconic anhydride. This anhydride or the corresponding muconyl enzyme species must be sufficiently long-lived to allow the exchange of labeled hydroxide with solvent. Evidence for mechanism-based enzyme inactivation by a pyrogallol-derived intermediate is also presented.  相似文献   

5.
Ralstonia sp. Ba-0323, a wild strain isolated from soil, produced catechol from benzoate and accumulated it outside the cells. The bacterium produced a maximal amount of catechol (1.6 mg/ml) from 3 mg/ml of sodium benzoate in a 20-h growing culture. The conversion rate of benzoate to catechol was 70% on a molar basis. The catechol production by the resting cells increased in the presence of glycerol, and the maximal amount of catechol produced from 3 mg/ml of sodium benzoate reached 1.9 mg/ml at the conversion rate of 83% after 8 h of incubation. Catechol 1,2-dioxygenase, which catalyzed the ring cleavage of catechol, was purified to homogeneity from a cell extract of Ralstonia sp. Ba-0323 growing on benzoate and characterized. The specific activity of the purified enzyme was much lower than those of the dioxygenases from other microorganisms reported. The Km for catechol of the purified enzyme was much higher than those of other dioxygenases. In addition, the NH2-terminal amino acid sequence of the enzyme was less similar to the other catechol 1,2-dioxygenases than they are to each other.  相似文献   

6.
This is the first report of a catechol 1,2-dioxygenase from Stenotrophomonas maltophilia strain KB2 with high activity against catechol and its methyl derivatives. This enzyme was maximally active at pH 8.0 and 40 °C and the half-life of the enzyme at this temperature was 3 h. Kinetic studies showed that the value of K m and V max was 12.8 μM and 1,218.8 U/mg of protein, respectively. During our studies on kinetic properties of the catechol 1,2-dioxygenase we observed substrate inhibition at >80 μM. The nucleotide sequence of the gene encoding the S. maltophilia strain KB2 catechol 1,2-dioxygenase has high identity with other catA genes from members of the genus Pseudomonas. The deduced 314-residue sequence of the enzyme corresponds to a protein of molecular mass 34.5 kDa. This enzyme was inhibited by competitive inhibitors (phenol derivatives) only by ca. 30 %. High tolerance against condition changes is desirable in industrial processes. Our data suggest that this enzyme could be of use as a tool in production of cis,cis-muconic acid and its derivatives.  相似文献   

7.
Circular dichroism (CD) spectra of catechol 1,2-dioxygenase from Acinetobacter calcoaceticus exhibit three positive ellipticity bands between 240 and 300 nm (250, 283, and 292 nm), two negative bands at 327 and 480 nm, and a low-intensity positive band at 390 nm. The fractions of helix β-form, and unordered form of the enzyme are 8, 38, and 54%, respectively. The circular dichroic bands at 327 and 480 nm and a part of the positive bands at 292 and 390 nm are associated with enzyme activity. Significant changes in absorption and CD spectra of the enzyme were observed when the temperature of the enzyme preparation was increased to 47°C, coinciding with the sharp decrease in enzyme activity observed at this temperature.  相似文献   

8.
The sequence cato encoding catechol 1,2-dioxygenase from Candida tropicalis JH8 was cloned, sequenced, and expressed in Escherichia coli. The sequence cato contained an ORF of 858?bp encoding a polypeptide of 285?amino acid residues. The recombinant catechol 1,2-dioxygenase exists as a homodimer structure with a subunit molecular mass of 32 KD. Recombinant catechol 1,2-dioxygenase was unstable below pH 5.0 and stable from pH 7.0 to 9.0; its optimum pH was at 7.5. The optimum temperature for the enzyme was 30°C, and it possessed a thermophilic activity within a broad temperature range. Under the optimal conditions with catechol as substrate, the Km and Vmax of recombinant catechol 1,2-dioxygenase were 9.2?µM and 0.987?µM/min, respectively. This is the first article presenting cloning and expressing in E. coli of catechol 1,2-dioxygenase from C. tropicalis and characterization of the recombinant catechol 1,2-dioxygenase.  相似文献   

9.
Rhodococcus rhodochrous strain CTM degrades 2-methylaniline mainly via the meta-cleavage pathway. Conversion of the metabolite 3-methylcatechol was catalysed by an Mr 156,000 catechol 2,3-dioxygenase (C23OI) comprising four identical subunits of Mr 39,000. The corresponding gene was detected by using an oligonucleotide as a gene probe. This oligonucleotide was synthesized on the basis of a partial amino acid sequence obtained from the purified enzyme from R. rhodochrous. The structural gene of C23OI was located on a 3.5 kb BglII restriction fragment of plasmid pTC1. On the same restriction fragment the gene for a second catechol 2,3-dioxygenase, designated C23OII, was found. This gene coded for the synthesis of the Mr 40,000 polypeptide of the Mr 158,000 tetrameric C23OII. More precise mapping of the structural genes showed that the C23OI gene was located on a 1.2 kb BglII-SmaI fragment and the C23OII gene on the adjacent 1.15 kb SmaI fragment. Comprehensive substrate range analysis showed that C23OII accepted all the substrates that C23OI did, but additionally cleaved 2,3-dihydroxybiphenyl and catechols derived from phenylcarboxylic acids. C23OI exhibited highest activity towards methylcatechols, whereas C23OII cleaved unsubstituted catechol preferentially.  相似文献   

10.
Degradation of para-toluate by Rhodococcus opacus 1cp was investigated. Activities of the key enzymes of this process, catechol 1,2-dioxygenase and muconate cycloisomerase, are detected in this microorganism. Growth on p-toluate was accompanied by induction of two catechol 1,2-dioxygenases. The substrate specificity and physicochemical properties of one enzyme are identical to those of chlorocatechol 1,2-dioxygenase; induction of the latter enzyme was observed during R. opacus 1cp growth on 4-chlorophenol. The other enzyme isolated from the biomass grown on p-toluate exhibited lower rate of chlorinated substrate cleavage compared to the catechol substrate. However, this enzyme is not identical to the catechol 1,2-dioxygenase cloned in this strain within the benzoate catabolism operon. This supports the hypothesis on the existence of multiple forms of dioxygenases as adaptive reactions of microorganisms in response to environmental stress.  相似文献   

11.
李钦  李丽 《微生物学报》1989,29(1):39-44
Two strains of Pseudomonus sp. having the extracellular catechol 1, 2-dioxygenase activity were selected from 112 bacterial strains. The conditions for enzyme production of the strains were examined. The optimal temperature and pH for enzyme formation were 30 degrees C and pH 6.8-7.0 respectively. Enzyme formation was enhanced by sodium benzoate, and was markedly inhibited by glucose, maltose and glycerol. Ammoniacal nitrogen sources were essential for cell growth and enzyme production. Sodium succinate was an effective inducer for enzyme formation. When the organism was grown in 0.15% sodium benzoate medium (pH 6.8-7.0) at 30 degrees C for 72 hours, about 10 units of catechol 1,2 dioxygenase per ml was obtained.  相似文献   

12.
Rieske nonheme iron oxygenases form a large class of aromatic ring-hydroxylating dioxygenases found in microorganisms. These enzymes enable microorganisms to tolerate and even exclusively utilize aromatic compounds for growth, making them good candidates for use in synthesis of chiral intermediates and bioremediation. Studies of the chemical stability and thermostability of these enzymes thus become important. We report here the structure of free and substrate (indole)-bound forms of naphthalene dioxygenase from Rhodococcus sp. strain NCIMB12038. The structure of the Rhodococcus enzyme reveals that, despite a approximately 30% sequence identity between these naphthalene dioxygenases, their overall structures superpose very well with a root mean square deviation of less than 1.6 A. The differences in the active site of the two enzymes are pronounced near the entrance; however, indole binds to the Rhodococcus enzyme in the same orientation as in the Pseudomonas enzyme. Circular dichroism spectroscopy experiments show that the Rhodococcus enzyme has higher thermostability than the naphthalene dioxygenase from Pseudomonas species. The Pseudomonas enzyme has an apparent melting temperature of 55 degrees C while the Rhodococcus enzyme does not completely unfold even at 95 degrees C. Both enzymes, however, show similar unfolding behavior in urea, and the Rhodococcus enzyme is only slightly more tolerant to unfolding by guanidine hydrochloride. Structure analysis suggests that the higher thermostability of the Rhodococcus enzyme may be attributed to a larger buried surface area and extra salt bridge networks between the alpha and beta subunits in the Rhodococcus enzyme.  相似文献   

13.
Catechol 1,2-dioxygenases of the ordinary ortho-cleavage pathway have been isolated from strains Rhodococcus rhodnii 135 and Rhodococcus rhodochrous 89 grown on phenol as the sole source of carbon and energy. The activities of the catechol 1,2-dioxygenases with 3- and 4-methylpyrocatechols were 1.3-1.5 times higher than those with pyrocatechol. The rate of oxidation of 3-chloropyrocatechol catalyzed by both enzymes was 20% of the rate of oxidation of unsubstituted pyrocatechol. The enzymes are homodimers composed of 37-kD subunits.  相似文献   

14.
A Gram-negative bacterium, designated as strain 12S, was isolated from a heavy metal-polluted soil. According to the biochemical characteristics, FAME analysis, and 16S rRNA gene sequence analysis, the isolated strain was identified as Variovorax sp. 12S. In the presence of 0.1 mM cadmium, 12S was able to completely utilize up to 1.5 mM of phenol as the sole carbon and energy source in an MSM–TRIS medium. Degradation of phenol was accompanied by a slow bacterial growth rate and an extension of the lag phase. The cells grown on phenol showed catechol 2,3-dioxygenase (C23O) activity. The activity of C23O from 12S cultivated in medium with Cd2+ was almost 20 % higher than in the control. Since environmental contamination with aromatic compounds is often accompanied by the presence of heavy metals, Variovorax sp. 12S and its C23O appear to be very powerful and useful tools in the biotreatment of wastewaters and soil decontamination.  相似文献   

15.
For enhancement ofcis,cis-muconate productivity from benzoate, catechol 1,2-dioxygenase (C12O) which catalyzes the rate-limiting step (catechol conversion tocis,cis-muconate) was cloned and expressed in recombinantPseudomonas putida BCM114. At higher benzoate concentrations (more than 15 mM),cis,cis-muconate productivity gradually decreased and unconverted catechol was accumulated up to 10 mM in the case of wildtypeP. putida BM014, whereascis,cis-muconate productivity continuously increased and catechol was completely transformed tocis,cis-muconate forP. putida BCM114. Specific C12O activity ofP. putida BCM114 was about three times higher than that ofP. putida BM014, and productivity was enhanced more than two times.  相似文献   

16.
Summary Catabolism of methylperhydroindanedione proprionate (MEPHIP), an intermediate in steroid nucleus degradation, begins in Rhodococcus equi by reduction of the 5-keto group to a 5-hydroxy group. This reaction is carried out in two steps: the first is an activation of MEPHIP by coenzyme A (CoA) and ATP; the second is the reduced nicotine adenine dinucleotide phosphate (NADPH) dependent reduction of the resultant MEPHIP-CoA by a dehydrogenase. This MEPHIP-reductase activity appears only after induction by steroids or by MEPHIP itself.Offprint requests to: A. Miclo  相似文献   

17.
通过GC-MS测定出嗜吡啶红球菌R04菌降解联苯的中间代谢物2,3二氢二羟基联苯、2,3二羟基联苯和苯甲酸,并测定了该菌的2,3二羟基联苯双加氧酶、2羟基6酮基6苯基2,3己二烯酸(HOPDA)水解酶和苯甲酸双加氧酶活性。最终确定了R04菌降解联苯的途径为2,3二羟基联苯双加氧酶途径。  相似文献   

18.
【目的】克隆倭蜂猴粪便微生物宏基因组的邻苯二酚1,2-双加氧酶基因cat PLCgl,并对该酶进行异源表达及酶学特性研究。【方法】利用宏基因组高通量测序技术获得cat PLCgl,并对其氨基酸序列进行分析。将cat PLCgl重组到载体p EASY-E2中并转化到大肠杆菌BL21(DE3)中异源表达,研究其酶学性质。【结果】cat PLCgl全长852 bp,G+C含量48%,编码283个氨基酸,理论分子量为33.56 k D。重组Cat PLCgl酶学性质分析显示最适作用p H为7.0,其中在p H 7.0–10.0范围内处理1 h后,酶活剩余90%以上;最适作用温度为40°C,在25°C和40°C条件下稳定性较好,耐受210 h酶活性几乎不变。重组酶在最适条件下的动力学参数K_m、V_(max)和k_(cat)分别为24.9μmol/L、8.3 mmol/(min·g)和13.7 s~(-1);Fe~(2+)、Hg~(2+)、Cu~(2+)、Triton X-100、SDS、Ag+强烈抑制该酶活性,而其它金属离子及有机试剂影响较小。【结论】从倭蜂猴粪便微生物宏基因组中克隆得到邻苯二酚1,2-双加氧酶基因cat PLCgl,并对重组Cat PLCgl酶学性质进行研究,该酶具有较好的热稳定性和耐碱性,在降解环境中的邻苯二酚和生产顺,顺-己二烯二酸方面具有应用潜力。  相似文献   

19.
嗜吡啶红球菌R04的联苯降解途径的研究   总被引:3,自引:0,他引:3  
通过GC-MS测定出嗜吡啶红球菌R04菌降解联苯的中间代谢物2,3-二氢二羟基联苯、2,3-二羟基联苯和苯甲酸,并测定了该菌的2,3-二羟基联苯双加氧酶、2-羟基-6-酮基-6-苯基-2,3-己二烯酸(HOPDA)水解酶和苯甲酸双加氧酶活性。最终确定了R04菌降解联苯的途径为2,3-二羟基联苯双加氧酶途径。  相似文献   

20.
This study aimed at characterization of catechol 2,3-dioxygenase from Stenotrophomonas maltophilia KB2, being able to utilize a wide spectrum of aromatic substrates as a sole carbon and energy source. 2-methylphenol, 3-methylphenol, and 4-methylphenol was completely degraded during 24 h in concentration 6 mM, 7 mM, and 5 mM, respectively. When cells of strain KB2 were growing on methylphenols, catechol 2,3-dioxygenase was induced. Biochemical analysis revealed that the examined enzyme was similar to another catechol 2,3-dioxygenases, but showed extremely high activity. The enzyme was optimally active at 30 °C and pH 7.6. Kinetic studies showed that the value of Km, Vmax and Hill constant was 85.11 ??M, 3.08 ??M min−1 and 4.09 respectively. Comparative structural and phylogenetic analysis of catechol 2,3-dioxygenase from S. maltophilia KB2 had placed the protein with the single-ring substrate subfamily of the extradiol dioxygenase. We observed the presence of externally located ??-helices and internally located ??-sheets. We also suggest that the Fe2+ ion binding is facilitated via four ligands: two histidine residues, one glutamate residue and one molecule of water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号