首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The structure of the carbohydrate units of alpha-fetoprotein from fetal calf serum has been studied. Glycopeptides and oligosaccharides were prepared from alpha-fetoprotein by protease treatment and hydrazinolysis, respectively, and subjected to carbohydrate and amino acid analysis. Two N-glycosidic glycans are present in each alpha-fetoprotein molecule. These were separated into concanavalin A (ConA)-reactive and nonreactive species on ConA-Sepharose. Methylation analysis, Smith degradation, sequential exoglycosidase treatments, and sizing suggested that the major, ConA-nonreactive fraction is composed of triantennary and the minor, ConA-reactive fraction, of biantennary complex-type ConA-reactive and -nonreactive fractions of intact alpha-fetoprotein, respectively, and refractionated on Con A-Sepharose. The results indicate that 75% of alpha-fetoprotein molecules contain two triantennary complex-type glycans, 20% contain one triantennary and one biantennary glycan, and 5% contain two biantennary glycans. The last two molecular variants are bound to ConA. These results explain, at least in part, the previously found heterogeneity of alpha-fetoprotein with respect to charge and molecular size, and provide a biochemical basis for the differing reactivities toward ConA of alpha-fetoprotein from the yolk sac, fetal liver, and various tumors.  相似文献   

2.
A 'serotransferrin-like' protein was purified from mouse milk. This serotransferrin cross-reacts immunologically with the serotransferrin isolated from mouse plasma and not with the mouse lactotransferrin (lactoferrin). Sugar analysis of the three transferrins, i.e. serotransferrin, milk 'serotransferrin-like' protein and lactotransferrin, revealed that the major difference between the glycan primary structure of mouse serotransferrin and those of mouse milk 'serotransferrin-like' protein and lactotransferrin concerns essentially the presence of one fucose residue in the last two proteins. For structural determination, the N-glycosidically linked glycans were released from the protein by a reductive cleavage of the oligosaccharide-protein linkage under strong alkaline conditions. The primary structure of the released oligosaccharide alditols was determined by methylation analysis and 400 MHz 1H-n.m.r. spectroscopy. The oligosaccharide alditols released from milk 'serotransferrin-like' protein and lactotransferrin were identical and were identified as disialylated biantennary glycans of the N-acetyl-lactosamine type with a fucose residue alpha-1,6-linked to the N-acetylglucosamine residue conjugated to the peptide chain and having the following primary structure: NeuAc(alpha 2-6)Gal(beta 1-4)GlcNAc(beta 1-2)Man(alpha 1-3)[NeuAc(alpha 2-6)Gal(beta 1-4)GlcNAc(beta 1-2)Man(alpha 1-6)]Man(beta 1-4)GlcNAc(beta 1-4)[Fuc(alpha 1-6)]GlcNAc(beta 1-N)Asn. The serotransferrin glycan has the same primary structure but is only partially fucosylated (10-15%).  相似文献   

3.
A previously established procedure [Regoeczi, E., Chindemi, P.A., Rudolph, J. R., Spik, G. & Montreuil, J. (1987) Biochem. Cell Biol. 65, 948-954] was used to isolate from three DEAE-cellulose chromatographic fractions of diferric rat serotransferrin (rTf) subpopulations having discernible affinities for concanavalin A (ConA). These entities are designated rTf-1 (not retarded by ConA column), rTf-2 (retarded) and rTf-3 (bound). Each rTf type was found to be endowed with carbohydrate sufficient to account for a single diantennary glycan/protein molecule. Glycan structures were determined on the glycopeptides by employing GLC/MS and 400-MHz 1H-NMR spectroscopy. All glycans possessed a common, trimannosyl-N,N'-diacetylchitobiose core with or without one L-fucose alpha-1,6-linked to the Asn-linked GlcNAc. However, there were differences in the antennae. Thus, in rTf-3, both antennae were of the disialylated diantennary N-acetyllactosamine type which is frequently encountered in other plasma glycoproteins. However, the alpha-1,3-Man-linked antenna in rTf-1 as well as rTf-2 had the sequence: Neu5Ac(alpha 2-3)Gal(beta 1-3)[Neu5Ac(alpha 2-6)]GlcNAc(beta 1-2)Man. In addition, the alpha-1,6-Man-linked antenna deviated in rTf-2 from the standard structure by having the sequence: Neu5Ac(alpha 2-3)Gal(beta 1-3)GlcNAc(beta 1-2)Man. The possible relevance of the above structures to the ConA binding of rTf is discussed. A further preparation, obtained from the most anionic DEAE-cellulose fraction (peak V) or rTf contained several tetrasialylated diantennary glycans whose precise structures remain to be established in future studies.  相似文献   

4.
Hamster sarcoma virus (HSV) transformation of Nil-8 fibroblasts is associated with an increase in the average size of N-acetyllactosamine (complex) type N-linked glycans due to an increase in both the average number of branches/chain and in the fraction of N-linked glycans containing poly(GlcNAc(beta 1,3) Gal-(beta 1,4)) (polylactosaminylglycan) chains. Analysis of glycopeptides from the envelope glycoproteins of Sindbis virus and vesicular stomatitis virus (VSV) grown in Nil-8 and Nil/HSV cells indicated that the transformation-associated shift to larger N-linked oligosaccharides selectively affects some glycosylation sites far more than others. Glycosylation of the Sindbis virus glycoproteins and of Asn-179 of VSV G was similar in Nil-8 and Nil/HSV cells; oligosaccharide processing generally did not proceed beyond the biantennary complex stage. In contrast, Asn-336 of VSV G carried primarily biantennary complex glycans in Nil-8-grown virus (ratio, triantennary, and larger to biantennary complex glycans (tri+/bi) = 0.5) but more highly branched structures in Nil/HSV-grown virus (tri+/bi = 8.1). All of the triantennary or larger oligosaccharides from Asn-336 of Nil/HSV-grown VSV G bound to leukoagglutinating phytohemagglutinin-agarose, indicating the presence of a branch attached to the Man3GlcNAc2 core via a beta 1,6-linked GlcNAc residue and suggesting that increased UDP-GlcNAc:alpha-D-mannoside beta 1,6-N-acetylglucosaminyl transferase V (GlcNAc transferase V) activity accompanied transformation. At least 20% of these leukoagglutinating phytohemagglutinin-binding oligosaccharides were sensitive to an enzyme specific for polylactosaminylglycan chains, Escherichia freundii endo-beta-galactosidase.  相似文献   

5.
Five variants of mouse serum transferrin (mTf, designated mTf-I to mTf-V) with respect to carbohydrate composition have been isolated by DEAE-cellulose chromatography in the following relative percentages: mTf-I: 0.55; mTf-II: 0.79; mTf-III: 71.80; mTf-VI: 21. 90 and mTf-V: 4.96. The primary structures of the major glycans from mTf-III and mTf-IV were determined by methylation analysis and 1H-nuclear magnetic resonance (NMR) spectroscopy. All glycans possessed a common trimannosyl-N,N'-diacetylchitobiose core. From the glycovariant mTf-III two isomers of a conventional biantennary N-acetyllactosamine type were isolated, in which two N-glycolylneuraminic acid (Neu5Gc) residues are linked to galactose either by a (alpha 2-6) or (alpha 2-3) linkage. A subpopulation of this glycovariant contains a fucose residue (alpha 1-6)-linked to GlcNAc-1. The structure of the major glycan found in variant mTf-IV contained an additional Neu5Gc and possessed the following new type of linkage: Neu5Gc(alpha 2-3)Gal(beta 1-3)[Neu5Gc(alpha 2-6)]GlcNAc(beta 1-2 )Man(alpha 1-3). In addition to this glycan, a minor compound contained the same antennae linked to Man(alpha 1-6). In fraction mTf-V, which was found to be very heterogeneous by (1)H NMR analysis, carbohydrate composition and methylation analysis suggested the presence of tri'-antennary glycans sialylated by Neu5Gc alpha-2,6- and alpha-2, 3-linked to the terminal galactose residues. In summary, mTf glycans differed from those of other analyzed mammalian transferrins by the presence of Neu5Gc and by a Neu5Gc(alpha 2-6)GlcNAc linkage in trisialylated biantennary structures, reflecting in mouse liver, a high activity of CMP-Neu5Ac hydroxylase and (alpha 2-6)GlcNAc sialyltransferase.  相似文献   

6.
Three serotransferrin variants Tf 2a, Tf 4b and Tf 5b were isolated in an homogeneous form from a preparation of homozygous horse serotransferrin Tf 0. On the basis of the results concerning molecular mass determination and the carbohydrate analysis, it is concluded that the serotransferrin variant Tf 2a contains only one glycan while variants Tf 4b and Tf 5b contain two glycans. The structure of all of the glycans has been established by combining methylation analysis, mass spectrometry and 400-MHz 1H-NMR spectroscopy. From the obtained results, it appears that the two glycans of Tf 5b variant are, like in human serotransferrin, of the N-acetyllactosaminic biantennary type, fully sialylated by two residues of N-acetylneuraminic acid (Neu5Ac; glycan type I). In contrast, in addition to this structure, two N-acetyllactosaminic biantennary isomeric structures named type II-A and type II-B sialylated by one Neu5Ac residue and one N-acetyl-4-O-acetylneuraminic acid [Neu(4,5)Ac2] residue located either at Gal6 or 6' and one N-acetyllactosaminic biantennary structure (named type III) sialylated by two residues of Neu(4,5)Ac2, were identified in variants Tf 2a and Tf 4b. These results demonstrate that in an homozygous preparation of horse serotransferrin Tf 0, the heterogeneity is dependent, on the one hand, on the nature of the neuraminic acid substituting a N-acetyllactosaminic biantennary structure and, on the other hand, on the number of glycans bound to the polypeptide chain. Moreover, the differences which exist in the molecular mass of 77.5 kDA, 80 kDa and 82 kDa for serotransferrin variants Tf 2a, Tf 4b and Tf 5b, respectively, are not completely explained by the structure and the number of the glycans suggesting that the three variants should also differ in their polypeptide chain.  相似文献   

7.
The glycans of the Thy-1 antigen present on thymocytes and lymph-node T-lymphocytes were investigated after external labelling of the cells. Neuraminidase, endoglycosidase H and endoglycosidase F were used in combination with sodium dodecyl sulphate/polyacrylamide-gel electrophoresis and isoelectric focusing in order to characterize the nature of the glycans on 125I-labelled and immunoprecipitated Thy-1. Glycopeptides were prepared from Thy-1 obtained from cells labelled by periodate/boro[3H]hydride treatment. The glycopeptides were separated by affinity chromatography on concanavalin A-Sepharose and analysed by gel filtration. The results show that both types of cells possess Thy-1 molecules with three N-linked carbohydrate chains, of which one is of 'high-mannose' type and the other two of triantennary and biantennary 'complex' type. The ratio of triantennary/biantennary chains was decreased on Thy-1 of mature cells compared with that of immature cells, but instead more sialic acid was present on these chains. Deglycosylated Thy-1 appeared to be of the same size regardless of origin, indicating that only the carbohydrate moiety differs between Thy-1 molecules of the two cell types.  相似文献   

8.
The N-glycosidically linked glycans in the large subunit (HA1) of the hemagglutinin from fowl plague virus, strain Dutch (containing about 15%, w/w, of carbohydrates), were liberated by alkaline hydrolysis, and were filtrated through Bio-Gel as the re-N-acetylated oligosaccharide alditols. One major fraction (90%, mol/mol) was obtained. It was subfractionated by concanavalin A affinity chromatography and was analyzed by methylation/capillary gas chromatography/mass fragmentography and especially by one-dimensional and two-dimensional 1H nuclear magnetic resonance. The major HA1 glycans, which are not sialylated, were thus found to comprise about 40%, 30% and 20% (mol/mol), respectively, of biantennary intersected, biantennary, and triantennary N-acetyllactosaminic ('complex') oligosaccharides. About two thirds of the internal GlcNAc residues in these glycans are substituted by Fuc(alpha 1----6), all the triantennary species carry the third Gal(beta 1----4)GlcNAc(beta 1----unit at the Man(alpha 1----6)-branch, and roughly one fourth of the N-acetyllactosamine units in the non-intersected biantennary oligosaccharides are incomplete.  相似文献   

9.
N-acetylglucosaminyltransferase V (GnT-V) catalyzes the addition of a beta1,6-linked GlcNAc to the alpha1,6 mannose of the trimannosyl core to form tri- and tetraantennary N-glycans and contains six putative N-linked sites. We used mass spectrometry techniques combined with exoglycosidase digestions of recombinant human GnT-V expressed in CHO cells, to identify its N-glycan structures and their sites of expression. Release of N-glycans by PNGase F treatment, followed by analysis of the permethylated glycans using MALDI-TOF MS, indicated a range of complex glycans from bi- to tetraantennary species. Mapping of the glycosylation sites was performed by enriching for trypsin-digested glycopeptides, followed by analysis of each fraction with Q-TOF MS. Predicted tryptic glycopeptides were identified by comparisons of theoretical masses of peptides with various glycan masses to the masses of the glycopeptides determined experimentally. Of the three putative glycosylation sites in the catalytic region, peptides containing sites Asn 334, 433, and 447 were identified as being N-glycosylated. Asn 334 is glycosylated with only a biantennary structure with one or two terminating sialic acids. Sites Asn 433 and 447 both contain structures that range from biantennary with two sialic acids to tetraantennary terminating with four sialic acids. The predominant glycan species found on both of these sites is a triantennary with three sialic acids. The appearance of only biantennary glycans at site Asn 433, coupled with the appearance of more highly branched structures at Asn 334 and 447, demonstrates that biantennary acceptors present at different sites on the same protein during biosynthesis can differ in their accessibility for branching by GnT-V.  相似文献   

10.
Glycopeptides obtained from human serotransferrin by pronase digestion were separated into two fractions by affinity chromatography on Con A-Sepharose. The retarded fraction (85% of total glycopeptides) contained sialylated biantennary glycans of the N-acetyllactosaminic type, the primary structure of which has been previously determined. The non-retained fraction (15% of total glycopeptides) consisted of two isomeric triantennary glycans of the N-acetyllactosaminic type. The primary structure have been elucidated by methylation analysis and 500 MHz 1H-NMR spectroscopy. Both contain an additional NeuAc(alpha 2----3)Gal(beta 1----4)GlcNAc antenna. The latter is linked to C-4 of the (alpha 1----3) bound Man residue in 45% of the glycans in the non-retained fraction but to C-6 of the (alpha 1----6) bound Man residue, in the remaining 55% of the glycans in this fraction.  相似文献   

11.
This paper extends our knowledge of the rather bizarre carbohydrate binding poperties of the banana lectin (Musa acuminata). Although a glucose/mannose binding protein which recognizes alpha-linked gluco-and manno-pyranosyl groups of polysaccharide chain ends, the banana lectin was shown to bind to internal 3-O-alpha-D-glucopyranosyl units. Now we report that this lectin also binds to the reducing glucosyl groups of beta-1,3-linked glucosyl oligosaccharides (e.g. laminaribiose oligomers). Additionally, banana lectin also recognizes beta1,6-linked glucosyl end groups (gentiobiosyl groups) as occur in many fungal beta1,3/1,6-linked polysaccharides. This behavior clearly distinguishes the banana lectin from other mannose/glucose binding lectins, such as concanavalin A and the pea, lentil and Calystegia sepium lectins.  相似文献   

12.
Three types of asialo-transferrin were obtained from immunologically pure human transferrin by chromatography on DEAE-cellulose, followed by desialylation and affinity chromatography on a column of the immobilized asialo-glycoprotein-binding hepatic lectin from rabbit liver. Of the asialo-transferrins, type 1 was derived from the principal DEAE-cellulose chromatographic component of transferrin, i.e. the one that contains two biantennary glycans. The two other asialo-transferrins (types 2 and 3) were derived from a minor DEAE-chromatographic transferrin component, which is assumed to possess one biantennary and one triantennary glycan. The three asialo-transferrin types were indistinguishable by electrophoretic mobility, but they were readily distinguished on the basis of their binding strengths to the hepatic lectin in intact rats. Glycan structures responsible for the difference in binding strengths between asialo-transferrin types 2 and 3 are not known. Metabolic studies in rats showed that none of the individual asialo-transferrin types was capable of generating a signal for endocytosis at low doses (<1mug/100g body wt.) and, consequently, most of the injected protein was recoverable with the plasma and the liver 35min after injection. However, endocytosis and catabolism of each asialo-transferrin type was readily induced by injecting a larger dose (50-250mug/100g body wt.) of unlabelled asialo-transferrin of the same type or of a different type a short interval after the labelled dose. These findings support the view that the dose-dependent uptake of human asialo-transferrin by the hepatocyte, as established in an earlier study with asialo-transferrin made from whole transferrin [Regoeczi, Taylor, Hatton, Wong & Koj (1978) Biochem. J.174, 171-178], also holds for these asialo-transferrin subfractions. Furthermore, the present studies indicate that asialo-transferrins of different carbohydrate compositions are capable of synergistically promoting endocytosis of each other.  相似文献   

13.
Chicken haptoglobin (Hp), a hemoglobin-binding protein isolated from chicken plasma, is composed of three molecular variants that react differently with concanavalin A (ConA). These glycosylation variants of chicken Hp have been isolated by affinity chromatography using Sepharose-bound ConA. They differ in their molecular weight, as determined by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. Analysis of the glycopeptides obtained after pronase digestion of these variants yielded two types of structures: one, reactive with ConA, corresponded to a biantennary N-linked carbohydrate unit and one, unreactive with ConA, corresponded to a triantennary unit. The strongly ConA-reactive Hp variant bears only two biantennary units and the nonreactive Hp variant bears only two triantennary units; the weakly reactive Hp variant bears equal amounts of both units. The distribution of Hp glycosylation variant does not show any significant difference when obtained from the plasma of laying hens before and after turpentine-induced inflammation.  相似文献   

14.
The N-glycans present on the total mixture of serum glycoproteins (serum N-glycome) were analyzed in 24 subjects with congenital disorder of glycosylation type I (CDG-I) and 7 healthy, age-matched individuals. No new N-glycan structures were observed in the sera of CDG-I patients as compared with normal sera. However, we observed in all subtypes a significantly increased degree of core alpha-1,6-fucosylation of the biantennary glycans as compared to normal, as well as a significant decrease in the amount of triantennary glycans. These serum N-glycome changes appear to be a milder manifestation of some of the changes observed in adult liver cirrhosis patients, which is compatible with the reported steatosis and fibrosis in CDG-I patients. In the CDG-Ia subgroup, the extent of the serum N-glycome changes correlates with the aberration of the serum transferrin isoelectric focusing pattern, which measures the severity of the lack of entire N-glycan chains (primary consequence of CDG-I) in the liver and is the standard diagnostic test for this category of inherited diseases.  相似文献   

15.
Five variants of mouse serum transferrin (mTf, designated mTf-I to mTf-V) with respect to carbohydrate composition have been isolated by DEAE-cellulose chromatography in the following relative percentages: mTf-I: 0.55; mTf-II: 0.79; mTf-III: 71.80; mTf-VI: 21.90 and mTf-V: 4.96. The primary structures of the major glycans from mTf-III and mTf-IV were determined by methylation analysis and 1H-nuclear magnetic resonance (NMR) spectroscopy. All glycans possessed a common trimannosyl-N,N′-diacetylchitobiose core. From the glycovariant mTf-III two isomers of a conventional biantennary N-acetyllactosamine type were isolated, in which two N-glycolylneuraminic acid (Neu5Gc) residues are linked to galactose either by a (α2-6) or (α2-3) linkage. A subpopulation of this glycovariant contains a fucose residue (α1-6)-linked to GlcNAc-1. The structure of the major glycan found in variant mTf-IV contained an additional Neu5Gc and possessed the following new type of linkage: Neu5Gc(α2-3)Gal(β1-3)[Neu5Gc(α2-6)]GlcNAc(β1-2)Man(α1-3). In addition to this glycan, a minor compound contained the same antennae linked to Man(α1-6). In fraction mTf-V, which was found to be very heterogeneous by 1H NMR analysis, carbohydrate composition and methylation analysis suggested the presence of tri′-antennary glycans sialylated by Neu5Gc α-2,6- and α-2,3-linked to the terminal galactose residues. In summary, mTf glycans differed from those of other analyzed mammalian transferrins by the presence of Neu5Gc and by a Neu5Gc(α2-6)GlcNAc linkage in trisialylated biantennary structures, reflecting in mouse liver, a high activity of CMP-Neu5Ac hydroxylase and (α2-6)GlcNAc sialyltransferase.  相似文献   

16.
The oligosaccharides of microsomal beta-glucuronidase were analysed by gel permeation and weak anion exchange chromatography following hydrazine release. N-linked glycans, constituted 80% of the total glycan pool and were mainly of the tri- and biantennary complex type with or without core and arm fucose. The major oligosaccharide, that comprised 30.6% of all the species analysed, was structurally identified by reagent array analysis method and found to be a triantennary complex structure, Galbeta1,4GlcNAcbeta1,2Manalpha1,6(3)(Galbeta1,4GlcNAcbeta1,4(Galbeta1,4GlcNAcbeta1,2) Manalpha1,3(6))Manbeta1,4GlcNAcbeta1,4 GlcNAc. O-Linked glycans comprised 20% of the total glycan pool, the major species being Galbeta1,3GalNAc. All of the N- and O-linked glycans were charged. Most of the negative charge was due to sialic acid (85.0%) with the remainder being phosphate present as phosphomonoesters (7.3%) and phosphodiesters (5%). This is the first report of O-linked carbohydrate chains in microsomal beta-glucuronidase. The presence of O-linked glycans and branched N-linked glycans in a microsomal enzyme, in relation to the current view of glycosyltransferase compartmentalization in the Golgi is discussed.  相似文献   

17.
Laminin, a high molecular weight (1,000,000) glycoprotein component of basement membranes, was isolated from the EHS murine tumor as a noncovalent complex with entactin by lectin affinity chromatography using the alpha-D-galactosyl binding lectin Griffonia simplicifolia I (GS I). Entactin was removed from this complex by passage over Sephacryl S-1000 in the presence of SDS. Compositional analysis showed that the affinity-purified laminin contained 25-30% carbohydrate by weight. Methylation analysis revealed that the oligosaccharides of laminin contained bi- and triantennary chains, the blood group I structure, and repeating sequences of 3Gal beta 1,4GlcNAc beta 1 units. Free oligosaccharides were derived from the asparagine-linked glycans of affinity-purified laminin by hydrazinolysis, re-N-acetylation, and reduction with NaB3H4. When fractionated by affinity chromatography on concanavalin A (Con A)-Sepharose, 80% of the oligosaccharides passed through the column unretarded and a single peak corresponding to 20% of the oligosaccharides was adsorbed and specifically eluted with a linear gradient of 0-30 mM methyl alpha-D-glucopyranoside. Further fractionation of the Con A reactive oligosaccharides on GS I-Sepharose demonstrated that 70% of these oligosaccharides possess at least one terminal nonreducing alpha-D-galactopyranosyl unit. The Con A reactive oligosaccharides were subjected to sequential digestion with endo- and exoglycosidases, and the reaction products were analyzed by gel filtration chromatography on a column of Bio-Gel P4. We thereby obtained evidence for a variety of structures not previously reported to exist on murine laminin including hybrid biantennary complex and biantennary complex structures containing poly(lactosaminyl) repeating units. The poly(lactosaminyl) units occur either on one or on both branches of the biantennary chains, as well as in more highly branched blood group I poly(lactosamine) structures. All sialic acid is present as N-acetylneuraminic acid linked alpha 2,3 to galactose.  相似文献   

18.
Glycopeptides were isolated from a proteolytic digest of human transferrin. After mild acid hydrolysis the desialylated glycopeptides were labelled by the galactose oxidase/NaB(3)H(4) procedure and then fractionated by Sephadex-gel filtration or by anion-exchange chromatography. Either technique allowed separation of the two heterosaccharide chains (designated glycan I and glycan II) previously described for this protein by Spik, Vandersyppe, Fournet, Bayard, Charet, Bouquelet, Strecker & Montreuil (1974) (in Actes du Colloque Internationale No. 221 vol. 1, pp. 483-499). Subsequent chromatography on Sepharose-concanavalin A separated fractions containing different quantities of carbohydrates for each glycan, as indicated by analyses. The isolated glycan fractions were then tested for their abilities to bind to the immobilized rabbit hepatic lectin. Our studies suggest that either glycan can have a bi- or tri-antennary structure. Desialylated biantennary glycans I and II did not bind to the hepatic lectin. Desialylated triantennary glycan I was slightly retarded by the hepatic lectin, whereas the triantennary glycan II consisted of equal quantities of a retarded and a bound type. Desialylated triantennary glycan II was totally displaced from the hepatic lectin by using a buffer containing 0.05m-EDTA. The results suggest that greater structural heterogeneity exists in the carbohydrate moiety of human transferrin than was previously envisaged. Such heterogeneity could be reflected in several molecular forms of human transferrin, which, after desialylation, differ significantly in their affinities for the hepatic lectin.  相似文献   

19.
The characteristics of the carbohydrate chain on the rat cerebral cortical substance P (SP) receptor were studied. We examined the effects of pretreatment with three lectins (concanavalin A, wheat germ agglutinin, lens culinaris agglutinin) on the [3H]SP binding activities. Each lectin can bind to the specific carbohydrate chain. Among these lectins, only concanavalin A inhibited specific [3H]SP binding by reducing the affinity of the binding sites. The inhibitory action of concanavalin A was dose-dependent and diminished by the addition of alpha-methyl-D-mannoside. The present results suggest that the rat cortical SP receptor has either a biantennary complex-type or a high mannose-type of carbohydrate chain, and that the carbohydrate chain is implicated in the SP binding activity of the SP receptor system.  相似文献   

20.
Natural human interferon (IFN)-gamma has mainly biantennary complex-type sugar chains and scarcely has multiantennary structures. We attempted to remodel the sugar chain structures using IFN-gamma as a model glycoprotein. To obtain the branching glycoforms of IFN-gamma, we introduced the genes for GnT-IV (UDP-N-acetylglucosamine:alpha-1,3-D-mannoside beta-1, 4-N-acetylglucosaminyltransferase) and/or GnT-V (UDP-N-acetylglucosamine:alpha-1,6-D-mannoside beta-1, 6-N-acetylglucosaminyltransferase) into Chinese hamster ovary (CHO) cells producing human IFN-gamma. The parental CHO cells produced IFN-gamma with biantennary sugar chains mainly. When the GnT-IV activity was increased, triantennary sugar chains with a branch produced by GnT-IV increased up to 66.9% of the total sugar chains. When the GnT-V activity was increased, triantennary sugar chains with a corresponding branch increased up to 55.7% of the total sugar chains. When the GnT-IV and -V activities were increased at a time, tetraantennary sugar chains increased up to 56.2% of the total sugar chains. The proportion of these multiantennary sugar chains corresponded to the intracellular activities of GnT-IV and -V. What is more, lectin blot and flow cytometric analysis indicated that the multi-branch structure of the sugar chains was increased not only on IFN-gamma, one of the secretory glycoproteins, but also on almost CHO cellular proteins by introducing either or both of the GnT genes. The results suggest that the branching structure of sugar chains of glycoproteins could be controlled by cellular GnT-IV and GnT-V activities. This technology can produce glycoforms out of natural occurrence, which should enlarge the potency of glycoprotein therapeutics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号