首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
陈江野  陈曦 《生命科学》2002,14(3):159-162
酿酒酵母单倍体细胞能够与相反交配型的单倍体细胞发生交配。交配时酿酒酵母放弃原有出芽位点,根据信息素的浓度梯度,重新选择生长位点,向相反交配型细胞伸出突起进行极性生长。交配因子受体指导选择交配突起的位点,通过G蛋白激活Ste20p,将信号经由Ste11p、Ste7p和Fus3p组成的MAPK模块传递到Far1p和Ste12p等因子,调控相关基因的转录,抑制原有的出芽位点,选择新的生长位点,并使细胞周期停止在G1期,G蛋白与Cdc24p、Cdc42p和Bem1p等蛋白作用,聚集在细胞,使得肌协蛋白细胞骨架在交配突起处聚集,呈极性化分布,使细胞发生极性生长。  相似文献   

2.
Aerobic glucose-limited chemostat cultivations were conducted with Saccharomyces cerevisiae strains NRRL Y132, ATCC 4126 and CBS 8066, using a complex medium. At low dilution rates all three strains utilised glucose oxidatively with high biomass yield coefficients, no ethanol production and very low steady-state residual glucose concentrations in the culture. Above a threshold dilution rate, respiro-fermentative (oxido-reductive) metabolism commenced, with simultaneous respiration and fermentation occurring, which is typical of Crabtree-positive yeasts. However, at high dilution rates the three strains responded differently. At high dilution rates S. cerevisiae CBS 8066 produced 7–8 g ethanol L−1 from 20 g glucose L−1 with concomitant low levels of residual glucose, which increased markedly only close to the wash-out dilution rate. By contrast, in the respiro-fermentative region both S. cerevisiae ATCC 4126 and NRRL Y132 produced much lower levels of ethanol (3–4 g L−1) than S. cerevisiae CBS 8066, concomitant with very high residual sugar concentrations, which was a significant deviation from Monod kinetics and appeared to be associated either with high growth rates or with a fermentative (or respiro-fermentative) metabolism. Supplementation of the cultures with inorganic or organic nutrients failed to improve ethanol production or glucose assimilation. Journal of Industrial Microbiology & Biotechnology (2000) 24, 231–236. Received 09 August 1999/ Accepted in revised form 18 December 1999  相似文献   

3.
A Klebsiella oxytoca isolate which can produce significant levels of an exopolysaccharide using whey as a growth substrate has been reported. The plasmid profile of this isolate was shown to be different from that of the non-exopolysaccharide-producing K. oxytoca ATCC 43863. Irreversible curing of the single plasmid in the K. oxytoca isolate was achieved using 30 g acriflavin/ml. The ability to produce the exopolysaccharide was lost with the curing of the plasmid (parent strain produced a medium viscosity of 1260 cP at 1 s–1 compared to 1.6 cP at 200 s–1 produced by the cured strain). However, the ability to metabolize lactose was not significantly affected by curing, and both the parent and the cured strain produced similar levels of viable cells (~109 cfu/ml) after 62 h growth on lactose-rich medium. The exopolysaccharide-producing ability of the isolate was stable for at least 139 generations.  相似文献   

4.
The rate of biodegradation of phenol by Klebsiella oxytoca strain was studied in the nutrient broth and M9 minimal medium. It was found that K. oxytoca degrade phenol at elevated phenol concentration where 75% of initial phenol concentration of 100 ppm will degrade within 72 h. This rate was increased with increasing the initial cell densities, increasing the aeration rate and increasing the time required for complete degradation. At phenol concentration above 400 ppm, the cells were unable to degrade the substrate efficiently due to the increasing concentration of phenol in the medium. The culture conditions were also showed a significant impact on the ability of these cells to remove phenol. The optimum solution pH and temperature were 6.8 and 37°C, respectively. The growth of these cells in the presence and absence of phenol was modeled and it was found that the Recatti equation best fit the growth in the absence of phenol whereas the Voltera equation accounted for the history of the cell population in the presence of phenol.  相似文献   

5.
Using available biochemical information, metabolic networks have been constructed to describe the biochemistry of growth of Saccharomyces cerevisiae and Candida utilis on a wide variety of carbon substrates. All networks contained only two fitted parameters, the P/O ratio and a maintenance coefficient. It is shown that with a growth-associated maintenance coefficient, K, of 1.37 mol ATP/ C-mol protein for both yeasts and P/O ratios of 1.20 and 1.53 for S. cerevisiae and C. utilis, respectively, measured biomass yields could be described accurately. A metabolic flux analysis of aerobic growth of S. cerevisiae on glucose/ethanol mixtures predicted five different metabolic flux regimes upon transition from 100% glucose to 100% ethanol. The metabolic network constructed for growth of S. cerevisiae on glucose was applied to perform a theoretical exercise on the overproduction of amino acids. It is shown that theoretical operational product yield values can be substantially lower than calculated maximum product yields. A practical case of lysine production was analyzed with respect to theoretical bottlenecks limiting product formation. Predictions of network-derived irreversibility limits for Y(sp) (mu) functions were compared with literature data. The comparisons show that in real systems such irreversibility constraints may be of relevance. It is concluded that analysis of metabolic network stoichiometry is a useful tool to detect metabolic limits and to guide process intensification studies. (c) 1995 John Wiley & Sons, Inc.  相似文献   

6.
The essentiality of iodine for humans, especially in the early stages of life, is well recognized. The chemical forms of iodine in food supplements, infant formulae and iodated salt are either iodide (KI) or iodate (KIO3). Because there are no or rare data about iodine uptake by yeasts, we investigated the influence of different sources of iodine, as KI, KIO3 and periodate (KIO4), on its uptake in and growth of the model yeast Saccharomyces cerevisiae . KIO3 inhibited the growth of the yeast the most and already at a 400 μM initial concentration in the growth medium; the OD was reduced by 23% in comparison with the control, where no KIO3 was added. The uptake of different iodine sources by the yeast S. cerevisiae was minimal, in total <1%. Tracer experiments with radioactive 131I added as KI showed that the yeast S. cerevisiae does not have the ability to transform KI into volatile species. We investigated the specificity of iodine uptake added as KIO3 in the presence of Na2SeO4 or ZnCl2 or K2CrO4 in the growth medium, and it was found that chromate had the most influence on reduction of KIO3 uptake.  相似文献   

7.
Specific growth rates (μ) of two strains of Saccharomyces cerevisiae decreased exponentially (R 2>0.9) as the concentrations of acetic acid or lactic acid were increased in minimal media at 30°C. Moreover, the length of the lag phase of each growth curve (h) increased exponentially as increasing concentrations of acetic or lactic acid were added to the media. The minimum inhibitory concentration (MIC) of acetic acid for yeast growth was 0.6% w/v (100 mM) and that of lactic acid was 2.5% w/v (278 mM) for both strains of yeast. However, acetic acid at concentrations as low as 0.05–0.1% w/v and lactic acid at concentrations of 0.2–0.8% w/v begin to stress the yeasts as seen by reduced growth rates and decreased rates of glucose consumption and ethanol production as the concentration of acetic or lactic acid in the media was raised. In the presence of increasing acetic acid, all the glucose in the medium was eventually consumed even though the rates of consumption differed. However, this was not observed in the presence of increasing lactic acid where glucose consumption was extremely protracted even at a concentration of 0.6% w/v (66 mM). A response surface central composite design was used to evaluate the interaction between acetic and lactic acids on the specific growth rate of both yeast strains at 30C. The data were analysed using the General Linear Models (GLM) procedure. From the analysis, the interaction between acetic acid and lactic acid was statistically significant (P≤0.001), i.e., the inhibitory effect of the two acids present together in a medium is highly synergistic. Journal of Industrial Microbiology & Biotechnology (2001) 26, 171–177. Received 06 June 2000/ Accepted in revised form 21 September 2000  相似文献   

8.
Development of a kinetic model for the alcoholic fermentation of must   总被引:2,自引:0,他引:2  
We Propose a kinetic expression which accounts for the temperature dependence of ethanol yield losses in batch alcoholic fermentation. Moreover, the characteristic parameters of the microbial growth equation have been calculated for Saccharomyces cerevisiae under typical wine industry conditions. A substrate consumption equation is established which minimizes possible model deviations in the latter process stages. Experimental data were obtained in the laboratory and the proposed equations were then applied at an industrial level (2.5 x 10(4) L) where they described the data well.  相似文献   

9.
Abstract The flocculation character in strain IM1-8b of Saccharomyces cerevisiae is controlled by a single and dominant gene shown to be allelic to FLO1 . Such a gene has been both mitotically and meiotically mapped on the right arm of chromosome I at 4.7 cM from PHO11 . The phenotype was suppressed by a single gene of wide distribution among non-flocculent strains (proposed as fsu3 ) that, however, was unable to suppress other FLO1 genes in other flocculent strains.  相似文献   

10.
11.
Aims: We undertook to improve an industrial Saccharomyces cerevisiae strain by derepressing it for maltose utilization in the presence of high glucose concentrations. Methods and Results: A mutant was obtained from an industrial S. cerevisiae strain following random UV mutagenesis and selection on maltose/5‐thioglucose medium. The mutant acquired the ability to utilize glucose simultaneously with maltose and possibly also sucrose and galactose. Aerobic sugar metabolism was still largely fermentative, but an enhanced respirative metabolism resulted in a 31% higher biomass yield on glucose. Kinetic characterization of glucose transport in the mutant revealed the predominance of the high‐affinity component. Northern blot analysis showed that the mutant strain expresses only the HXT6/7 gene irrespective of the glucose concentration in the medium, indicating a severe deregulation in the induction/repression pathways modulating HXT gene expression. Interestingly, maltose‐grown cells of the mutant display inverse diauxy in a glucose/maltose mixture, preferring maltose to glucose. Conclusion: In the mutant here reported, the glucose transport step seems to be uncoupled from downstream regulation, because it seems to be unable to sense abundant glucose, via both repression and induction pathways. Significance and Impact of the Study: We report here the isolation of a S. cerevisiae mutant with a novel derepressed phenotype, potentially interesting for the industrial fermentation of mixed sugar substrates.  相似文献   

12.
13.
A mathematical model was developed, based on the time dependent changes of the specific growth rate, for prediction of the typical microbial cell growth in batch cultures. This model could predict both the lag growth phase and the stationary growth phase of batch cultures, and it was tested with the batch growth ofTrichoderma reesei andLactobacillus delbrucckii.  相似文献   

14.
在1.5L搅拌式发酵罐中,使用葡萄糖质量浓度分别为120、200、280g/L的培养基进行酿酒酵母Saccharomyces cerevisiae连续发酵生成酒精的动力学研究。研究发现,当培养基中葡萄糖浓度为200和280g/L时,发酵液中残糖浓度、酒精浓度以及菌体生物量从小幅度波动的准稳态发展到大幅度波动的振荡状态。提出了伴有周期性振荡现象准稳态过程的概念,并针对该过程,建立了兼有底物和产物抑制的酵母细胞生长和产物酒精生成动力学模型。  相似文献   

15.
Neighbouring plants generally compete for the limiting resources in order to grow and reproduce. Some resources, e.g., sun light, may be monopolised by the larger plants and this may lead to asymmetric competition where a plant, which is twice as large, grows more than twice as fast. A previously published individual-based Richards growth model that describes the asymmetric growth of individual plants is here generalised with respect to a variable mean plant density and an explicit spatial setting.  相似文献   

16.
Mixed-substrate microbial growth is of fundamental interest in microbiology and bioengineering. Several mathematical models have been developed to account for the genetic regulation of such systems, especially those resulting in diauxic growth. In this work, we compare the dynamics of three such models (Narang, 1998a. The dynamical analogy between microbial growth on mixtures of substrates and population growth of competing species. Biotechnol. Bioeng. 59, 116-121; Thattai and Shraiman, 2003. Metabolic switching in the sugar phosphotransferase system of Escherichia coli. Biophys. J. 85(2), 744-754; Brandt et al., 2004. Modelling microbial adaptation to changing availability of substrates. Water Res. 38, 1004-1013). We show that these models are dynamically similar--the initial motion of the inducible enzymes in all the models is described by the Lotka-Volterra equations for competing species. In particular, the prediction of diauxic growth corresponds to "extinction" of one of the enzymes during the first few hours of growth. The dynamic similarity occurs because in all the models, the inducible enzymes possess properties characteristic of competing species: they are required for their own synthesis, and they inhibit each other. Despite this dynamic similarity, the models vary with respect to the range of dynamics captured. The Brandt et al. model always predicts the diauxic growth pattern, whereas the remaining two models exhibit both diauxic and non-diauxic growth patterns. The models also differ with respect to the mechanisms that generate the mutual inhibition between the enzymes. In the Narang model, mutual inhibition occurs because the enzymes for each substrate enhance the dilution of the enzymes for the other substrate. The Brandt et al. model superimposes upon this dilution effect an additional mechanism of mutual inhibition. In the Thattai and Shraiman model, the mutual inhibition is entirely due to competition for the phosphoryl groups. For quantitative agreement with the data, all models must be modified to account for specific mechanisms of mutual inhibition, such as inducer exclusion.  相似文献   

17.
Abstract In Saccharomyces cerevisiae heat-shock induces an increase in proteinase activity. The induction is probably due to newly synthesized enzyme molecules, since the increase in proteinase activity can be inhibited by cycloheximide. Degradation of endogenous proteins is enhanced by EDTA, while the azocasein assay is not affected by MnCl2, MgCl2, or EDTA. The proteinase has a pH optimum of 8, and phenylmethylsulfonyl fluoride (PMSF) as well as chymostatin are strong inhibitors. We infer that the induced proteinase is probably identical with proteinase B of yeast.  相似文献   

18.
AIMS: To characterize bacterial populations and their activities within a microbial fuel cell (MFC), using cultivation-independent and cultivation approaches. METHODS AND RESULTS: Electron microscopic observations showed that the fuel cell electrode had a microbial biofilm attached to its surface with loosely associated microbial clumps. Bacterial 16S rRNA gene libraries were constructed and analysed from each of four compartments within the fuel cell: the planktonic community; the membrane biofilm; bacterial clumps (BC) and the anode biofilm. Results showed that the bacterial community structure varied significantly between these compartments. It was observed that Gammaproteobacteria phylotypes were present at higher numbers within libraries from the BC and electrode biofilm compared with other parts of the fuel cell. Community structure of the MFC determined by analyses of bacterial 16S rRNA gene libraries and anaerobic cultivation showed excellent agreement with community profiles from denaturing gradient gel electrophoresis (DGGE) analysis. CONCLUSIONS: Members of the family Enterobacteriaceae, such as Klebsiella sp. and Enterobacter sp. and other Gammaproteobacteria with Fe(III)-reducing and electrochemical activity had a significant potential for energy generation in this system. SIGNIFICANCE AND IMPACT OF THE STUDY: This study has shown that electrochemically active bacteria can be enriched using an electrochemical fuel cell.  相似文献   

19.
Aqueous Teucrium polium extract slightly inhibits the growth of Saccharomyces cerevisiae (Ki=0.029 [g/l]-1) and Yarrovia lipolytica (Ki=0.061 [g/l]-1). However, this extract causes important changes in the unsaturation degree (/mol) of the cellular lipids. It moreover favours the increase of the linolenic acid concentration and the decrease of the oleic one in both species.  相似文献   

20.
The protective effect of a fermented substance from Saccharomyces cerevisiae (FSSC) on liver injury caused by acetaminophen (AAP) was studied in mice. Mice were pretreated with FSSC (0.5–2.0 g/kg, p.o.) for 4 d, and on the fourth day, the mice received an overdose of AAP (500 mg/kg, i.p.). Subsequently, they were sacrificed at 7 h, and blood was drawn from the abdominal vein and liver samples were collected. Histological and biochemical examinations revealed that the administration of AAP caused liver injury in the mice, including increases in plasma alanine aminotransferase and asparate aminotransferase activities and decreases in the hepatic reduced form of glutathione (GSH) content and antioxidant enzyme activities. Prior to AAP treatment, the mice pretreated with FSSC showed significantly reduced levels of alanine aminotransferase (ALT) and aspirate aminotransferase (AST) activity. Liver histology in the FSSC-pretreated mice was significant. In these mice, pretreatment with FSSC also served to reduce hepatic GSH depletion and the inhibition of antioxidant enzyme activity caused by AAP overdose. In conclusion, oral administration of FSSC significantly reduced AAP-induced hepatic injury in the mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号