首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
陈江野  陈曦 《生命科学》2002,14(3):159-162
酿酒酵母单倍体细胞能够与相反交配型的单倍体细胞发生交配。交配时酿酒酵母放弃原有出芽位点,根据信息素的浓度梯度,重新选择生长位点,向相反交配型细胞伸出突起进行极性生长。交配因子受体指导选择交配突起的位点,通过G蛋白激活Ste20p,将信号经由Ste11p、Ste7p和Fus3p组成的MAPK模块传递到Far1p和Ste12p等因子,调控相关基因的转录,抑制原有的出芽位点,选择新的生长位点,并使细胞周期停止在G1期,G蛋白与Cdc24p、Cdc42p和Bem1p等蛋白作用,聚集在细胞,使得肌协蛋白细胞骨架在交配突起处聚集,呈极性化分布,使细胞发生极性生长。  相似文献   

3.
Aerobic glucose-limited chemostat cultivations were conducted with Saccharomyces cerevisiae strains NRRL Y132, ATCC 4126 and CBS 8066, using a complex medium. At low dilution rates all three strains utilised glucose oxidatively with high biomass yield coefficients, no ethanol production and very low steady-state residual glucose concentrations in the culture. Above a threshold dilution rate, respiro-fermentative (oxido-reductive) metabolism commenced, with simultaneous respiration and fermentation occurring, which is typical of Crabtree-positive yeasts. However, at high dilution rates the three strains responded differently. At high dilution rates S. cerevisiae CBS 8066 produced 7–8 g ethanol L−1 from 20 g glucose L−1 with concomitant low levels of residual glucose, which increased markedly only close to the wash-out dilution rate. By contrast, in the respiro-fermentative region both S. cerevisiae ATCC 4126 and NRRL Y132 produced much lower levels of ethanol (3–4 g L−1) than S. cerevisiae CBS 8066, concomitant with very high residual sugar concentrations, which was a significant deviation from Monod kinetics and appeared to be associated either with high growth rates or with a fermentative (or respiro-fermentative) metabolism. Supplementation of the cultures with inorganic or organic nutrients failed to improve ethanol production or glucose assimilation. Journal of Industrial Microbiology & Biotechnology (2000) 24, 231–236. Received 09 August 1999/ Accepted in revised form 18 December 1999  相似文献   

4.
The rate of biodegradation of phenol by Klebsiella oxytoca strain was studied in the nutrient broth and M9 minimal medium. It was found that K. oxytoca degrade phenol at elevated phenol concentration where 75% of initial phenol concentration of 100 ppm will degrade within 72 h. This rate was increased with increasing the initial cell densities, increasing the aeration rate and increasing the time required for complete degradation. At phenol concentration above 400 ppm, the cells were unable to degrade the substrate efficiently due to the increasing concentration of phenol in the medium. The culture conditions were also showed a significant impact on the ability of these cells to remove phenol. The optimum solution pH and temperature were 6.8 and 37°C, respectively. The growth of these cells in the presence and absence of phenol was modeled and it was found that the Recatti equation best fit the growth in the absence of phenol whereas the Voltera equation accounted for the history of the cell population in the presence of phenol.  相似文献   

5.
A Klebsiella oxytoca isolate which can produce significant levels of an exopolysaccharide using whey as a growth substrate has been reported. The plasmid profile of this isolate was shown to be different from that of the non-exopolysaccharide-producing K. oxytoca ATCC 43863. Irreversible curing of the single plasmid in the K. oxytoca isolate was achieved using 30 g acriflavin/ml. The ability to produce the exopolysaccharide was lost with the curing of the plasmid (parent strain produced a medium viscosity of 1260 cP at 1 s–1 compared to 1.6 cP at 200 s–1 produced by the cured strain). However, the ability to metabolize lactose was not significantly affected by curing, and both the parent and the cured strain produced similar levels of viable cells (~109 cfu/ml) after 62 h growth on lactose-rich medium. The exopolysaccharide-producing ability of the isolate was stable for at least 139 generations.  相似文献   

6.
In the process of producing ethanol from lignocellulosic materials such as wheat straw, compounds that can act inhibitory to enzymatic hydrolysis and to cellular growth may be generated during the pretreatment. Ethanol production was evaluated on pretreated wheat straw hydrolysate using four different recombinant Saccharomyces cerevisiae strains, CPB.CR4, CPB.CB4, F12, and FLX. The fermentation performance of the four S. cerevisiae strains was tested in hydrolysate of wheat straw that has been pretreated at high dry matter content (220 g/L dry matter). The results clearly showed that F12 was the most robust strain, whereas the other three strains were strongly inhibited when the fraction of hydrolysate in the fermentation medium was higher than 60% (v/v). Furthermore, the impact of different lignin derivatives commonly found in the hydrolysate of pretreated wheat straw, was tested on two different enzyme mixtures, a mixture of Celluclast 1.5 L FG and Novozym 188 (3:1) and one crude enzyme preparation produced from Penicillium brasilianum IBT 20888. From all the potential inhibiting compounds that were tested, formic acid had the most severe influence on the hydrolysis rate resulting in a complete inactivation of the two enzyme mixtures.  相似文献   

7.
Using available biochemical information, metabolic networks have been constructed to describe the biochemistry of growth of Saccharomyces cerevisiae and Candida utilis on a wide variety of carbon substrates. All networks contained only two fitted parameters, the P/O ratio and a maintenance coefficient. It is shown that with a growth-associated maintenance coefficient, K, of 1.37 mol ATP/ C-mol protein for both yeasts and P/O ratios of 1.20 and 1.53 for S. cerevisiae and C. utilis, respectively, measured biomass yields could be described accurately. A metabolic flux analysis of aerobic growth of S. cerevisiae on glucose/ethanol mixtures predicted five different metabolic flux regimes upon transition from 100% glucose to 100% ethanol. The metabolic network constructed for growth of S. cerevisiae on glucose was applied to perform a theoretical exercise on the overproduction of amino acids. It is shown that theoretical operational product yield values can be substantially lower than calculated maximum product yields. A practical case of lysine production was analyzed with respect to theoretical bottlenecks limiting product formation. Predictions of network-derived irreversibility limits for Y(sp) (mu) functions were compared with literature data. The comparisons show that in real systems such irreversibility constraints may be of relevance. It is concluded that analysis of metabolic network stoichiometry is a useful tool to detect metabolic limits and to guide process intensification studies. (c) 1995 John Wiley & Sons, Inc.  相似文献   

8.
Microbial consortia can be used to catalyze complex biotransformations. Tools to control the behavior of these consortia in a technical environment are currently lacking. In the present study, a synthetic biology approach was used to build a model consortium of two Saccharomyces cerevisiae strains where growth and expression of the fluorescent marker protein EGFP by the receiver strain is controlled by the concentration of α‐factor pheromone, which is produced by the emitter strain. We have developed a quantitative experimental and theoretical framework to describe population dynamics in the model consortium. We measured biomass growth and metabolite production in controlled bioreactor experiments, and used flow cytometry to monitor changes of the subpopulations and protein expression under different cultivation conditions. This dataset was used to parameterize a segregated mathematical model, which took into account fundamental growth processes, pheromone‐induced growth arrest and EGFP production, as well as pheromone desensitization after extended exposure. The model was able to predict the growth dynamics of single‐strain cultures and the consortium quantitatively and provides a basis for using this approach in actual biotransformations.  相似文献   

9.
The essentiality of iodine for humans, especially in the early stages of life, is well recognized. The chemical forms of iodine in food supplements, infant formulae and iodated salt are either iodide (KI) or iodate (KIO3). Because there are no or rare data about iodine uptake by yeasts, we investigated the influence of different sources of iodine, as KI, KIO3 and periodate (KIO4), on its uptake in and growth of the model yeast Saccharomyces cerevisiae . KIO3 inhibited the growth of the yeast the most and already at a 400 μM initial concentration in the growth medium; the OD was reduced by 23% in comparison with the control, where no KIO3 was added. The uptake of different iodine sources by the yeast S. cerevisiae was minimal, in total <1%. Tracer experiments with radioactive 131I added as KI showed that the yeast S. cerevisiae does not have the ability to transform KI into volatile species. We investigated the specificity of iodine uptake added as KIO3 in the presence of Na2SeO4 or ZnCl2 or K2CrO4 in the growth medium, and it was found that chromate had the most influence on reduction of KIO3 uptake.  相似文献   

10.
Specific growth rates (μ) of two strains of Saccharomyces cerevisiae decreased exponentially (R 2>0.9) as the concentrations of acetic acid or lactic acid were increased in minimal media at 30°C. Moreover, the length of the lag phase of each growth curve (h) increased exponentially as increasing concentrations of acetic or lactic acid were added to the media. The minimum inhibitory concentration (MIC) of acetic acid for yeast growth was 0.6% w/v (100 mM) and that of lactic acid was 2.5% w/v (278 mM) for both strains of yeast. However, acetic acid at concentrations as low as 0.05–0.1% w/v and lactic acid at concentrations of 0.2–0.8% w/v begin to stress the yeasts as seen by reduced growth rates and decreased rates of glucose consumption and ethanol production as the concentration of acetic or lactic acid in the media was raised. In the presence of increasing acetic acid, all the glucose in the medium was eventually consumed even though the rates of consumption differed. However, this was not observed in the presence of increasing lactic acid where glucose consumption was extremely protracted even at a concentration of 0.6% w/v (66 mM). A response surface central composite design was used to evaluate the interaction between acetic and lactic acids on the specific growth rate of both yeast strains at 30C. The data were analysed using the General Linear Models (GLM) procedure. From the analysis, the interaction between acetic acid and lactic acid was statistically significant (P≤0.001), i.e., the inhibitory effect of the two acids present together in a medium is highly synergistic. Journal of Industrial Microbiology & Biotechnology (2001) 26, 171–177. Received 06 June 2000/ Accepted in revised form 21 September 2000  相似文献   

11.
Background: Microbes live in dynamic environments where nutrient concentrations fluctuate. Quantifying fitness in terms of birth rate and death rate in a wide range of environments is critical for understanding microbial evolution and ecology. Methods: Here, using high-throughput time-lapse microscopy, we have quantified how Saccharomyces cerevisiae mutants incapable of synthesizing an essential metabolite (auxotrophs) grow or die in various concentrations of the required metabolite. We establish that cells normally expressing fluorescent proteins lose fluorescence upon death and that the total fluorescence in an imaging frame is proportional to the number of live cells even when cells form multiple layers. We validate our microscopy approach of measuring birth and death rates using flow cytometry, cell counting, and chemostat culturing. Results: For lysine-requiring cells, very low concentrations of lysine are not detectably consumed and do not support cell birth, but delay the onset of death phase and reduce the death rate compared to no lysine. In contrast, in low hypoxanthine, hypoxanthine-requiring cells can produce new cells, yet also die faster than in the absence of hypoxanthine. For both strains, birth rates under various metabolite concentrations are better described by the sigmoidal-shaped Moser model than the well-known Monod model, while death rates can vary with metabolite concentration and time. Conclusions: Our work reveals how time-lapse microscopy can be used to discover non-intuitive microbial birth and death dynamics and to quantify growth rates in many environments.  相似文献   

12.
Development of a kinetic model for the alcoholic fermentation of must   总被引:2,自引:0,他引:2  
We Propose a kinetic expression which accounts for the temperature dependence of ethanol yield losses in batch alcoholic fermentation. Moreover, the characteristic parameters of the microbial growth equation have been calculated for Saccharomyces cerevisiae under typical wine industry conditions. A substrate consumption equation is established which minimizes possible model deviations in the latter process stages. Experimental data were obtained in the laboratory and the proposed equations were then applied at an industrial level (2.5 x 10(4) L) where they described the data well.  相似文献   

13.
Biological network construction for Saccharomyces cerevisiae is a widely used approach for simulating phenotypes and designing cell factories. However, due to a complicated regulatory mechanism governing the translation of genotype to phenotype, precise prediction of phenotypes remains challenging. Here, we present WM_S288C, a computational whole-cell model that includes 15 cellular states and 26 cellular processes and which enables integrated analyses of physiological functions of Saccharomyces cerevisiae. Using WM_S288C to predict phenotypes of S. cerevisiae, the functions of 1140 essential genes were characterized and linked to phenotypes at five levels. During the cell cycle, the dynamic allocation of intracellular molecules could be tracked in real-time to simulate cell activities. Additionally, one-third of non-essential genes were identified to affect cell growth via regulating nucleotide concentrations. These results demonstrated the value of WM_S288C as a tool for understanding and investigating the phenotypes of S. cerevisiae.  相似文献   

14.
Abstract The flocculation character in strain IM1-8b of Saccharomyces cerevisiae is controlled by a single and dominant gene shown to be allelic to FLO1 . Such a gene has been both mitotically and meiotically mapped on the right arm of chromosome I at 4.7 cM from PHO11 . The phenotype was suppressed by a single gene of wide distribution among non-flocculent strains (proposed as fsu3 ) that, however, was unable to suppress other FLO1 genes in other flocculent strains.  相似文献   

15.
Triacylglycerol (TAG) is a microbial oil feedstock for biodiesel production that uses an inexpensive substrate, such as glycerol. Here, we demonstrated the overproduction of TAG from glycerol in engineered Saccharomyces cerevisiae via the glycerol‐3‐phosphate (G3P) pathway by overexpressing the major TAG synthesis. The G3P accumulation was increased 2.4‐fold with the increased glycerol utilization gained by the overexpression of glycerol kinase (GUT1). By overexpressing diacylglycerol acyltransferase (DGA1) and phospholipid diacylglycerol acyltransferase (LRO1), the engineered YPH499 (pGutDgaLro1) strain produced 23.0 mg/L lipids, whereas the YPH499 (pESC‐TRP) strain produced 6.2 mg/L total lipids and showed a lipid content that was increased 1.4‐fold compared with 3.6% for the wild‐type strain after 96 h of cultivation. After 96 h of cultivation using glycerol, the overall content of TAG in the engineered strain, YPH499 (pGutDgaLro1), yielded 8.2% TAG, representing a 2.3‐fold improvement, compared with 3.6% for the wild‐type strain. The results should allow a reduction of costs and a more sustainable production of biodiesel. Biotechnol. Bioeng. 2013; 110: 343–347. © 2012 Wiley Periodicals, Inc.  相似文献   

16.
17.
Aims: We undertook to improve an industrial Saccharomyces cerevisiae strain by derepressing it for maltose utilization in the presence of high glucose concentrations. Methods and Results: A mutant was obtained from an industrial S. cerevisiae strain following random UV mutagenesis and selection on maltose/5‐thioglucose medium. The mutant acquired the ability to utilize glucose simultaneously with maltose and possibly also sucrose and galactose. Aerobic sugar metabolism was still largely fermentative, but an enhanced respirative metabolism resulted in a 31% higher biomass yield on glucose. Kinetic characterization of glucose transport in the mutant revealed the predominance of the high‐affinity component. Northern blot analysis showed that the mutant strain expresses only the HXT6/7 gene irrespective of the glucose concentration in the medium, indicating a severe deregulation in the induction/repression pathways modulating HXT gene expression. Interestingly, maltose‐grown cells of the mutant display inverse diauxy in a glucose/maltose mixture, preferring maltose to glucose. Conclusion: In the mutant here reported, the glucose transport step seems to be uncoupled from downstream regulation, because it seems to be unable to sense abundant glucose, via both repression and induction pathways. Significance and Impact of the Study: We report here the isolation of a S. cerevisiae mutant with a novel derepressed phenotype, potentially interesting for the industrial fermentation of mixed sugar substrates.  相似文献   

18.
酵母被广泛用于分子生物学中基因功能的检测。为扩大酵母株系UCC419在抑制基因活性检测方面的应用,本研究通过向UCC419株系中导入用特殊引物扩增出的包含标记基因TRP1的PCR片段,利用同源重组将UCC419中的筛选标记基因LEU2敲除,并同时插入TRP1,新建立的株系命名为UCC419m(m:modi-fied)。UCC419m为TRP1筛选、leu2突变型菌株,其它基因型均同UCC419。给UCC419m中转入携带LEU2的质粒pDEST32检测是否能恢复其表现型,同时转入不携带LEU2的质粒pDEST22作为阴性对照,将转化子在不含LEU2与URA3的培养基中培养,结果显示,携带LEU2质粒pDEST32的转化子能够在LEU2与URA3缺陷型培养基上正常生长,而不携带LEU2质粒pDEST22的转化子不能生长。本研究结果表明,成功建立了一种适用于基于Invitrogen载体的抑制基因活性检测或从文库中筛选抑制基因的酵母菌株。  相似文献   

19.
Membrane-bounded nucleoids in microbial symbionts of marine sponges   总被引:2,自引:0,他引:2  
In thin sections of resin-embedded samples of glutaraldehyde- and osmium tetroxide-fixed tissue from five genera of marine sponges, Stromatospongia, Astrosclera, Jaspis, Pseudoceratina and Axinyssa, cells of a bacteria-like symbiont microorganism which exhibit a membrane-bounded nuclear region encompassing the fibrillar nucleoid have been observed within the sponge mesohyl. The nuclear region in these cells is bounded by a single bilayer membrane, so that the cell cytoplasm is divided into two distinct regions. The cell wall consists of subunits analogous to those in walls of some Archaea. Cells of the sponge symbionts observed here are similar to those of the archaeal sponge symbiont Cenarchaeum symbiosum.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号