首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The perivascular space of the rat pineal gland is known to contain phagocytic cells that are immunoreactive for leukocyte antigens, and thus they appear to belong to the macrophage/microglial cell line. These cells also contain MHC class II proteins. We investigated this cell type in the pineal gland of mice. Actively phagocytosing cells with a prominent lysosomal system were found in the pericapillary spaces of the mouse pineal gland following intravenous injection of horseradish peroxidase. The cells also exhibited strong acid phosphatase activity. Perivascular cells were immunopositive for MHC class II protein and for CD68, a marker of monocytes/phagocytes. This study verifies that perivascular phagocytes with antigen‐presenting properties are present in the mouse pineal gland.  相似文献   

2.
Interstitial cells in the pineal gland of the rat were characterized immunocytochemically using the monoclonal antibodies MRC OX-42 and ED1 for macrophages/microglia, and MRC OX-6, which recognizes major histocompatibility complex (MHC) class II antigen. A polyclonal antibody against GFAP was used to identify astrocytes. Cells immunopositive for OX-42 and/or ED1 were distributed throughout the gland; they extended processes primarily along the perivascular spaces and occasionally within the parenchyma of the gland. Ultrastructurally, these OX-42-positive cells were characterized by a nucleus with sparse heterochromatin and cytoplasmic vacuoles/lysosomes. Cells expressing MHC class II antigen had a distribution and morphology similar to OX-42-immunopositive cells, suggesting that pineal macrophages/microglia play a role as antigen-presenting cells. GFAP-positive astrocytes were concentrated at the proximal end of the pineal where the pineal stalk enters the gland. The occurrence of antigenpresenting cells in the circumventricular neuroendocrine gland has important functional implications as these cells may be mediators of neuroimmunomodulatory mechanisms, and involved in certain disease states such as autoimmune pinealitis.  相似文献   

3.
The anatomy and innervation of the mammalian pineal gland   总被引:8,自引:0,他引:8  
The parenchymal cells of the mammalian pineal gland are the hormone-producing pinealocytes and the interstitial cells. In addition, perivascular phagocytes are present. The phagocytes share antigenic properties with microglial and antigen-presenting cells. In certain species, the pineal gland also contains neurons and/or neuron-like peptidergic cells. The peptidergic cells might influence the pinealocyte by a paracrine secretion of the peptide. Nerve fibers innervating the mammalian pineal gland originate from perikarya located in the sympathetic superior cervical ganglion and the parasympathetic sphenopalatine and otic ganglia. The sympathetic nerve fibers contain norepinephrine and neuropeptide Y as neurotransmitters. The parasympathetic nerve fibers contain vasoactive intestinal peptide and peptide histidine isoleucine. Recently, neurons in the trigeminal ganglion, containing substance P, calcitonin gene-related peptide, and pituitary adenylate cyclase-activating peptide, have been shown to project to the mammalian pineal gland. Finally, nerve fibers originating from perikarya located in the brain containing, for example, GABA, orexin, serotonin, histamine, oxytocin, and vasopressin innervate the pineal gland directly via the pineal stalk. Biochemical studies have demonstrated numerous receptors on the pinealocyte cell membrane, which are able to bind the neurotransmitters located in the pinealopetal nerve fibers. These findings indicate that the mammalian pinealocyte can be influenced by a plethora of neurotransmitters.  相似文献   

4.
Summary The mammalian pineal gland contains pinealocytes, interstitial glial cells, perivascular macrophages, neurons and neuron-like cells. The neuronal identity of neurons and neuron-like cells was an enigma. α-Internexin and peripherin are specific neuronal intermediate filament proteins and are expressed differentially in the CNS and PNS. We investigated the development of immunoreactivity and expression patterns of mRNAs for α-internexin and peripherin in the mouse pineal gland to determine the neuronal identity of these cells. Both α-internexin- and peripherin-immunoreactive cells were readily visualized only after birth. Both proteins were at the highest level on the postnatal day 7 (P7), rapidly declined at P14, and obtained their adult level at P21. Both protein and mRNA of α-internexin are expressed in some cells and nerve processes, but not all, of adult mouse pineal gland. Less number of peripherin immunoreactive or RNA-expressing cells and nerve processes were identified. Accumulations of α-internexin and peripherin proteins were also found in the cells from the aged pineal gland (P360). We concluded that some cells in the developing mouse pineal gland may differentiated into neurons and neuron-like cells expressing both α-internexin and/or peripherin only postnatally, and these cells possess dual properties of CNS and PNS neurons in nature. We suggested that they may act as interneurons between the pinealocyte and the distal neurons innervating the pinealocytes, or form a local circuitry with pinealocytes to play a role of paracrine regulatory function on the pinealocytes.  相似文献   

5.
The pineal gland of the Mongolian gerbil consists of a superficial gland, stalk and deep pineal. The deep pineal differentiates postnatally. Histochemical studies of the superficial pineal gland indicate that it may be involved in the secretion of protein. Presumptive secretory material visualized by aldehyde fuchsin (AF) and chrome hematoxylin was observed along the course of blood vessels and among the pinealocytes. The distribution and texture of the AF-positive material was distinctive. It did not correspond to the pattern and texture of material stained with PAS, Sudan Black or acid orcein. Staining with AF was markedly reduced after incubation with trypsin, indicating that the AF-positive material is at least partially protein. The amount of stainable material increased with age. The AF-positive material was observed in what appeared to be interstitial or glial cells and processes, and in the processes of perivascular cells. Cells and fibrous processes with high non-specific esterase activity ("high-esterase cells") were observed among the pinealocytes and along the course of blood vessels. The distribution of the "high-esterase cells" and the morphology and texture of their esterase-containing processes were remarkably similar to the morphology and distribution of the material that stained with AF. It may be that the "high-esterase cells" contain AF-positive material. The "high-esterase cells" hydrolyzed both alpha-naphthyl acetate and alpha-naphthyl butyrate. The pinealocytes hydrolyzed only alpha-naphthyl acetate. The "high-esterase cells" appear to form a distinct class of cells within the superficial pineal gland. They are tentatively identified as a type of glial cell.  相似文献   

6.
Summary Electron microscopy was employed in a study of the pineal gland of the Mongolian gerbil (Meriones unguiculatus). It was determined that the gerbil pineal gland contains pinealocytes and glial cells with the pinealocytes being the predominant cell type. The pinealocytes contain numerous organelles traditionally considered as being either synthetic or secretory in function such as an extensive Golgi region, smooth (SER) and rough (RER) endoplasmic reticulum, secretory vesicles and microtubules. Other cytoplasmic components are also present in the pinealocytes (synaptic ribbons, subsurface cisternae) for which no function has been assigned. Dense-cored vesicles are rare. Vacuolated pinealocytes are present and appear to be intimately associated with the formation of the pineal concertions. Evidence presented supports the proposal that the concretions form within the vacuoles. Once the concretions reach an enlarged state, the vacuolated pinealocytes break down and the concretions are thus extruded into the extracellular space where they apparently continue to increase in size. The morphology of the glial cells was interpreted as indicative of a high synthetic activity. The glial cells contain predominantly the rough variety of endoplasmic reticulum and form an expansion around the wide perivascular area.Supported by NSF grant PCM 77-05734  相似文献   

7.
The enterotoxins of Staphylococcus aureus (SE) are extremely potent activators of human and mouse T lymphocytes. In general, T cell responses to SE are MHC class II dependent (presumably reflecting the ability of SE to bind directly to MHC class II molecules) and restricted to responding cells expressing certain T cell receptor beta-chain variable (TCR V beta) domains. Recently we demonstrated that CD8+ CTL expressing appropriate TCR V beta could recognize SE presented on MHC class II-bearing target cells. We now show that MHC class II expression is not strictly required for T cell recognition of SE. Both human and mouse MHC class II negative target cells could be recognized (i.e., lysed) in a SE-dependent fashion by CD8+ mouse CTL clones and polyclonal populations, provided that the CTL expressed appropriate TCR V beta elements. SE-dependent lysis of MHC class II negative targets by CTL was inhibited by mAb directed against CD3 or LFA-1, suggesting that SE recognition was TCR and cell contact dependent. Furthermore, different SE were recognized preferentially by CTL on MHC class II+ vs MHC class II- targets. Taken together, our data raise the possibility that SE binding structures distinct from MHC class II molecules may exist.  相似文献   

8.
Neuropeptides in the pineal gland? A critical immunocytochemical study   总被引:2,自引:0,他引:2  
In an attempt to localize components of the renin angiotensin-system in the pineal gland of rats, immunocytochemical studies using the PAP-technique were performed with antisera against angiotensin I, angiotensin II and angiotensinogen. The staining pattern thus obtained was not only the same for the three antisera, but was also identical to that shown for many other peptide-antisera in the literature. In those studies, the immunocytochemical staining had been ascribed to a distinct pineal cell population or to cell processes. However, by examining adjacent semithin and ultrathin sections by immunocytochemistry and electron microscopy, respectively, we could identify the extracellular perivascular compartment and its flocculent material as the site of staining. This unexpected localization and the observation of "immunoreactivity" of some preimmunesera in the same compartment as well as several additional findings and arguments are taken to suggest that likelihood of "pseudopositive" immunostaining, typical for the pineal gland.  相似文献   

9.
Interactions between thymocytes and thymic stromal cells are essential for thymocyte differentiation, but little evidence has been presented to directly show in vivo functions or interactions of the stromal cells. Among the stromal cells, the thymic epithelial cell has been considered to have profound effect on thymocyte differentiation and maturation. The calcium-depleted medium, originally developed for the culture of mouse epidermal cells, was applied for the culture of the mouse thymic epithelial cells, and successfully, an epithelial cell line, IT-76MHC was obtained from the mouse thymus. IT-76MHC cells were identified as distinct mouse thymic epithelial cells by 1/ mosaic-like arrangement, 2/ presence of well-developed desmosome and 3/ tonofilaments, 4/ positivity for cytokeratin, and 5/ induced expression of MHC class I and II by IFN-gamma treatment. IGF-1, IGF-2, oxytocin and vasopressin were also detected immunohistochemically in IT-76MHC cells. Furthermore, the IT-76MHC thymic epithelial cells, when injected intrathymically in the allogeneic mouse, prolonged the survival of skin graft from the same donor strain that IT-76MHC cells were derived. These results demonstrate that the thymic epithelial cell line IT-76MHC produces modest thymocyte survival factors as well as a growth suppressor, and that IT-76MHC cells have the ability to induce transplantation tolerance probably through their expression of MHC class I and II molecules. Taken altogether, the IT-76MHC thymic epithelial cells have been proved to be useful tools to better understand the in vivo functions of thymic epithelial cells, and to gain a deep insight into their involvement in the critical selection process of thymocytes which still remains obscure. Finally and additionally, literatures so far reported on thymic epithelial cells in culture, especially lines and clones, are reviewed and their identity as well as their functions are discussed.  相似文献   

10.
Rejection of mouse sarcoma cells after transfection of MHC class II genes   总被引:7,自引:0,他引:7  
Th cells are stimulated by peptide Ag presented in the context of MHC class II molecules. We have reasoned that immune responses against tumors may be more efficient if tumor cells were class II Ag positive, and thereby able to directly function as APC to stimulate tumor-specific Th cell proliferation. We have tested this hypothesis by using DNA-mediated gene transfer to generate syngeneic MHC class II Ag-expressing mouse Sal sarcoma cells (Sal/Ak transfectants). Autologous A/J mice challenged i.p. or s.c. with Sal/Ak transfectants do not develop tumors, whereas A/J mice challenged with the class II negative parental Sal tumor have a high tumor incidence. Furthermore, immunization of the autologous host with Sal/Ak transfectants completely protects against subsequent challenge with wild-type Sal cells. MHC class II-expressing tumor cells, therefore, stimulate an improved tumor-specific immune response, and the immunity is cross-reactive with the class II negative tumor. Inasmuch as the transfected MHC class II gene product is not functioning as a target molecule for autologous tumor rejection, the improved immunogenicity of the Sal/Ak cells is probably due to stimulation of a tumor-specific Th cell population. The increased immunogenicity of Sal/Ak cells is, therefore, probably the result of direct presentation of Sal tumor-associated Ag in the context of tumor cell MHC class II molecules to Th lymphocytes. These studies demonstrate that induction of tumor cell MHC class II Ag expression is a potential strategy for tumor-specific immunotherapy, and suggest that tumor immunity may be enhanced by improved Th cell generation.  相似文献   

11.
S Carson 《Nucleic acids research》1991,19(18):5007-5014
The mouse class II major histocompatibility complex (MHC) encodes a polymorphic, multigene family important in the immune response, and is expressed mainly on mature B cells, on certain types of dendritic cells and is also inducible by gamma-interferon on antigen presenting cells. To study the regulatory elements which control this expression pattern, we have examined the chromatin structure flanking the class II MHC region, in particular during B cell differentiation. Using a panel of well-characterised mouse cell lines specific for different stages of B cell development (pre-B, B, plasma cell) as well as non-B cell lines, we have mapped the DNase I hypersensitive (DHS) sites adjacent to the mouse MHC class II region. The results presented show, for the first time that there are specific hypersensitive sites flanking the class II MHC locus during pre B cell, B cell and plasma cell stages of B cell differentiation, irrespective of the status of class II MHC expression. These hypersensitive sites are not found in T cell, fibroblast or uninduced myelomonocytic cell lines. This suggests that these DHS sites define a developmentally stable, chromatin structure, which can be used as a marker of B cell lineage commitment and may indicate that a combination of these hypersensitive sites reflect regulatory proteins involved in the immediate expression of a particular class II MHC gene or possibly control of the entire locus.  相似文献   

12.
Cell-based tumor vaccines, consisting of MHC class I+ tumor cells engineered to express MHC class II molecules, stimulate tumor-specific CD4+ T cells to mediate rejection of established, poorly immunogenic tumors. Previous experiments have demonstrated that these vaccines induce immunity by functioning as APCs for endogenously synthesized, tumor-encoded Ags. However, coexpression of the MHC class II accessory molecule invariant chain (Ii), or deletion of the MHC class II cytoplasmic domain abrogates vaccine immunogenicity. Recent reports have highlighted the role of lipid microdomains in Ag presentation. To determine whether Ii expression and/or truncation of MHC class II molecules impact vaccine efficacy by altering MHC class II localization to lipid microdomains, we examined the lipid raft affinity of MHC class II molecules in mouse M12.C3 B cell lymphomas and SaI/A(k) sarcoma vaccine cells. Functional MHC class II heterodimers were detected in lipid rafts of both cell types. Interestingly, expression of Ii in M12.C3 cells or SaI/A(k) cells blocked the MHC class II interactions with cell surface lipid rafts. In both cell types, truncation of either the alpha- or beta-chain decreased the affinity of class II molecules for lipid rafts. Simultaneous deletion of both cytoplasmic domains further reduced localization of class II molecules to lipid rafts. Collectively, these data suggest that coexpression of Ii or deletion of the cytoplasmic domains of MHC class II molecules may reduce vaccine efficacy by blocking the constitutive association of MHC class II molecules with plasma membrane lipid rafts.  相似文献   

13.
14.
T lymphocytes usually recognize endogenously encoded Ag in the context of MHC class I molecules, whereas exogenous Ag is usually presented by MHC class II molecules. In vitro studies in model systems suggest that presentation of endogenous Ag by class II molecules is inhibited by the association of class II with its invariant chain (Ii). In the present study we test this hypothesis in an in vivo system in which endogenously encoded tumor peptides are presented by tumor cell MHC class II molecules. In this system, transfection of syngeneic MHC class II genes (Aak and Abk) into a highly malignant, Ii negative, mouse tumor (SaI sarcoma) produces an immunogenic tumor (SaI/Ak) that is rejected by the autologous host. The class II+ transfectants also effectively immunize autologous A/J mice against a subsequent challenge of wild-type class II- tumor cells. We have hypothesized that the SaI/Ak transfectants induce protective immunity because they function as APC for endogenously synthesized tumor peptides, and thereby stimulate tumor-specific Th cells, by-passing the need for professional APC. To test the role of Ii as an inhibitor of presentation of endogenous peptides, SaI/Ak tumor cells were supertransfected with Ii gene (SaI/Ak/Ii cells), and the tumorigenicity of the resulting cells determined. Nine SaI/Ak/Ii clones were tested, and their malignancy compared with that of SaI/Ak and SaI cells. Seven of the nine class II+/Ii+ tumor cells are more malignant than class II+/Ii- tumor cells in autologous A/J mice. Expression of Ii therefore restores the malignant phenotype, presumably by preventing presentation of endogenously synthesized tumor peptides. Ii therefore regulates Ag presentation and can be a critical parameter for in vivo tumor immunity.  相似文献   

15.
The pineal organ of the migratory antarctic penguin, Pygoscelis papua, has a lobular structure. Clusters formed by different types of parenchymal cells are separated by connective tissue septa containing blood vessels. The predominant cell type displays a well-developed Golgi complex, free ribosomes, clear and granular vesicles (secretory granules), and lysosomes. Other cell types found in the gland are supporting and ependymal-like cells. The former contain dense bodies and filament bundles, the latter possess abundant cilia and clusters of ribosomes. Typical photoreceptor elements are lacking. Blood vessels are located within a perivascular space bordered by basal laminae. This perivascular space extends between the basal protrusions of the parenchymal cells. The presence of pinocytotic vesicles, secretory granules and cytoplasmic processes in the vicinity of these spaces suggests active sites of transport and exchange of substances. Intercellular conaliculi-like spaces are surrounded by parenchymal cells rich in microvilli. These cancliculi are continuous with the cavities (invaginations) of secretory and other parenchymal cells.  相似文献   

16.
17.
Substantial evidence suggests that MHC class II molecules play a critical role in transducing signals during B cell activation and differentiation. In addition, we previously found that cross-linking of MHC class II molecules using anti-MHC class II antibodies inhibited NF-kappaB activation in resting B cells isolated from mouse spleen. In this study, we investigated the mechanism of anti-MHC class II antibody-mediated inhibition of LPS-induced NF-kappaB activation using a resting B cell line, 38B9. We found that treatment with a corresponding anti-MHC class II antibody reduced the activation of NF-kappaB in LPS-stimulated 38B9 cells, treatment of the antibody mediated down-regulation of PKC and ERK/p38 MAP kinase pathways, and treatment with PKC inhibitors caused down-regulation of ERK and p38 MAP kinase activities in LPS-stimulated 38B9 cells. Our results suggest that the PKC and ERK/p38 MAP kinase pathways are regulated by anti-MHC class II antibodies, and that MHC class II molecules are actively involved in the signal transduction pathway in the resting B cell line, 38B9. Consequently, disruption of these pathways might contribute to the inhibition of LPS-induced NF-kappaB activation in 38B9 cells.  相似文献   

18.
Endothelial cells (EC) were cocultured with allogeneic PBL, CD4+ T cells, or CD8+ T cells, and the degrees of EC activation induced examined by determining patterns of endothelial class I and class II MHC and intercellular adhesion molecule-1 (ICAM-1) expression. Coculture with PBL or CD8+ T cells uniformly increases class I MHC and ICAM-1 expression on all EC within a culture, but induces class II MHC expression on only a subpopulation(s) of EC. This heterogeneous EC response to coculture contrasts with the uniform class II expression on all EC induced by IFN-gamma in replicate wells. CD4+ T cells, when compared to equal numbers of unfractionated PBL or CD8+ T cells, are more effective at increasing class I MHC and ICAM-1 but are unable to induce class II MHC expression. The failure of CD4+ T cells to induce EC class II MHC Ag is not due to insufficient activation of the T cells, as PHA-activated CD4+ T cells also do not induce significant class II expression. In addition, conditioned media (CM) from CD4+ T cell/EC contain greater levels of immunoreactive IFN-gamma than do CM from PBL/EC cocultures. Rather, CD4+ T cells appear to actively inhibit the induction of EC class II Ag but not class I or ICAM-1 by IFN-gamma. Inhibition occurs at the time of induction, as CD4+ T cells are not capable of down-regulating previously induced class II Ag. CM from CD4+/EC (but not PBL/EC) cocultures also inhibits IFN-gamma induction of EC class II MHC expression. The inhibitory activity is generated during CD4+ T cell-EC cell contact, and is enhanced by PHA. The inhibitory activity(ies) of the CD4+/EC-CM is as yet unidentified, and is only minimally reversible by cocktails of neutralizing antibodies directed against TNF-alpha, TNF-beta (lymphotoxin), IFN-alpha and IFN-beta. In conclusion, CD4+ and CD8+ T cells are each effective activators of EC, but the patterns of activation produced by these subsets are quite distinct, largely due to generation of a soluble inhibitor(s) of class II MHC induction during coculture of CD4+ T cells with EC.  相似文献   

19.
Immunization with myelin basic protein (BP) causes experimental allergic encephalomyelitis (EAE) in certain strains of mice. SJL/J (H-2s) is the prototype sensitive strain. Although BALB/c (H-2d) is resistant to EAE through use of an identical immunization protocol, (BALB/c x SJL/J)F1 hybrid mice develop EAE after immunization with BP. T cell clones specific for BP have been isolated from a highly encephalitogenic line of (BALB/c x SJL/J)F1 hybrid T cells raised against bovine BP. The clones were examined for their H-2 restriction and specificity for heterologous forms of BP (mouse, rat, and bovine BP). The results revealed the clones cross-reacting with mouse (self) BP were almost always restricted to F1 hybrid class II major histocompatibility complex (MHC) elements. In contrast, mouse cross-reactive clones derived from a nonencephalitogenic (BALB/c x SJL/J) T cell line raised against rat BP were largely restricted to H-2d elements. These clones did not cross-react with bovine BP. Four additional lines were generated by carrying the original rat and bovine F1 T cell lines on parental antigen-presenting cells thus generating lines biased toward homozygous (SJL/J, H-2s, or BALB/c, H-2d) restriction elements. These "parentally restricted" T cell lines did not induce EAE when injected in vivo. These results suggest that in this F1 strain sensitivity to T cell-induced EAE is associated with epitopes on murine BP that associate with F1 class II MHC restricting elements. In contrast, nonencephalitogenic T cell lines contain a high proportion of murine cross-reactive clones restricted to H-2d, the haplotype of the classically resistant BALB/c mouse. This work illustrates the use of T cell lines and clones in a model system to further analyze the role of MHC restriction elements in autoimmune disease occurring in heterozygous individuals.  相似文献   

20.
The goal of the present study was to evaluate the relationship among function, Lyt phenotype, and MHC recognition specificity in primary allospecific T cell populations. By using Lyt-2+ and L3T4+ T cells obtained from the same responder populations, we assessed the ability of T cells of each phenotype to generate cytotoxic effector cells (CTL) and IL 2-secreting helper T cells in response to either class I or class II MHC allodeterminants. It was found that a discordance between Lyt phenotype and MHC recognition specificity does exist in primary allospecific T cells, but only in one T cell subpopulation with limited functional potential: namely, Lyt-2+ T cells with cytotoxic, but not helper, function that recognize class II MHC alloantigens. Target cell lysis by these Lyt-2+ class II-allospecific CTL was inhibited by anti-Ia monoclonal antibodies (mAb), but not anti-Lyt-2 mAb, indicating that they recognized class II MHC determinants as their "restriction" specificity and not as their "nominal" specificity even though they were Lyt-2+. A second allospecific T cell subset with limited functional potential was also identified but whose Lyt phenotype and MHC restriction specificity were not discordant: namely, an L3T4+ T cell subset with helper, but not cytotoxic, function specific for class I MHC allodeterminants presented in the context of self-Ia. Thus, the present study demonstrates that primary allospecific T cell populations contain phenotypically identical subpopulations of helper and effector cells that express fundamentally different MHC recognition specificities. Because the recognition specificities expressed by mature T cells reflect the selection pressures they encountered during their differentiation into functional competence, these findings suggest that functionally distinct but phenotypically identical T cell subsets may be selected independently of one another during ontogeny. Thus, the existence of Lyt-2+ CTL specific for class II allodeterminants can be explained by the hypothesis that the association of Lyt phenotype with MHC recognition specificity results from the process of thymic selection that these Lyt-2+ effector cells avoid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号