首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Functional properties of mouse haemopoietic spleen colony-forming cells, enriched 40- to 80-fold, from normal bone marrow were studied. It was found that: (1) the number of partially purified CFU-s (colony forming unit-spleen) required to rescue lethally irradiated mice was similar to the number of normal unfractionated bone marrow CFU-s giving the same level of protection; (2) the homing of partially purified CFU-s was similar to that of CFU-s from unfractionated bone marrow; (3) the regeneration of CFU-s in spleen was similar for enriched and unfractionated cell populations between 4 and 11 days after transplantation. In contrast, the rate of regeneration of CFU-s in femur was slower with enriched progenitor cells than with unfractionated bone marrow. The growth rate in femur, however, could be restored to normal by injecting freshly isolated syngeneic thymocytes with the enriched CFU-s population. The results indicate that the partially purified CFU-s are by themselves functionally normal and show that the rate of CFU-s repopulation in bone marrow can be affected by cell types other than spleen colony-forming cells.  相似文献   

2.
Abstract Abstract. A tentative characterization of haemopoietic stem cells with respect to their organ distribution, seeding fraction and colony formation in the spleen, radiosen-sitivity and humoral regulation was attempted in mice heterozygous for the mutant allele SlJ and in their normal littermates. SlJ/+ mice were characterized by a deficient CFU-s content of the blood and spleen and had slightly lower femoral CFU-s numbers. This CFU-s distribution could not be explained by differences in seeding efficiency ‘f’ between CFU-s of SlJ/+ and +/+ origin in lethally irradiated recipients used in the CFU-s assay. the seeding fraction of CFU-s of +/+ origin did not differ in +/+ and SlJ/+ recipients. However, in irradiated SIJ/+ recipient mice a 30% decrease was observed in the number of the colonies derived from splenic and femoral CFU-s of both +/+ and SlJ/+ origin. the serum level of SHSF (splenic haemopoiesis stimulating factor) was decreased in SlJ/+ mice, but significantly increased in Sl/Sld mice, as compared to their respective normal +/+ littermates. Endogenous colony formation in SlJ/+ spleens was deficient in comparison to that observed in +/+ spleens, and distinct sex differences were observed. However, mutant and normal CFU-s from spleen and bone marrow had a similar survival following in-vitro y irradiation. Femurs and spleens of both SlJ/+ and +/+ origin were implanted into both SlJ/+ and +/+ hosts. Six weeks later the SlJ/+ grafts contained less CFU-s than the +/+ grafts. These data show that the splenic stroma of SlJ/+ mice is not defective in its capacity to lodge injected CFU-s but is deficient in its ability to maintain CFU-s under ‘steady-state’ conditions and stimulate their colony formation in a ‘perturbed state’. Some of the characteristics of SlJ/+ mice segregate them from Sl/Sld mice, i.e. a deficient splenic CFU-s content, normal seeding fractions ‘f’ of CFU-s from spleen and bone marrow in the presence of an almost compensated anemia, and decreased serum levels of SHSF. the study of the SlJ trait may be a useful extension of the current Sl/Sld model for exploration of hereditary defects in haematopoietic stroma.  相似文献   

3.
A competitive repopulation assay utilizing chromosome markers was used to assay the reconstituting potential of hematopoietic populations. The test populations consisted of tibial murine marrow locally irradiated with doses ranging from 1.5 Gy to 8.5 Gy and of marrow generated from either murine splenic or marrow stem cells. The purpose of this assay was to assess the innate proliferative potential and microenvironmental influences on the ability to repopulate. Regardless of origin, spleen repopulating ability consistently agreed with spleen colony-forming unit (CFU-s) content. Doses of radiation from 5 Gy to 8.5 Gy diminished, by a factor of 2, the ability to repopulate marrow despite maintenance of CFU-s levels. Marrow generated from splenic stem cells had one-fifth the repopulating ability of marrow derived from marrow stem cells, even though CFU-s levels were equivalent. The results imply that the splenic environment can only maintain stem cells at the level of the CFU-s, even if the stem cells were originally of higher quality, and that their original potential cannot be regained in a marrow environment. Nevertheless, the marrow can maintain more primitive stem cells, but this reserve is drained to support CFU-s levels.  相似文献   

4.
The number and concentration of haemopoietic stem cells in the femoral bone marrow and spleen of Wistar rats of different ages were investigated. Stem cells were assayed by the spleen colony technique in irradiated rat recipients. The ability of the recipient spleen to harvest transplanted tissue as a macroscopic colony was found to be dependent on the recipient's age. Changes with senescence were observed also in the concentration and the size of the stem cell compartment both in the marrow and spleen. No differences were demonstrated in the seeding of transplanted colony-forming units into the spleen of recipients of 1 and 4 months of age. A rats-mice strain difference in the effect of senescence on the haemopoietic stem cells is discussed.  相似文献   

5.
The distribution of spleen colony diameters was determined 5.5, 8.0, 10.5 and 13.0 days after injection of normal bone marrow cells to lethally irradiated recipients. A relative lack of small colonies on day 8.0, as compared with days 5.5, 10.5 and 13.0, argued against a time continuum in colony appearance. The spleen colonies observed after 10 days or more probably represented a mixture of colonies which developed from the originally transplanted CFU-S and those arising from secondary CFU-S. Thus, late appearing spleen colonies may not necessarily identify a different, less mature, population of CFU-S. Administration of increasing amounts of bone marrow cells was used for comparing the linearity of the CFU-S assay for colonies observed after 8 days or after 12 to 13 days. The influence of overlapping colonies on the results was considerably augmented if large spleen colonies were observed after 12 or 13 days. Subsequently the CFU-S assay lost much of its quantitative character. We believe that some previously published data might have been misinterpreted by neglecting the important differences between 'early' and 'late' CFU-S assays.  相似文献   

6.
Abstract The distribution of spleen colony diameters was determined 5.5, 8.0, 10.5 and 13.0 days after injection of normal bone marrow cells to lethally irradiated recipients. A relative lack of small colonies on day 8.0, as compared with days 5.5, 10.5 and 13.0, argued against a time continuum in colony appearance. The spleen colonies observed after 10 days or more probably represented a mixture of colonies which developed from the originally transplanted CFU-S and those arising from secondary CFU-S. Thus, late appearing spleen colonies may not necessarily identify a different, less mature, population of CFU-S. Administration of increasing amounts of bone marrow cells was used for comparing the linearity of the CFU-S assay for colonies observed after 8 days or after 12 to 13 days. The influence of overlapping colonies on the results was considerably augmented if large spleen colonies were observed after 12 or 13 days. Subsequently the CFU-S assay lost much of its quantitative character. We believe that some previously published data might have been misinterpreted by neglecting the important differences between 'early'and 'late'CFU-S assays.  相似文献   

7.
If the limited life span of hematopoietic tissues in vitro is due to a finite proliferative capacity of individual stem cells, one might expect tissues of young donors to possess a greater proliferative capacity and to contain a larger population of primitive stem cells than those of older donors. To test this hypothesis, we used 12- and 8-day spleen colony formation (CFU-s) to assay more and less primitive stem cell subpopulations of three murine hematopoietic tissues: fetal liver (FL) and weanling (WBM) and adult (ABM) bone marrow. Subsequently, the same assays and a stromal cell assay were performed on the bone marrow from groups of lethally irradiated mice reconstituted with these tissues. Comparison of the CFU-s content of the donor tissues revealed that FL contained a significantly greater proportion of primitive stem cells as evidenced by a (Day 12):(Day 8) CFU-s ratio of 3.0 +/- 1.0 as compared to 0.9 +/- 0.1 for WBM and ABM. In addition, at 21 weeks post-transplantation the CFU-s/femur values of the FL reconstituted group were significantly greater than those of the ABM and WBM reconstituted groups. These results suggest that fetal hematopoietic tissue contains a greater proportion of primitive stem cells and has a greater proliferative potential than hematopoietic tissue from older donors. No differences were seen in stromal cell reconstitution of the three experimental groups. In all cases, assayable fibroblast colony forming cells (CFU-f) remained at 20-40% of control values, even at 21 weeks postreconstitution.  相似文献   

8.
The number and concentration of haemopoietic stem cells in the femoral bone marrow and spleen of Wistar rats of different ages were investigated. Stem cells were assayed by the spleen colony technique in irradiated rat recipients. The ability of the recipient spleen to harvest transplanted tissue as a macroscopic colony was found to be dependent on the recipient's age. Changes with senescence were observed also in the concentration and the size of the stem cell compartment both in the marrow and spleen. No differences were demonstrated in the seeding of transplanted colony-forming units into the spleen of recipients of 1 and 4 months of age. A rats-mice strain difference in the effect of senescence on the haemopoietic stem cells is discussed.  相似文献   

9.
The proportion of haematopoietic stem cells (CFU-s) engaged in DNA synthesis was determined by means of the [3H]-thymidine [( 3H]TdR) suicide technique during recovery of bone marrow from the damage caused by a sublethal total body irradiation. In contrast with previous reports the [3H]TdR suicide rate was not permanently increased. It was observed that CFU-s passed through S phase in synchronous waves, following a dose of irradiation of 1.5 Gy. After a dose of 2.6 Gy, there was only one initial wave of increased CFU-s sensitivity to the action of [3H]TdR. Following the depression occurring 26 hr after the irradiation with 2.6 Gy, the proportion of CFU-s killed by the [3H]TdR was permanently increased until 5-6 days after irradiation. Thereafter large differences in the [3H]TdR suicide data were observed among individual mice. Evidence was obtained that individual mice, which had been irradiated by a dose of 2.6 Gy 8-9 days before, had identical values of the CFU-s [3H]TdR suicide rate in the bone marrow from different bones of the lower extremities. The recurrence of the synchronous waves in CFU-s passage through the cell cycle was recorded when the CFU-s population regenerated to only about 10% of its normal value. These waves were obviously not related to a particular time of the day and, consequently, they did not represent the circadian rhythm. It is concluded that the synchronous waves in which CFU-s proliferation occurred reflected the action of the control mechanism on CFU-s proliferation. This mechanism should be endowed with an important systemic component besides locally operating factors.  相似文献   

10.
Using a single spleen colony transplantation technique and sex chromosome typing as a natural cytogenetic marker, most spleen colony-forming cells (CFC) in adult bone marrow or fetal livers of inbred LACA or C57 mice re-established hemopoiesis in lethally irradiated mice when the spleen colonies were sampled at 13 days after transplantation. However, most of the spleen colony-forming cells in the peripheral blood of normal mice possess little potential for proliferation and are less efficient in the re-establishment of hemopoiesis in lethally irradiated mice. The CFC population is heterogeneous in the mice. From the subsequent retransplantation of colonies from colony-forming cells in the peripheral blood, the simple assessment of spleen colony-forming units (CFU-s) content, based on the number of splenic colonies, does not reliably represent the content of hemopoietic stem cells.  相似文献   

11.
Age-related changes in the number and concentration of pluripotential and unipotential hematopoietic stem cells in the femoral bone marrow and spleen of BC3F1 mice were investigated. Pluripotential stem cells were assayed by the spleen colony technique, and unipotential stem cells were determined by an agar cloning method and by erythropoietin responsiveness in polycythemic mice. Changes with senescence were observed in the concentration of both uni- and pluripotential stem cells in the bone marrow; the size of the stem cell compartment in the marrow did not change significantly with age. Also, a reduction in the seeding of transplanted spleen colony-forming units into the spleens of aged recipients was demonstrated. The implications of these findings for the kinetics of hematopoietic stem cell proliferation in aged animals are discussed.  相似文献   

12.
The influence of histamine at various concentrations on the cell cycle state of hematopoietic stem cells (CFU-s) was investigated. CFU-s were triggered from the G0 state into the S phase of the cell cycle by in vitro treatment of mouse bone marrow cells with high concentrations of histamine. This effect could be antagonized by a histamine H2 receptor blocking agent. When bone marrow cells were treated with a histamine H1 receptor antagonist prior to histamine treatment, low concentrations of histamine also triggered the entrance of CFU-s into the DNA synthetic phase. Our findings further suggest the existence of histamine H1 and H2 receptors on the surface of CFU-s cells and the antagonistic effect of these two histamine receptor subtypes on the cell cycle state of CFU-s. Our results also suggest that histamine may participate in regulating the proliferation of hematopoietic stem cells in vivo during immune or inflammatory responses.  相似文献   

13.
Abstract. Changes in the number of haemopoietic stem cells (CFU-s) were studied in rats during the recovery day and selected post-recovery days after an 18–19-day flight on biosatellites Cosmos 936 and Cosmos 1129 . There was a decrease in the CFU-s number of the bone marrow of rats on the recovery day. On the 6th day post-recovery the CFU-s number was still depressed, while on the 25th day post-recovery it was elevated above control value. The differentiation ratio of transplanted bone marrow cells was not altered by space flight.  相似文献   

14.
The seeding efficiency of colony-forming cells from normal, regenerating and velocity-sedimented cycling and non-cycling narrow preparations was compared. Colony-forming cells in cycle were found to exhibit a 50% reduction in splenic seeding when compared to normal marrow or sedimented non-cycling cells. The results of this study indicate that the spleen colony assay underestimates the total number of colony-forming cells by a fraction which is directly related to the number of cells in cycle.  相似文献   

15.
Hematopoietic stem cell deficiencies cause a severe macrocytic anemia in W/Wv mice. W44/W44 mice, on the other hand, are not anemic, but, since they accept marrow implants without prior total body irradiation, they have inherited a stem cell lesion. In an attempt to identify the aberrant stem cell(s), we have determined the concentration in W44/W44 marrow of hematopoietic precursors known to be deficient in W/Wv marrow. The in vitro erythroid burst-forming units (BFU-E), the in vivo spleen colony-forming units (CFU-S), and the cells that repopulate the erythroid compartment of stem cell-deficient mice were examined. The progenitors of 7-day bursts are dramatically reduced in W/Wv marrow but are present in normal concentrations in W44/W44 marrow. W44/W44 marrow CFU-S, unlike W/Wv, generate visible spleen colonies 10 days after injection into lethally irradiated recipients. The colonies are, however, smaller and at least 2 times less numerous than those produced from equivalent numbers of +/+ marrow. An additional defect was the inability of W44/W44 stem cells to compete with genetically marked +/+ cells during erythroid repopulation. An estimate of the number of W44/W44 stem cells needed to compete with +/+ cells was provided by enriching W44/W44 progenitors fivefold. Twice as many enriched W44/W44 marrow cells as unfractionated +/+ cells were required to replace competitor cells. This suggests that there are up to 10 times fewer stem cells somewhere in the W44/W44 erythrogenerative pathway. The data support the conclusion that an erythroid progenitor less mature than the BFU-E is one of the cells most severely affected by expression of the mutant gene.  相似文献   

16.
Antiserum raised against a mouse mast cell line (FMP1) reacts with 90% to 100% of spleen colony-forming units (CFU-s), granulocyte/macrophage colony-forming cells (CFC-gm), erythroid burst-forming units (BFU-e), and 15% of nucleated marrow cells, using a complement-dependent cytotoxicity assay. We demonstrated that bone marrow, spleen, or thymus cells are able to absorb this activity from the antiserum. Although mouse brain cells have low reactivity with anti-FMP1 serum, the cytolysis level was reduced to background when antiserum was absorbed with brain cells. In addition, colony formation by marrow CFU-s, CFC-gm, and BFU-e was no longer prevented when the cells were incubated with brain-absorbed anti-FMP1 serum and complement. These findings suggest the presence of brain-associated antigens on CFU-s, CFC-gm, and BFU-e. To test whether a CFU-s accessory cell population in marrow is affected by treatment with anti-FMP1 serum and complement, antibody-treated marrow cells were mixed with large numbers of thymocytes and injected into recipient mice. Colony formation was not altered, indicating that the antiserum reacted directly with antigens on CFU-s and not on CFU-s accessory cells.  相似文献   

17.
The level of mobilizable 9-day colony-forming units (CFU-s), which represents a constant fraction of the normal mouse bone marrow CFU-s pool, was assayed in BDF1 mice with perturbed hemopoiesis (i.e., during increased turnover of CFU-s or increased CFU-s traffic after irradiation). After low-level irradiation, regeneration of the mobilizable CFU-s fraction was significantly slower than that of bone marrow CFU-s. Depletion of the mobilizable CFU-s pool was observed if a permanently increased outflow of CFU-s from the bone marrow was induced by endotoxin injection. After 40% withdrawal of the blood volume, the mobilizable CFU-s pool expanded marginally. Assuming that the level of mobilizable CFU-s is a consequence of production and outflow from the bone marrow compartment, changes in the pool size of mobilizable CFU-s may be a sensitive indicator of balanced or unbalanced hemopoiesis.  相似文献   

18.
C3Hf/Umc mice were immunized by an intravenous injection of a sublethal dose of live Listeria monocytogenes. The animals developed delayed-type hypersensitivity (DH) concomitant with infectious immunity to this organism. Delayed hypersensitivity could be transferred to normal lethally irradiated mice with spleen cells from immune animals. The immune cells cells responsible for transfer of adoptive immunity were susceptible to in vitro cytolytic action of anti-theta iso-antibody and complement, since such treatment rendered these cells incapable of further passive transfer of specific immunity to Listeria. The acquired DH to Listeria persisted in mice after 900 R lethal irradiation, provided normal syngeneic bone marrow cells were also administered, thus indicating the persistance of a cell population in the immune irradiated mice, resistant to effects of radiation. The radio resistant nature of this immune cell population was further demonstrated by passive transfer with spleen cells, derived from preimmunized lethally irradiated mice to normal syngeneic mice or to lethally irradiated nonimmunized hosts reconstituted with normal bone marrow which then responded to antigenic challenge with DH.Treatment of the immune radio resistant spleen cells in vitro with anti-theta and complement eliminated passive transfers of DH by these cells; however, this effect was less obvious than similar treatment of the immune, nonirradiated, spleen cells.  相似文献   

19.
Two subpopulations of stem cells for T cell lineage   总被引:2,自引:0,他引:2  
An assay system for the stem cell that colonizes the thymus and differentiates into T cells was developed, and by using this assay system the existence of two subpopulations of stem cells for T cell lineage was clarified. Part-body-shielded and 900-R-irradiated C57BL/6 (H-2b, Thy-1.2) recipient mice, which do not require the transfer of pluripotent stem cells for their survival, were transferred with cells from B10 X Thy-1.1 (H-2b, Thy-1.1) donor mice. The reconstitution of the recipient's thymus lymphocytes was accomplished by stem cells in the donor cells and those spared in the shielded portion of the recipient that competitively colonize the thymus. Thus, the stem cell activity of donor cells can be evaluated by determining the proportion of donor-type (Thy-1.1+) cells in the recipient's thymus. Bone marrow cells were the most potent source of stem cells, the generation of donor-derived T cells being observed in two out of 14 recipients transferred with as few as 1.5 X 10(4) cells. The stem cell activity of spleen cells was estimated to be about 1% of that of bone marrow cells, and no activity was found in thymus cells. By contrast, when the stem cell activity was compared between spleen and bone marrow cells of whole-body-irradiated (800 R) C57BL/6 mice reconstituted with B10 X Thy-1.1 bone marrow cells by assaying in part-body-shielded and irradiated C57BL/6 mice, the activity of these two organs showed quite a different time course of development. Spleen cells showed a markedly high level of activity 7 days after the reconstitution, followed by a decline, whereas the activity of bone marrow cells was very low on day 7 and increased crosswise. The results strongly suggest that the stem cells for T cell lineage in the bone marrow comprise at least two subpopulations, spleen-seeking and bone marrow-seeking cells. Such patterns of compartmentalization of stem cells in the spleen and bone marrow of irradiated recipients completely conform to the general scheme of the relationship between restricted stem cells and less mature stem cells, including pluripotent stem cells, which became evident in other systems such as in the differentiation of spleen colony-forming cells or of stem cells for B cell lineage.  相似文献   

20.
B cell and Th cell functions were assessed in mice undergoing a graft-vs-host reaction (GvHR) in response to minor histocompatibility Ag by using the plaque-forming cell (PFC) response to the T-independent Ag TNP-Brucella abortus and the T-dependent Ag TNP-SRBC. Bone marrow plus spleen cells from B10.D2 mice were transplanted into lethally irradiated B10.D2 (syngeneic recipient) or H-2d-compatible BALB/c (allogeneic recipient) to produce a chronic form of GvHR. BALB/c recipients of an allogeneic transplant demonstrated a marked and proportional lymphoid depletion of the spleen with normal percentages of B cells, T cells, and CD4+ and CD8+ T cell subsets. Mice with GvHR made normal numbers of PFC/10(5) spleen cells in response to the T-independent Ag, but a significantly depressed number of PFC/10(5) spleen cells to the T-dependent Ag compared with normal B10.D2 mice and with irradiated B10.D2 recipients of syngeneic B10.D2 marrow plus spleen cells. Mice undergoing the minor Ag GvHR made significantly larger numbers of PFC/10(5) spleen cells after secondary immunization with TNP-SRBC compared with controls. In vitro assays demonstrated that B cells from mice with GvHR responded to T help from normal B10.D2 mice and that T cells from mice with GvHR provided help to normal B cells after in vivo immunization. These data demonstrate that radiation chimeras with GvHR in response to minor histocompatibility Ag have relatively normal B cell function and an apparent defect in T helper cell function that is reversible by immunization with appropriate Ag.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号