首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present study was undertaken to investigate the effect of vitamin C treatment on blood pressure and vascular reactivity in salt-induced hypertension. Male Sprague-Dawley rats were fed a normal rat diet, a high-sodium (8% NaCl) diet, a normal rat diet plus vitamin C treament (100 mg x kg(-1) x day(-1)), or a high-sodium diet plus vitamin C treatment for 6 weeks. Salt loading significantly increased blood pressure, which was attenuated by vitamin C treatment. Aortic rings from the different groups were suspended for isometric-tension recording. The contractile response to noradrenaline was significantly increased in the salt-loaded rats. Vitamin C reduced the sensitivity of aortic rings to noradrenaline in rats on normal and high-sodium diets. In noradrenaline-precontracted rings, the relaxation response to acetylcholine, which was attenuated in the salt-loaded rats, was restored by vitamin C treatment. Pretreatment with N(G)-nitro-L-arginine methyl ester (L-NAME) abolished the enhanced response to acetylcholine caused by vitamin C. The results suggest that the antihypertensive effect of vitamin C is associated with a reduction in vascular sensitivity to noradrenaline and enhancement of endothelium-dependent relaxation due to increased nitric oxide bioavailability.  相似文献   

2.
Salt loads (0.17 or 0.34 mmol Na+; 6 M NaCl solution labelled with 24Na) were administered into the amnion of 7-day-old chick embryos. The 24Na distribution in embryonic blood, amniotic and allantoic fluids was measured in 1, 2, 4, 8, 12 and 24 h intervals to assess the kinetics of salt load movements in particular egg compartments. The aim was to estimate the efficiency of the embryonic homeostatic apparatus to maintain ionic balance in the internal environment of the embryonic body. The Na+ concentration in amniotic fluid was expected to rise after salt loading by about 275 and 400 mM, respectively. More than 10% of the salt dose per ml appeared in the embryonic blood 2 h after salt load administration while only 0.2% were found in the urine (collected as allantonic fluid). The maximal rise of 24Na activity in the blood of salt-loaded embryos reached 11%-12% of the dose which corresponded to an increase of Na+ concentration by 19 and 41 mM, respectively. The maximum of 24Na activity appeared in the allantoic fluid with a delay of several hours and indicated an increment of Na+ concentration by 6% and 9% of the dose per ml in the case of salt-loaded embryos. The Na+ concentration in the allantoic fluid (urine) never exceeded that in the blood. The final Na+ activity (estimated in the blood 24 h after salt loading) was equal to 5% of the dose per ml in both cases, indicating a persistent elevation of Na+ concentration by 8.6 and 17.2 mM, respectively.  相似文献   

3.
Cerebral circulation is known to be vulnerable to high salt loading. However, no study has investigated the effects of excess salt on focal ischemic brain injury. After 14 days of salt loading (0.9% saline) or water, spontaneously hypertensive rats (SHR) and normotensive Wistar-Kyoto rats (WKY) were subjected to photothrombotic middle cerebral artery occlusion (MCAO), and infarct volume was determined at 48 h after MCAO: albumin and hemoglobin contents in discrete brain regions were also determined in SHR. Salt loading did not affect blood pressure levels in SHR and WKY. After MCAO, regional cerebral blood flow (CBF), determined with two ways of laser-Doppler flowmetry (one-point measurement or manual scanning), was more steeply decreased in the salt-loaded group than in the control group. In SHR/Izm, infarct volume in the salt-loaded group was 112±27 mm3, which was significantly larger than 77±12 mm3 in the control group (p = 0.002), while the extents of blood-brain barrier disruption (brain albumin and hemoglobin levels) were not affected by excess salt. In WKY, salt loading did not significantly increase infarct size. These results show the detrimental effects of salt loading on intra-ischemic CBF and subsequent brain infarction produced by phototrhombotic MCAO in hypertensive rats.  相似文献   

4.
Aspirin is widely used as an antiinflammatory drug especially in children with rheumatic fever arthritis. The diminishing effects of aspirin on antioxidant enzymes and hepato-renal systems at high doses are well-known. It is now evident that the damage at antioxidant system worsens the clinical picture of the disease and prolongs the treatment time. Thus, we investigated the effect of antioxidant enzyme cofactors-zinc and selenium-supplementation on superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and malondialdehyde (MDA) levels (erythrocyte and liver) and hepato-renal toxicity during aspirin treatment at therapeutic doses. The rats were divided into five groups. The first and second groups were given aspirin 75 mg/kg/day and aspirin plus selenium (Selenium 200, selenium 200 mg tablet as selenium yeast, GNC) and zinc (Zinc 100, zinc 100 mg tablet as zinc gluconate, GNC), respectively, the third and fourth take 50 mg/kg/day aspirin and aspirin plus selenium and zinc twice a day, respectively. The fifth group was control. The rats were treated with aspirin for 5 weeks as in the treatment of rheumatic fever arthritis in children. Erythrocyte SOD and MDA levels were preserved with supplementation, whereas there was no change for GSH-Px levels. Liver SOD, GSH-Px, and MDA levels were not changed. In zinc- and selenium-supplemented groups, the levels of serum alanine aminotransferase, uric acid, and direct bilirubin levels were found statistically decreased compared with nonsupplemented groups. There was no significant histopathologic change in specimens of hepatic and renal tissues. Trace element supplementation may prevent free radical damage and shorten treatment time in children using long-term aspirin treatment.  相似文献   

5.
d, 1-propranolol was infused into salt-depleted, conscious dogs at two dosages: 1 mg/kg followed by 0.60 ? 0.67 mg/kg/hr, and 5 mg/kg followed by 1.57 ? 1.76 mg/kg/hr. At both dosages, propranolol decreased plasma renin activity (PRA), plasma aldosterone concentration, and heart rate significantly. Renin substrate concentration remained unchanged. PRA was suppressed with the higher dosage but not with the lower dosage, to values found with dietary salt loading. Mean arterial blood pressure (MABP) remained unchanged with the low-dose infusions, but decreased significantly with the high-dose infusions. The data suggest that the mechanism(s) for the increase in PRA with low-salt diets is sensitive to propranolol and that the effect of propranolol on MABP is dependent on the salt intake and on the dose administered.  相似文献   

6.
A growing body of evidence indicates that renal tissue injuries are reversible. We investigated whether dietary salt reduction with the combination therapy of angiotensin II type 1 receptor blocker (ARB) plus calcium channel blocker (CCB) reverses renal tissue injury in Dahl salt-sensitive (DSS) hypertensive rats. DSS rats were fed a high-salt diet (HS; 4% NaCl) for 4 weeks. Then, DSS rats were given one of the following for 10 weeks: HS diet; normal-salt diet (NS; 0.5% NaCl), NS + an ARB (olmesartan, 10 mg/kg/day), NS + a CCB (azelnidipine, 3 mg/kg/day), NS + olmesartan + azelnidipine or NS + hydralazine (50 mg/kg/day). Four weeks of treatment with HS diet induced hypertension, proteinuria, glomerular sclerosis and hypertrophy, glomerular podocyte injury, and tubulointerstitial fibrosis in DSS rats. A continued HS diet progressed hypertension, proteinuria and renal tissue injury, which was associated with inflammatory cell infiltration and increased proinflammatory cytokine mRNA levels, NADPH oxidase activity and NADPH oxidase-dependent superoxide production in the kidney. In contrast, switching to NS halted the progression of hypertension, renal glomerular and tubular injuries. Dietary salt reduction with ARB or with CCB treatment further reduced blood pressure and partially reversed renal tissues injury. Furthermore, dietary salt reduction with the combination of ARB plus CCB elicited a strong recovery from HS-induced renal tissue injury including the attenuation of inflammation and oxidative stress. These data support the hypothesis that dietary salt reduction with combination therapy of an ARB plus CCB restores glomerular and tubulointerstitial injury in DSS rats.  相似文献   

7.
Hypertension is the main risk factor for left ventricular hypertrophy and development of diastolic heart failure. There is no yet treatment, which can effectively reduce mortality in patients suffering from heart failure with preserved systolic function. We tested whether the calcium sensitizer levosimendan and the AT1-receptor antagonist valsartan could protect from salt-induced hypertension, cardiovascular mortality and heart failure in Dahl/Rapp salt-sensitive rats fed for 7 weeks with a high salt diet (8% NaCl). Levosimendan (1 mg/kg/day via drinking water) and valsartan (30 mg/kg in the food) monotherapies and their combination prevented mortality in Dahl/Rapp rats. The drug combination evoked an additive effect on blood pressure, cardiac hypertrophy, cardiomyocyte cross-sectional area, target organ damage and myocardial ANP mRNA expression. There was a close correlation between systolic blood pressure and cardiac hypertrophy, cardiac and renal damage. As compared to Dahl/Rapp controls kept on low-salt diet (NaCl 0.3%). The high salt rats exhibited impaired diastolic relaxation as assessed by isovolumic relaxation time. Levosimendan alone and in combination with valsartan, improved diastolic relaxation without significantly improving systolic function. Our findings are evidence for an additive effect between levosimendan and valsartan on blood pressure and a blood pressure-dependent protection against the development of salt-induced target organ damage. The present study also demonstrates that levosimendan, alone or in combination with valsartan, can correct diastolic dysfunction induced by salt-dependent hypertension.  相似文献   

8.
Although iron is reported to be associated with the pathogenesis of chronic kidney disease, it is unknown whether iron participates in the pathophysiology of nephrosclerosis. Here, we investigate whether iron is involved in the development of hypertensive nephropathy and the effects of iron restriction on nephrosclerosis in salt- loaded stroke-prone spontaneously hypertensive rats (SHRSP). SHRSP were given either a normal or high-salt diet for 8 weeks. Another subset of SHRSP were fed a high-salt with iron-restricted diet. SHRSP given a high-salt diet developed severe hypertension and nephrosclerosis. As a result, survival rate was decreased after 8 weeks diet. Importantly, massive iron accumulation and increased iron content were observed in the kidneys of salt-loaded SHRSP, along with increased superoxide production, urinary 8-Hydroxy-2′-deoxyguanosine excretion, and urinary iron excretion; however, these changes were markedly attenuated by iron restriction. Of interest, expression of cellular iron transport proteins, transferrin receptor 1 and divalent metal transporter 1, was increased in the tubules of salt-loaded SHRSP. Notably, iron restriction attenuated the development of severe hypertension and nephrosclerosis, thereby improving survival rate in salt-loaded SHRSP. Taken together, these results suggest a novel mechanism by which iron plays a role in the development of hypertensive nephropathy and establish the effects of iron restriction on salt-induced nephrosclerosis.  相似文献   

9.
The present studies examined the role and mechanism of action of infiltrating T lymphocytes in the kidney during salt-sensitive hypertension. Infiltrating T lymphocytes in the Dahl salt-sensitive (SS) kidney significantly increased from 7.2 ± 1.8 × 10(5) cells/2 kidneys to 18.2 ± 3.9 × 10(5) cells/2 kidneys (n = 6/group) when dietary NaCl was increased from 0.4 to 4.0%. Furthermore, the expression of immunoreactive p67(phox), gp91(phox), and p47(phox) subunits of NADPH oxidase was increased in T cells isolated from the kidneys of rats fed 4.0% NaCl. The urinary excretion of thiobarbituric acid-reactive substances (TBARS; an index of oxidative stress) also increased from 367 ± 49 to 688 ± 92 nmol/day (n = 8/group) when NaCl intake was increased in Dahl SS rats. Studies were then performed on rats treated with a daily injection of vehicle (5% dextrose) or tacrolimus (0.25 mg·kg(-1)·day(-1) ip), a calcineurin inhibitor that suppresses immune function, during the period of high-NaCl intake (n = 5/group). In contrast to the immune cell infiltration, increased NADPH oxidase expression, and elevated urine TBARS excretion in vehicle-treated Dahl SS fed high salt, these parameters were unaltered as NaCl intake was increased in Dahl SS rats administered tacrolimus. Moreover, tacrolimus treatment blunted high-salt mean arterial blood pressure and albumin excretion rate (152 ± 3 mmHg and 20 ± 9 mg/day, respectively) compared with values in dextrose-treated Dahl SS rats (171 ± 8 mmHg and 74 ± 28 mg/day). These experiments indicate that blockade of infiltrating immune cells is associated with decreased oxidative stress, an attenuation of hypertension, and a reduction of renal damage in Dahl SS rats fed high salt.  相似文献   

10.
This study aimed to determine if 50 days of canola oil intake in the absence or presence of salt loading affects: (1) antioxidant and oxidative stress markers, (2) aortic mRNA of NADPH oxidase (NOX) subunits and superoxide dismutase (SOD) isoforms and (3) endothelial function in SHRSP rats. SHRSP rats were fed a diet containing 10 wt/wt% soybean oil or 10 wt/wt% canola oil, and given tap water or water containing 1% NaCl for 50 days. Without salt, canola oil significantly increased RBC SOD, plasma cholesterol and triglycerides, aortic p22phox, NOX2 and CuZn-SOD mRNA, and decreased RBC glutathione peroxidase activity. With salt, canola oil reduced RBC SOD and catalase activity, LDL-C, and p22phox mRNA compared with canola oil alone, whereas plasma malondialdehyde (MDA) was reduced and RBC MDA and LDL-C were higher. With salt, the canola oil group had significantly reduced endothelium-dependent vasodilating responses to ACh and contractile responses to norepinephrine compared with the canola oil group without salt and to the WKY rats. These results indicate that ingestion of canola oil increases O2 generation, and that canola oil ingestion in combination with salt leads to endothelial dysfunction in the SHRSP model.  相似文献   

11.
Insulin-resistance induces cerebrovascular dysfunction and increases the risk for stroke. We investigated whether rosuvastatin (RSV), a 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor, can reverse reduced cerebrovascular responsiveness in insulin-resistant rats. Dilator responses of the basilar artery (BA) were examined after 1-day or 4-wk RSV (2 mg.kg(-1).day(-1)) treatment in anesthetized 12-wk-old insulin-resistant Zucker obese (ZO) and lean (ZL) rats by using a cranial window preparation. Vehicle-treated ZO rats had significantly higher fasting insulin, total cholesterol (TC), and triglyceride (TG) levels compared with ZL rats. In addition, in the ZO rats, dilator responses of the BA to acetylcholine, iloprost, cromakalim, and potassium chloride were significantly reduced when compared with ZL rats. One-day RSV treatment improved dilator responses of the ZO BAs without altering lipid levels. Four-week RSV treatment lowered both TC and TG by 30% and also improved dilator responses of the ZO BAs, although without additional effects compared with the 1-day RSV treatment. NAD(P)H oxidase-dependent superoxide production was significantly higher in the cerebral arteries of vehicle-treated ZO rats compared with ZL rats, but both 1-day and 4-wk RSV treatments normalized elevated superoxide levels in the ZO arteries. These findings demonstrate that RSV improves cerebrovascular function in insulin-resistance independently from its lipid-lowering effect by the inhibition of NAD(P)H oxidase.  相似文献   

12.
We examined the effect of angiotensin I (AI), without the effect of angiotensin II (AII) converted from AI, on the weight of the adrenal glands, adrenal corticosterone (B) and adrenal aldosterone under conditions where the renin-angiotensin system was suppressed, since a reduction in the size of the adrenal glands is often observed in DOCA/salt hypertensive rats. Sixty male Wistar rats fed on a 1% NaCl solution were divided into 6 groups as follows: a) Salt group: received sesame oil and vehicle, b) Salt + C group: received sesame oil and MK422 (0.14 mg/day), an angiotensin converting enzyme inhibitor (CEI), c) DOCA group: received DOCA (30 mg/week) and vehicle, d) DOCA + A group: received DOCA and AI (0.5 mg/kg/day), e) DOCA + A + C group: received DOCA and AI with MK422, and f) DOCA + C group: received DOCA and MK422. After 4 weeks, the rats were sacrificed to sample their blood and remove their adrenal glands. There was no significant difference in adrenal B among the groups apart from the DOCA + C group. Adrenal aldosterone was lower in the groups of DOCA/salt hypertensive rats than in the Salt group and Salt + C group. Furthermore, the DOCA + A + C group and DOCA + C group had lower adrenal aldosterone levels than the DOCA group and DOCA + A group.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Diabetes increases the risk of stroke and contributes to poor clinical outcomes in this patient population. Myogenic tone of the cerebral vasculature, including basilar arteries, plays a key role in controlling cerebral blood flow. Increased myogenic tone is ameliorated with ET receptor antagonism in Type 1 diabetes. However, the role of endothelin-1 (ET-1) and its receptors in cerebrovascular dysfunction in Type 2 diabetes, a common comorbidity in stroke patients, remains poorly elucidated. Therefore, we hypothesized that 1) cerebrovascular dysfunction occurs in the Goto-Kakizaki (GK) model of Type 2 diabetes, and 2) pharmacological antagonism of ETA receptors ameliorates, while ETB receptor blockade augments vascular dysfunction. GK or control rats were treated with antagonists to either ETA (atrasentan, 5 mg.kg(-1).day(-1)) or ETB (A-192621, 15 or 30 mg.kg(-1).day(-1)) receptors for 4 wk and vascular function of basilar arteries was assessed using a wire myograph. GK rats exhibited increased sensitivity to ET-1. ET(A) receptor antagonism caused a rightward shift, indicating decreased sensitivity in diabetes, while it increased sensitivity to ET-1 in control rats. Endothelium-dependent relaxation was impaired in diabetes. ETA receptor blockade restored relaxation to control values in the GK animals with no significant effect in Wistar rats and ETB blockade with 30 mg.kg(-1).day(-1) A-192621 caused paradoxical constriction in diabetes. These studies demonstrate that cerebrovascular dysfunction occurs and may contribute to altered regulation of myogenic tone and cerebral blood flow in diabetes. While ETA receptors mediate vascular dysfunction, ETB receptors display differential effects. These results underscore the importance of ETA/ETB receptor balance and interactions in cerebrovascular dysfunction in diabetes.  相似文献   

14.

Introduction

Faecal blood loss has been measured using autologous erythrocytes labelled with radioactive chromium for several decades, using generally similar methods. We conducted a systematic review of studies employing this technology to determine the degree of blood loss associated with use of aspirin, nonsteroidal anti-inflammatory drugs (NSAIDs) and cyclo-oxygenase-2 selective inhibitors (coxibs).

Methods

A systematic search of PubMed and the Cochrane Library (to December 2006) was conducted to identify randomized trials in which treatment with aspirin, NSAIDs, or coxibs was continued for at least 7 days, and with at least 7 days of washout for crossover trials. Rates of faecal blood loss associated with these agents were determined in the randomized trials identified. Comparators were placebo, active, or no treatment. Outcomes of interest were mean daily faecal blood loss, and the number or proportion of individuals recording faecal blood above 5 ml/day and above 10 ml/day.

Results

Forty-five reports of 47 trials were included, including 1,162 individuals, mostly healthy volunteers and predominantly young men. Only 136 patients (as opposed to healthy volunteers; 12%) were included, and these were mostly older people with an arthritic condition. Most NSAIDs and low-dose (325 mg) aspirin resulted in a small average increase in faecal blood loss of 1 to 2 ml/day from about 0.5 ml/day at baseline. Aspirin at full anti-inflammatory doses resulted in much higher average levels of blood loss of about 5 ml/day. Some individuals lost much more blood than average, at least for some of the time, with 5% of those taking NSAIDs having daily blood loss of 5 ml or more and 1% having daily blood loss of 10 ml or more; rates of daily blood loss of 5 ml/day or 10 ml/day were 31% and 10%, respectively, for aspirin at daily doses of 1,800 mg or greater.

Conclusion

At baseline, or with placebo, faecal blood loss is measured at 1 ml/day or below. With low-dose aspirin and some NSAIDs, average values may be two to four times this, and anti-inflammatory doses of aspirin result in much higher average losses. A small proportion of individuals respond to aspirin or NSAIDs with much higher faecal blood loss of above 5 ml/day or 10 ml/day. There are significant limitations regarding the quality and validity of reporting of these studies, such as limited size and inclusion of inappropriate participants. The potential for blood loss and consequent anaemia requires more study.  相似文献   

15.
We have previously shown that salt excess has adverse cardiac effects in spontaneously hypertensive rats (SHR), independent of its increased arterial pressure; however, the renal effects have not been reported. In the present study we evaluated the role of three levels of salt loading in SHR on renal function, systemic and renal hemodynamics, and glomerular dynamics. At 8 wk of age, rats were given a 4% (n = 11), 6% (n = 9), or 8% (n = 11) salt-load diet for the ensuing 8 wk; control rats (n = 11) received standard chow (0.6% NaCl). Rats had weekly 24-h proteinuria and albuminuria quantified. At the end of salt loading, all rats had systemic and renal hemodynamics measured; glomerular dynamics were specially studied by renal micropuncture in the control, 4% and 6% salt-loaded rats. Proteinuria and albuminuria progressively increased by the second week of salt loading in the 6% and 8% salt-loaded rats. Mean arterial pressure increased minimally, and glomerular filtration rate decreased in all salt-loaded rats. The 6% and 8% salt-loaded rats demonstrated decreased renal plasma flow and increased renal vascular resistance and serum creatinine concentration. Furthermore, 4% and 6% salt-loaded rats had diminished single-nephron plasma flow and increased afferent and efferent arteriolar resistances; glomerular hydrostatic pressure also increased in the 6% salt-loaded rats. In conclusion, dietary salt loading as low as 4% dramatically deteriorated renal function, renal hemodynamics, and glomerular dynamics in SHR independent of a minimal further increase in arterial pressure. These findings support the concept of a strong independent causal relationship between salt excess and cardiovascular and renal injury.  相似文献   

16.
We investigated the long-term effects of the thiazolidinedione PPARgamma activator pioglitazone on cardiac inflammation in stroke-prone spontaneously hypertensive rats (SHRSP), a model of malignant of hypertension. Six-week-old SHRSP were treated with pioglitazone (10 mg/kg per day p.o.) for 20 weeks. The rise in systolic blood pressure (SBP) in SHRSP was only transiently and slightly attenuated by pioglitazone (P < 0.05). On one hand, cardiac hypertrophy was little affected by the pioglitazone treatment, and there was only a reduction of subepicardial interstitial fibrosis. On the other hand, left ventricular NFkappaB and AP-1 binding activities, the expression of TNFalpha, and the adhesion of molecule PECAM were significantly decreased by pioglitazone treatment. Expression of the pro-apoptotic proteins p53 and bax was significantly increased by pioglitazone. Thus, pioglitazone-attenuated cardiac inflammation in SHRSP had little effect on BP or cardiac hypertrophy. PPARgamma activation may play a preventive cardiovascular role by offsetting the cardiac inflammatory response as demonstrated in this genetic model of malignant hypertension.  相似文献   

17.
We investigated the effects of salt loading on blood pressure, cardiac hypertrophy and fibrosis as well as on the effectiveness of various antihypertensive therapies in young spontaneously hypertensive rats (SHR). Twenty-five male SHR were salt-stimulated by drinking 1% NaCl from 3 to 6 months of age. Eighteen of them were treated for the last 2 weeks of salt loading with either the angiotensin-converting enzyme inhibitor captopril, the beta-adrenergic receptor blocker propranolol or the calcium-channel antagonist verapamil. Age-matched male Wistar-Kyoto (WKY) rats and SHR drinking only water served as controls. At the age of 6 months, SHR had significantly elevated blood pressure that was unchanged by salt loading. Relative heart weight was increased in SHR without (3.3) and even more so with salt intake (3.6 vs. 2.4 in WKY). Left ventricular (LV) hypertrophy was accompanied by a 17-fold increase in the expression of mRNA for atrial natriuretic factor (ANF) both in untreated and salt-loaded SHR compared to WKY (p<0.001). Collagen I and III mRNA increased 1.7-1.8-fold in SHR without and with additional salt intake (p<0.01). None of the therapies significantly reduced blood pressure or hypertrophy. Although captopril had no antihypertensive effect, it reduced ANF, collagen I and III mRNA in LV to control level. Less pronounced effects were achieved with verapamil. These findings emphasize the cardioprotective role of captopril which may not be fully expressed in the presence of elevated salt intake.  相似文献   

18.
We investigated the effects of exogenous application of jasmonic acid (JA) and nitric oxide (NO) on growth, antioxidant metabolism, physio-biochemical attributes and metabolite accumulation, in tomato (Solanum lycopersicum L.) plants exposed to salt stress. Treating the plants with NaCl (200 mM) resulted in considerable growth inhibition in terms of biomass, relative water content, and chlorophyll content, all of which were significantly improved upon application of JA and NO under both normal and NaCl-stress treatments. Salt treatment particularly 200 mM NaCl caused an apparent increase in electrolyte leakage, lipid peroxidation, and hydrogen peroxide production, which were reduced by exogenous application of JA and NO. Salt treatment triggered the induction of antioxidant system by enhancing the activities of antioxidant enzymes like superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), and glutathione reductase (GR). Application of JA and NO separately as well as in combination caused a significant improvement in activities of SOD, CAT, APX, and GR activities. JA and NO either applied individually or in combination boosted the flavonoid, proline and glycine betaine synthesis under NaCl treatments. In conclusion, the exogenous application of JA and NO protected tomato plants from NaCl-induced damage by up-regulating the antioxidant metabolism, osmolyte synthesis, and metabolite accumulation.  相似文献   

19.
《Life sciences》1993,53(18):PL303-PL307
Numerous studies have been reported examining the effects of antihypertensive treatment on peripheral vascular responsiveness in spontaneously hypertensive rats (SHR). This study was conducted to determine the effects of chronic treatment with 2 antihypertensive agents on cerebrovascular responsiveness in male SHR and Wistar-Kyoto (WKY) rats. SHR and WKY (3–4 weeks old) received either placebo, clonidine (CLON, 10 mg pellet) or verapamil (VER, 5 mg pellet). Vascular reactivity studies on the basilar artery, using standard smooth muscle bath techniques, were conducted following 6 weeks of treatment. Both CLON and VER significantly attenuated the rise in blood pressure in SHR. Basilar artery responsiveness to KCl, serotonin (5-HT), and calcium were significantly increased whereas responses to acetylcholine (ACH), isoproterenol (ISO) and sodium nitroprusside (SNP) were significantly reduced in SHR compared to WKY. CLON had no effect on basilar artery responsiveness to either the contractile or relaxation agents in SHR. However, although responses to KCl, 5-HT and calcium were not affected by VER in SHR, VER significantly increased the responses to ACH, ISO and SNP. Neither CLON nor VER treatment affected basilar artery responsiveness to any of the agents in WKY. These data demonstrate that, even though CLON and VER have similar antihypertensive effects, differential effects of the 2 agents on cerebrovascular responsiveness in the SHR are apparent. This would suggest that the vascular effects of VER and CLON are dependent upon the mechanism of action of the agents and not simply due to prevention of the elevation in blood pressure.  相似文献   

20.
We examined the effects of acute and chronic treatments with naloxone on release of vasopressin and oxytocin from the hypothalamoneurohypophyseal system (HNS) in conscious, chronically instrumented Long-Evans rats. Plasma concentrations of vasopressin-associated neurophysin and oxytocin-associated neurophysin were evaluated before and during an intravenous infusion of 18% saline at 100 microL.kg-1 body weight.min-1 for 60 min. Acute treatment with naloxone (2.75 mumol/kg, intravenous) did not measurably alter basal plasma osmolality or vasopressin-associated neurophysin concentration, but it caused a three-fold rise in basal plasma oxytocin-associated neurophysin concentration (16 +/- 2 to 46 +/- 3 fmol/mL, p less than 0.005). Chronic treatment with naloxone (13.75 mumol/day, subcutaneous pellets) increased plasma osmolality (292 +/- 1 to 300 +/- 2 mosmol/kg H2O, p less than 0.01) by day 5, but it had no measurable effects on basal vasopressin- or oxytocin-associated neurophysin concentration. There were also no significant differences in plasma sodium concentration (144.8 +/- 1.1 vs. 142.2 +/- 1.4 mequiv./L) under both conditions. Acute and chronic treatments with naloxone accompanied by salt loading produced a five- and four-fold decrease in the rates that plasma concentration of vasopressin-associated neurophysin changed with plasma osmolality, compared with untreated salt-loaded control rats. For oxytocin secretion from the HNS, both treatments accompanied by salt loading substantially decreased the threshold for changes in relation to plasma osmolality; the rise in plasma concentration of oxytocin-associated neurophysin was similar at all levels of hyperosmotic stimulation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号