首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Impaired cardiovascular function during acute myocardial infarction (MI) is partly associated with recruitment of activated polymorphonuclear neutrophils. The protective role of arjunolic acid (AA; 2,3,23-trihydroxy olean-12-en-28-oic acid) is studied in the modulation of neutrophil functions in vitro by measuring the reactive oxygen species (ROS) generation. Neutrophils were isolated from normal and acute MI mice to find out the efficacy of AA in reducing oxidative stress. Stimulation of neutrophils with phorbol-12-myristate-13-acetate (PMA) resulted in an oxidative burst of superoxide anion (O2) and enhanced release of lysosomal enzymes. The treatment of neutrophils with PMA induced phosphorylation of Ser345 on p47phox, a cytosolic component of NADPH oxidase. Furthermore, we observed activated ERK induced phosphorylation of Ser345 in MI neutrophils. Treatment with AA significantly inhibited the phosphorylation of P47phox and ERK in the stimulated controls and MI neutrophils. Oxidative phosphorylation activities in MI cells were lower than in control, while the glycolysis rates were elevated in MI cells compared to the control. In addition, we observed AA decreased intracellular oxidative stress and reduced the levels of O2 in neutrophils. This study therefore identifies targets for AA in activated neutrophils mediated by the MAPK pathway on p47phox involved in ROS generation.  相似文献   

2.
Polymorphonuclear granulocytes (neutrophils) release the reactive oxygen species (ROS) for destruction of pathogens, providing quicker of an organism from infections and own defective of transformed cells. Reactive oxygen species are also potential carcinogens because they facilitate mutagenesis, tumor promotion and progression. Balance between these opposite influences is supported by coordinated interrelations in intracellular signaling systems. Tumor growth influence on the NADPH oxidase in peripheral innate immune cells is unclear. A solid cancer model was developed after an intramuscular injection of Ehrlich carcinoma cells into hind leg of NMRI strain mice. Intensity of the respiratory burst was estimated by luminol-dependent chemiluminescence technique. Transformation of inflammatory reaction was revealed during tumor growth: greater amounts of neutrophils were recruited into peritoneal cavity; sizes of the cells, their nuclei and granules were enlarged; the ratio of different cell types in peritoneal exudation was changed. The study revealed that tumor progression was accompanied by significant changes in functional activity of neutrophils. Dynamic increase in spontaneous level of ROS production and concentration-dependent change of intensity of the respiratory burst induced with chemotactic peptide N-formyl-Met-Leu-Phe (fMLF) was revealed in peripheral neutrophils under tumor growth conditions. It was found that effects of inhibitors of tyrosine protein kinases, protein kinase C, mitogen-activated protein kinase p38MAPK (p38MAPK) and phosphatidylinositol 3-kinase (PI3K) were altered in neutrophils from tumor-bearing mice in comparison with the cells of control mice. This indicates a change in the role of the enzymes in regulation of the neutrophil respiratory burst. Data obtained show that p38MAPK and PI3K entangle up- and down-regulation of NADPH oxidase in peripheral neutrophils during tumor growth.  相似文献   

3.
Neutrophils play a key role at inflammatory sites where, in addition to destroying infecting microorganisms, they may also have deleterious effects on host tissues. Both activities involve activation of the NADPH-oxidase that produces bactericidal and tissue-destructive reactive oxygen species (ROS). We activated the murine NADPH-oxidase using different types of neutrophil activators and characterized the oxidative responses with respect to magnitude, localization, and kinetics. We show that agonist-induced activation of murine neutrophils results exclusively in extracellular release of ROS and no intracellular production could be detected. We also show that the formylated peptide, formyl-Met-Leu-Phe (fMLF), is a much less potent activator of the murine NADPH-oxidase than of the human analogue. Nevertheless, fMLF responses can be primed by pretreating the murine neutrophils with either cytochalasin B or bacterial lipopolysaccharide. Finally, we show that a synthetic hexapeptide, WKYMVM, is a more potent stimulus than fMLF for murine neutrophils and that these two agonists probably act via nonidentical high-affinity receptors.  相似文献   

4.
Hanses F  Park S  Rich J  Lee JC 《PloS one》2011,6(8):e23633
Diabetes is a frequent underlying medical condition among individuals with Staphylococcus aureus infections, and diabetic patients often suffer from chronic inflammation and prolonged infections. Neutrophils are the most abundant inflammatory cells during the early stages of bacterial diseases, and previous studies have reported deficiencies in neutrophil function in diabetic hosts. We challenged age-matched hyperglycemic and normoglycemic NOD mice intraperitoneally with S. aureus and evaluated the fate of neutrophils recruited to the peritoneal cavity. Neutrophils were more abundant in the peritoneal fluids of infected diabetic mice by 48 h after bacterial inoculation, and they showed prolonged viability ex vivo compared to neutrophils from infected nondiabetic mice. These differences correlated with reduced apoptosis of neutrophils from diabetic mice and were dependent upon the presence of S. aureus and a functional neutrophil respiratory burst. Decreased apoptosis correlated with impaired clearance of neutrophils by macrophages both in vitro and in vivo and prolonged production of proinflammatory tumor necrosis factor alpha by neutrophils from diabetic mice. Our results suggest that defects in neutrophil apoptosis may contribute to the chronic inflammation and the inability to clear staphylococcal infections observed in diabetic patients.  相似文献   

5.
《Luminescence》2003,18(5):278-282
Intensive exercise training decreases neutrophil functions in athletes. However, no studies to date have investigated the effect of irregular‐interval training, such as is associated with judo training programmes, on neutrophil functions. The purpose of this study was to examine such effects. Thirty‐seven male college judoists participated in this study. Neutrophil oxidative burst activity, phagocytic activity and expression of CD11b and CD16 per cell were measured by ?ow cytometry before and after judo training. Total neutrophil counts increased signi?cantly from 2.98 ± 0.82 to 7.95 ± 1.80 × 103/µL (p < 0.001). The proportion of neutrophils producing reactive oxygen species (ROS) was increased signi?cantly (p < 0.001). On the other hand, the phagocytic activity decreased after training, as shown by a decrease in the amount of ingested opsonized zymosan per cell (p < 0.001), possibly as a compensatory effect for the increased numbers of ROS‐producing neutrophils. Expression of CD11b and CD16 per cell decreased by 20% and 30%, respectively, after judo training. In conclusion, judo training induced a decrease in phagocytic activity through the lowered expression of CD11b and CD16 on the surface of neutrophils, and increased the oxidative burst activity of neutrophils. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

6.
The concept that T lymphocytes regulate neutrophil function has an important implication in the understanding of the role of these cells in immunity against infection and in inflammatory diseases, but evidence for this concept is primarily derived from the effects of lymphokines on neutrophils. We now present evidence to show that living or paraformaldehyde-fixed mitogen-activated T lymphocytes, as well as an activated T cell line (HUT-78), induce by cell-cell contact, an oxygen-dependent respiratory burst measured by both the lucigenin-dependent chemiluminescence assay and superoxide production. Neutrophils reacted with purified human T lymphocytes which had been activated by culture in the presence of PHA and PMA for 72 h showed a marked and significant respiratory burst compared with neutrophils treated with T lymphocytes cultured in the absence of these mitogens. Similar results were observed with the paraformaldehyde-fixed T cell line (HUT-78). The ability to stimulate neutrophils required intact paraformaldehyde-fixed T cells, and neutrophil stimulation failed to occur if the T cells and neutrophils were separated by membrane filters. mAb to TNF-alpha, and TNF-beta blocked the ability of rTNF-alpha and TNF-beta to stimulate neutrophils but did not block the neutrophil response induced by activated T cells. Pretreatment of neutrophils with the activated T lymphocytes enhanced the response to the tripeptide, FMLP. It is therefore conceivable that activated T lymphocytes attracted at sites of inflammation influence neutrophil activity by direct plasma membrane interaction which clearly represents an efficient microbial defence mechanism, minimizing tissue damage during inflammation.  相似文献   

7.
The acute phase protein serum amyloid A primes neutrophils   总被引:1,自引:0,他引:1  
We studied here the effect of the acute phase protein serum amyloid A (SAA) on the oxidative burst of neutrophils. Incubation of neutrophils with SAA increased the rate of oxygen uptake and the production of reactive oxygen species of neutrophils activated with opsonized zymosan (OZ). The increment in the neutrophil oxidative burst was dependent on SAA concentration in the range of 3-33 microg protein ml(-1) and was observed only in the presence of a relatively low amount of OZ (1 x 10(6) particles ml(-1)). SAA did not affect oxygen consumption and reactive oxygen production triggered by other stimuli, such as f-Met-Leu-Phe, phorbol myristate acetate or non-opsonized zymosan. Our finding points to a priming effect of SAA probably associated with mobilization of receptors for opsonized particles and strengthens the role of SAA as an effector of neutrophil functions in inflammation.  相似文献   

8.
Neutrophils recruited to different tissues undergo respiratory burst activity at widely different PO2 levels. The present study investigated the in vitro effects of PO2 on neutrophil oxidative metabolism. When neutrophils were stimulated with either zymosan or phorbol myristate acetate (PMA) under different PO2's (0-700 Torr), hexose monophosphate shunt activity, H2O2, and hydroxyl radical (OH.) production were directly related to the level of PO2. Neutrophils functioned surprisingly well at PO2's as low as 10 Torr, where metabolic burst activity was prolonged and usually exceeded 50% of maximal values. The production of neutrophil stable oxidants and hypochlorous acid (HOCl) by zymosan-stimulated neutrophils was also directly related to PO2. In contrast, the production of stable oxidants and HOCl by PMA-stimulated neutrophils was significantly higher at 10 Torr compared with 700 Torr. The decrease in stable oxidant production by PMA-stimulated neutrophils at elevated PO2's was explained by both increased destruction of stable oxidant products and by decreased availability of the precursor HOCl. Superoxide dismutase and the OH. scavenger benzoate partially prevented the fall in stable oxidants at elevated PO2's. Measurements of stable oxidants in PMA-stimulated supernates generated at 10 and 700 Torr correlated with the ability of these supernates to decrease the elastase inhibitory capacity of the serum antiprotease alpha 1-antitrypsin. These findings suggest that different PO2's alter the magnitude and pattern of neutrophil oxidative metabolism.  相似文献   

9.
Viper envenomation results in inflammation at the bitten site as well as target organs. Neutrophils and other polymorphonuclear leukocytes execute inflammation resolving mechanism and will undergo apoptosis after completing the task. However, the target specific toxins induce neutrophil apoptosis at the bitten site and in circulation prior to their function, thus reducing their number. Circulating activated neutrophils are major source of inflammatory cytokines and leakage of reactive oxygen species (ROS)/other toxic intermediates resulting in aggravation of inflammatory response at the bitten/target site. Therefore, neutralization of venom induced neutrophil apoptosis reduces inflammation besides increasing the functional neutrophil population. Therefore, the present study investigates the venom induced perturbances in isolated human neutrophils and its neutralization by crocin (Crocus sativus) a potent antioxidant carotenoid. Human neutrophils on treatment with venom resulted in altered ROS generation, intracellular Ca2+ mobilization, mitochondrial membrane depolarization, cyt-c translocation, caspase activation, phosphatidylserine externalization and DNA damage. On the other hand significant protection against oxidative stress and apoptosis were evidenced in crocin pre-treated groups. In conclusion the viper venom induces neutrophil apoptosis and results in aggravation of inflammation and tissue damage. The present study demands the necessity of an auxiliary therapy in addition to antivenin therapy to treat secondary/overlooked complications of envenomation.  相似文献   

10.
An in vitro model system was used to define the mechanism of interaction between human neutrophils and lymphocytes. Blood mononuclear leukocytes were exposed to purified neutrophils in the presence of a neutrophil-activating agent (phorbol ester, lectin, or opsonized particle). The treated mononuclear cells displayed a marked decrease in both natural killer activity and mitogen-dependent DNA synthesis, but no change in viability. This functional suppression was dependent on neutrophil number, stimulus concentration, and duration of exposure. Lymphocytes were protected by addition of catalase, but not superoxide dismutase. Neutrophils defective in oxidative metabolism (chronic granulomatous disease) failed to suppress lymphocyte function unless an H2O2-generating system, glucose oxidase plus glucose, was added. The patients' neutrophils provided a factor, possibly myeloperoxidase, which interacted with the glucose oxidase system. The immunosuppressive effect of normal neutrophils was diminished when chloride was omitted from the cultures and was enhanced when chloride was replaced by iodide. Myeloperoxidase-deficient neutrophils were partially defective in suppressing lymphocytes and this was corrected by addition of purified myeloperoxidase. Paradoxically, azide caused enhancement of suppression that depended on the neutrophil oxidative burst, but not on myeloperoxidase and was mediated at least in part by an effect of azide on the target mononuclear leukocytes. These data indicate that suppression of lymphocyte function by activated neutrophils is mediated by the secretion of myeloperoxidase and H2O2 that react with halides to form immunosuppressive products. Moreover, the mononuclear leukocytes contain an azide-sensitive factor, probably catalase, which provides partial protection against injury by neutrophil products. These dynamic interactions may be important local determinants of the immune response.  相似文献   

11.
Infiltration of neutrophils and monocytes into the gastric mucosa is a hallmark of chronic gastritis caused by Helicobacter pylori. Certain H. pylori strains nonopsonized stimulate neutrophils to production of reactive oxygen species causing oxidative damage of the gastric epithelium. Here, the contribution of some H. pylori virulence factors, the blood group antigen-binding adhesin BabA, the sialic acid-binding adhesin SabA, the neutrophil-activating protein HP-NAP, and the vacuolating cytotoxin VacA, to the activation of human neutrophils in terms of adherence, phagocytosis, and oxidative burst was investigated. Neutrophils were challenged with wild type bacteria and isogenic mutants lacking BabA, SabA, HP-NAP, or VacA. Mutant and wild type strains lacking SabA had no neutrophil-activating capacity, demonstrating that binding of H. pylori to sialylated neutrophil receptors plays a pivotal initial role in the adherence and phagocytosis of the bacteria and the induction of the oxidative burst. The link between receptor binding and oxidative burst involves a G-protein-linked signaling pathway and downstream activation of phosphatidylinositol 3-kinase as shown by experiments using signal transduction inhibitors. Collectively our data suggest that the sialic acid-binding SabA adhesin is a prerequisite for the nonopsonic activation of human neutrophils and, thus, is a virulence factor important for the pathogenesis of H. pylori infection.  相似文献   

12.
Phenols isolated from the traditional medicinal plant Picrorhiza kurroa inhibit the release of superoxide anion (O2-) by activated human neutrophils, but leave the phagocytotic capacity intact. Resting neutrophils and resting or activated human lymphocytes are insensitive to these agents. The underlying mechanism of this highly selective activity is investigated. A critical event is the reaction of the phenols with secretory products from the activated neutrophils. The reaction products interfere with the assembly of a functional NADPH-oxidase in the membrane. Analysis of the mode of activation of the phenols reveals two possible pathways. Catechols react directly with reactive oxygen species (ROS) from the oxidative burst. For the activation of the orthomethoxy-substituted catechols the combined activity of ROS and myeloperoxidase (MPO) is obligatory. Catechols with a dimethoxy substitution cannot be activated metabolically by neutrophil-derived ROS.  相似文献   

13.
The effect of Isorhapontigenin (Iso) isolated from Belamcanda chinensis on respiratory burst of rat neutrophils was investigated. Iso (1, 10, 100 mmol/l) showed an inhibitory effect on superoxide anion and hydrogen peroxide production in phorbol myristate acetate (PMA) activated rat neutrophils in a concentration-dependent manner. Scanning electron microscopy detected that Iso (100 mmol/l) protected against surface changes in rat neutrophils stimulated with PMA. Also, 100 mmol/l Iso inhibited the release of beta-glucuronidase from the activated neutrophils. Electron-spin resonance (ESR) detected that Iso scavenged oxygen free radicals generated in the PMA activated Neutrophils. These results suggest that Iso inhibits respiratory burst of PMA-activated rat neutrophils by scavenging oxygen free radicals.  相似文献   

14.
The activation of neutrophil granulocytes has to be carefully controlled to balance desired activity against invading pathogens while avoiding overwhelming activation leading to host tissue damage. We now show that phospholipids are potential key players in this process by either enhancing or dampening the production of reactive oxygen species (ROS) during the oxidative burst. Unoxidized phospholipids induce the production of ROS, and they also work synergistically with FMLP in potentiating the oxidative burst in neutrophil granulocytes. Oxidation of these phospholipids, however, turns them into potent inhibitors of the oxidative burst. OxPls specifically inhibit ROS production by inhibiting the assembly of the phagocyte oxidase complex but do not alter neutrophil viability, nor do they interfere with MAPK activation. Furthermore, up-regulation of the activation marker Mac-1 and phagocytosis of bacteria is not affected. Therefore, phospholipids may act as sensors of oxidative stress in tissues and either positively or negatively regulate neutrophil ROS production according to their oxidation state.  相似文献   

15.
Harnessing neutrophils for the eradication of cancer cells remains an attractive but still controversial notion. In this study, we provide evidence that neutrophils are required to prevent relapse of skin tumors following topical treatment with a new anticancer agent, ingenol-3-angelate (PEP005). Topical PEP005 treatment induces primary necrosis of tumor cells, potently activates protein kinase C, and was associated with an acute T cell-independent inflammatory response characterized by a pronounced neutrophil infiltrate. In Foxn1(nu) mice depleted of neutrophils and in CD18-deficient mice (in which neutrophil extravasation is severely impaired) PEP005 treatment was associated with a >70% increase in tumor relapse rates. NK cell or monocyte/macrophage deficiency had no effect on relapse rates. Both in vitro and in mice, PEP005 induced MIP-2/IL-8, TNF-alpha, and IL-1beta, all mediators of neutrophil recruitment and activation. In vitro, PEP005 activated human endothelial cells resulting in neutrophil adhesion and also induced human neutrophils to generate tumoricidal-reactive oxygen intermediates. Treatment of tumors with PEP005 significantly elevated the level of anticancer Abs, which were able to promote neutrophil-mediated Ab-dependent cellular cytotoxicity (ADCC) in vitro. PEP005 treatment of tumors grown in SCID mice was also associated with >70% increase in tumor relapse rates. Taken together, these data suggest a central role for neutrophil-mediated ADCC in preventing relapse. PEP005-mediated cure of tumors therefore appears to involve initial chemoablation followed by a neutrophil-dependent ADCC-mediated eradication of residual disease, illustrating that neutrophils can be induced to mediate important anticancer activity with specific chemotherapeutic agents.  相似文献   

16.
Phagocytosis of complement-opsonized targets is a primary function of neutrophils at sites of inflammation, and the clearance of neutrophils that have phagocytosed microbes is important for the resolution of inflammation. Our previous work suggests that phagocytosis leads to rapid neutrophil apoptosis that is inhibited by antibody to the beta2 integrin, Mac-1, and requires NADPH oxidase-derived reactive oxygen species (ROS) generated during phagocytosis. Here we report that phagocytosis-induced cell death (PICD) does not occur in Mac-1-deficient murine neutrophils, suggesting that PICD proceeds through a bona fide Mac-1-dependent pathway. A sustained, intracellular oxidative burst is associated with PICD. Furthermore, PICD does not require traditional death receptors, Fas, or tumor necrosis factor (TNF) receptor. TNF but not Fas synergizes with phagocytosis to enhance significantly PICD by increasing the oxidative burst, and this is Mac-1-dependent. Phagocytosis-induced ROS promote cleavage/activation of caspases 8 and 3, key players in most extrinsic ("death receptor") mediated pathways of apoptosis, and caspases 8 and 3 but not caspase 9/mitochondria, are required for PICD. This suggests that ROS target the extrinsic versus the intrinsic ("stress stimulus") apoptotic pathway. Phagocytosis also triggers a competing MAPK/ERK-dependent survival pathway that provides resistance to PICD likely by down-regulating caspase 8 activation. The anti-apoptotic factor granulocyte-macrophage colony-stimulating factor (GM-CSF) significantly enhances ROS generation associated with phagocytosis. Despite this, it completely suppresses PICD by sustaining ERK activation and inhibiting caspase 8 activation in phagocytosing neutrophils. Together, these studies suggest that Mac-1-mediated phagocytosis promotes apoptosis through a caspase 8/3-dependent pathway that is modulated by NADPH oxidase-generated ROS and MAPK/ERK. Moreover, TNF and GM-CSF, likely encountered by phagocytosing neutrophils at inflammatory sites, exploit pro-(ROS) and anti-apoptotic (ERK) signals triggered by phagocytosis to promote or suppress PICD, respectively, and thus modulate the fate of phagocytosing neutrophils.  相似文献   

17.
Neutrophils are first responders in infection and inflammation. They are able to roll, adhere and transmigrate through the endothelium to reach the site of infection, where they fight pathogens through secretion of granule contents, production of reactive oxygen species, extrusion of neutrophil extracellular traps, and phagocytosis. In this study we explored the role of the non-receptor focal adhesion kinase Pyk2 in neutrophil adhesion and activation. Using a specific Pyk2 pharmacological inhibitor, PF-4594755, as well as Pyk2-deficient murine neutrophils, we found that Pyk2 is activated upon integrin αMβ2-mediated neutrophil adhesion to fibrinogen. This process is triggered by Src family kinases-mediated phosphorylation and supported by Pyk2 autophosphorylation on Y402. In neutrophil adherent to fibrinogen, Pyk2 activates PI3K-dependent pathways promoting the phosphorylation of Akt and of its downstream effector GSK3. Pyk2 also dynamically regulates MAP kinases in fibrinogen-adherent neutrophils, as it stimulates p38MAPK but negatively regulates ERK1/2. Pharmacological inhibition of Pyk2 significantly prevented adhesion of human neutrophils to fibrinogen, and neutrophils from Pyk2-knockout mice showed a reduced ability to adhere compared to wildtype cells. Accordingly, neutrophil adhesion to fibrinogen was reduced upon inhibition of p38MAPK but potentiated by ERK1/2 inhibition. Neutrophil adherent to fibrinogen, but not to polylysine, were able to produce ROS upon lipopolysaccharide challenge and ROS production was completely suppressed upon inhibition of Pyk2. By contrast PMA-induced ROS production by neutrophil adherent to either fibrinogen or polylysine was independent from Pyk2. Altogether these results demonstrate that Pyk2 is an important effector in the coordinated puzzle regulating neutrophil adhesion and activation.  相似文献   

18.
The neutrophil oxidative burst reaction differentiates ALR/Lt mice, known for an unusual systemic elevation of antioxidant defenses, from ALS/Lt mice, a related strain known for reduced ability to withstand oxidative stress. Neutrophils from marrow of ALS mice produced a normal neutrophil oxidative burst following phorbol ester stimulation. In contrast, ALR mice exhibited a markedly suppressed superoxide burst. F1 progeny from reciprocal outcrosses between ALR and ALS mice exhibited an intermediate burst level, higher than ALR but significantly lower than ALS. To elucidate the genetic basis for this strain difference, F1 mice were backcrossed to ALS mice, and marrow neutrophils isolated from the progeny were phenotyped for oxidative burst capacity. A genome-wide sweep using polymorphic markers distinguishing the two parental strains was performed to map the trait. A 1:1 phenotypic distribution was observed, and a locus (Suppressor of superoxide production, Susp) controlling this phenotype was mapped to Chromosome 3 near D3Mit241 at 33.1 cM. This locus probably represents an important regulatory element in the overall ALR strain resistance to oxidative stress, since diminished ability to mount a neutrophil burst in backcross segregants correlated with elevated hepatic superoxide dismutase 1 (SOD1) activity, an ALR strain characteristic.  相似文献   

19.
Effective functioning of neutrophils relies upon electron translocation through the NADPH oxidase (NOX). The electron current generated (Ie) by the neutrophil NADPH oxidase is electrogenic and rapidly depolarises the membrane potential in activated human neutrophils. Swelling activated chloride channels have been demonstrated in part to counteract the depolarisation generated by the NADPH oxidase Ie. In the present study, the effects of inhibitors of swell activated chloride channels on ROS production and on the swelling activated chloride conductance was investigated in activated human neutrophils. Tamoxifen (10 μM), a specific inhibitor for swell activated chloride channels in neutrophils, completely inhibited both the PMA and FMLP stimulated respiratory burst. This inhibition of the neutrophil respiratory burst was not due to the blocking effect of tamoxifen on the swelling activated chloride conductance in these cells. These results demonstrate that a tamoxifen insensitive swell activated chloride channel has important significance during the neutrophil respiratory burst.  相似文献   

20.
Comparative investigation of the susceptibility of intact and primed neutrophils of the NMRI strain mice to low intensity millimeter wave (mm wave) irradiation (41.95 GHz) was performed. The specific absorption rate was 0.45 W/kg. Isolated neutrophils were primed by a chemotactic peptide N-formyl-methionyl-leucyl-phenylalanine (fMLP) at a subthreshold concentration of 10 nM for 20 min, and then the cells were activated by 1 microM fMLP. Production of the reactive oxygen species (ROS) was estimated by the luminol dependent chemiluminescence technique. It was found that the preliminary mm wave irradiation of the resting cells at 20 degrees C did not act on the ROS production induced by the chemotactic peptide. The exposure of the primed cells results in a subsequent increase in the fMLP response. Therefore, the primed neutrophils are susceptible to the mm waves. Specific inhibitors of the protein kinases abolished the mm wave effect on the primed cells. The data indicate that protein kinases actively participate in transduction of the mm wave signal to effector molecules involved in neutrophil respiratory burst.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号