首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Intracarotid cold saline infusion (ICSI) is potentially much faster than whole-body cooling and more effective than cooling caps in inducing therapeutic brain cooling. One drawback of ICSI is hemodilution and volume loading. We hypothesized that cooling caps could enhance brain cooling with ICSI and minimize hemodilution and volume loading. Six-hour-long simulations were performed in a 3D mathematical brain model. The Pennes bioheat equation was used to propagate brain temperature. Convective heat transfer through jugular venous return and the circle of Willis was simulated. Hemodilution and volume loading were modeled using a two-compartment saline infusion model. A feedback method of local brain temperature control was developed where ICSI flow rate was varied based on the rate of temperature change and the deviation of temperature to a target (32 °C) within a voxel in the treated region of brain. The simulations confirmed the inability of cooling caps alone to induce hypothermia. In the ICSI and the combination models (ICSI and cap), the control algorithm guided ICSI to quickly achieve and maintain the target temperature. The combination model had lower ICSI flow rates than the ICSI model resulting in a 55% reduction of infusion volume over a 6 h period and higher hematocrit values compared to the ICSI model. Moreover, in the combination model, the ICSI flow rate decreased to zero after 4 h, and hypothermia was subsequently maintained solely by the cooling cap. This is the first study supporting a role of cooling caps in therapeutic hypothermia in adults.  相似文献   

2.
A three-dimensional mathematical model was developed to examine the induction of selective brain cooling (SBC) in the human brain by intracarotid cold (2.8 degrees C) saline infusion (ICSI) at 30 ml/min. The Pennes bioheat equation was used to propagate brain temperature. The effect of cooled jugular venous return was investigated, along with the effect of the circle of Willis (CoW) on the intracerebral temperature distribution. The complete CoW, missing A1 variant (mA1), and fetal P1 variant (fP1) were simulated. ICSI induced moderate hypothermia (defined as 32-34 degrees C) in the internal carotid artery (ICA) territory within 5 min. Incorporation of the complete CoW resulted in a similar level of hypothermia in the ICA territory. In addition, the anterior communicating artery and ipsilateral posterior communicating artery distributed cool blood to the contralateral anterior and ipsilateral posterior territories, respectively, imparting mild hypothermia (35 and 35.5 degrees C respectively). The mA1 and fP1 variants allowed for sufficient cooling of the middle cerebral territory (30-32 degrees C). The simulations suggest that ICSI is feasible and may be the fastest method of inducing hypothermia. Moreover, the effect of convective heat transfer via the complete CoW and its variants underlies the important role of CoW anatomy in intracerebral temperature distributions during SBC.  相似文献   

3.
An experiment using a multisensor SQUID (superconducting quantum interference device) array was performed by Kelso and colleagues (1992) which combined information from three different sources: perception, motor response, and brain signals. When an acoustic stimulus frequency is changed systematically, a spontaneous transition in coordination occurs at a critical frequency in both motor behavior and brain signals. Qualitatively analogous transitions are known for physical and biological systems such as changes in the coordination of human hand movements (Kelso 1981, 1984). In this paper we develop a theoretical model based on methods from the interdisciplinary field of synergetics (Haken 1983, 1987) and nonlinear oscillator theory that reproduces the main experimental features very well and suggests a formulation of a fundamental biophysical coupling. Received: 8 September 1993  相似文献   

4.
A two-dimensionalmathematical model was developed to estimate the contributions ofdifferent mechanisms of brain cooling during cold-water near-drowning.Mechanisms include 1) conductive heat loss through tissue to the water at the head surface and in theupper airway and 2) circulatorycooling to aspirated water via the lung and via venous return from thescalp. The model accounts for changes in boundary conditions, bloodcirculation, respiratory ventilation of water, and head size. Resultsindicate that conductive heat loss through the skull surface or theupper airways is minimal, although a small child-sized head willconductively cool faster than a large adult-sized head. However,ventilation of cold water may provide substantial brain cooling throughcirculatory cooling. Although it seems that water breathing is requiredfor rapid "whole" brain cooling, it is possible that conductivecooling may provide some advantage by cooling the brain cortexperipherally and the brain stem centrally via the upper airway.

  相似文献   

5.
We used implanted miniature data loggers and fine thermistors to measure arterial blood and brain temperatures in four female pigs, to a resolution of 0.04 °C, every 5 min, for 4 weeks. Within that period, pigs were exposed on different days, and in random order, to a cold (5 °C) or hot (38 °C) environment. In the thermoneutral environment of the pigs' home pens, brain temperature was usually lower than blood temperature. Such selective brain cooling was absent for 2 days after surgery, during handling and transport stress, and on waking. The magnitude of selective brain cooling was greatest when pigs were sleeping and body temperatures were low, and was smallest, or even absent, during hyperthermia and natural fever. Our results showed that selective brain cooling was present in pigs, but there was no clear relationship between blood temperature and the magnitude of selective brain cooling. Instead, the degree of selective brain cooling in pigs was governed by non-thermal factors, especially those associated with high sympathetic nervous system activity. Our results further support the concept that selective brain cooling does not serve to protect the brain from thermal damage during heat stress. Accepted: 14 September 1999  相似文献   

6.
In 9 rabbits the effect of intravenous administration of E. coli pyrogen 0.5 microgram/kg on the reaction of selective brain cooling was studied at ambient temperatures of 20, 30 and 40 degrees C. In the freely moving animals the temperatures of the brain, carotid artery and nuchal muscles were measured with an accuracy down to 0.05 degree C and the temperatures of the ear pinna and nasal mucosa were measured accurate to 0.5 degree C. The respiratory rate was measured as well. It was found that the spontaneous febrile reaction without the component of passive hyperthermia failed to cause selective brain cooling, even if its temperature reached higher values than in case of brain temperature rise caused only by high ambient temperature. On the other hand, when the high ambient temperature caused thermal panting, pyrogen administration at an ambient temperature of 30 degrees C could reduce panting, while at an ambient temperature of 40 degrees C intense panting initiated prior to the appearance of the febrile reaction and was associated with the fever and outlasted it.  相似文献   

7.
Adaptive heterothermy and selective brain cooling are regarded as important thermal adaptations of large arid-zone mammals. Adaptive heterothermy, a process which reduces evaporation by storing body heat, ought to be enhanced by ambient heat load and by water deficit, but most mammals studied fail to show at least one of those attributes. Selective brain cooling, the reduction of brain temperature below arterial blood temperature, is most evident in artiodactyls, which possess a carotid rete, and traditionally has been considered to protect the brain during hyperthermia. The development of miniature ambulatory data loggers for recording body temperature allows the temperatures of free-living wild mammals to be measured in their natural habitats. All the African ungulates studied so far, in their natural habitats, do not exhibit adaptive heterothermy. They have low-amplitude nychthemeral rhythms of temperature, with mean body temperature over the night exceeding that over the day. Those with carotid retes (black wildebeest, springbok, eland) employ selective brain cooling but zebra, without a rete, do not. None of the rete ungulates, however, seems to employ selective brain cooling to prevent the brain overheating during exertional hyperthermia. Rather, they use it at rest, under moderate heat load, we believe in order to switch body heat loss from evaporative to non-evaporative routes.  相似文献   

8.
9.
To test whether baboons are capable of implementing selective brain cooling, we measured, every 5 min, the temperature in their hypothalamus, carotid arterial bloodstream, and abdominal cavity. The baboons were unrestrained and exposed to 22 degrees C for 7 days and then to a cyclic environment with 15 degrees C at night and 35 degrees C during the day for a further 7 days. During the latter 7 days some of the baboons also were exposed to radiant heat during the day. For three days, during heat exposure, water was withheld. At no time was the hypothalamus cooler than carotid arterial blood, despite brain temperatures above 40 degrees C. With little variation, the hypothalamus was consistently 0.5 degrees C warmer than arterial blood. At high body temperatures, the hypothalamus was sometimes cooler than the abdomen. Abdominal temperature was more variable than arterial blood and tended to exceed arterial blood temperature at higher body temperatures. Hypothalamic temperature cooler than a warm abdomen is not evidence for selective brain cooling. In species that can implement selective brain cooling, the brain is most likely to be cooler than carotid arterial blood when an animal is hyperthermic, during heat exposure, and also dehydrated and undisturbed by human presence. When we exposed baboons to high ambient temperatures while they were water deprived and undisturbed, they never implemented selective brain cooling. We conclude that baboons cannot implement selective brain cooling and can find no convincing evidence that any primate species can do so.  相似文献   

10.
A theoretical model of phase transitions in human hand movements   总被引:26,自引:0,他引:26  
Haken  H.  Kelso  J. A. S.  Bunz  H. 《Biological cybernetics》1985,51(5):347-356
Earlier experimental studies by one of us (Kelso, 1981a, 1984) have shown that abrupt phase transitions occur in human hand movements under the influence of scalar changes in cycling frequency. Beyond a critical frequency the originally prepared out-of-phase, antisymmetric mode is replaced by a symmetrical, in-phase mode involving simultaneous activation of homologous muscle groups. Qualitavely, these phase transitions are analogous to gait shifts in animal locomotion as well as phenomena common to other physical and biological systems in which new modes or spatiotemporal patterns arise when the system is parametrically scaled beyond its equilibrium state (Haken, 1983). In this paper a theoretical model, using concepts central to the interdisciplinary field of synergetics and nonlinear oscillator theory, is developed, which reproduces (among other features) the dramatic change in coordinative pattern observed between the hands.  相似文献   

11.
Whole body hypothermia can be used to treat the injured brain (e.g. after hypoxic events). Side effects include hemodynamic instability, coagulopathy and infection. Because of these side effects it appears reasonable to cool the brain selectively (selective brain cooling, SBC) without changing the core temperature. A new animal model was used to demonstrate SBC from the pharynx and to examine effects of SBC on the duration of pharmacologically induced seizure activity. Sprague-Dawley rats (n=18, 12 successful experiments) were sedated and mechanically ventilated. Invasive blood pressure monitoring was instituted and blood gases were drawn to evaluate the arterial blood gas status. Electrical brain activity was recorded using a microneedle in the extracellular compartment of the rat brain cortex. Cooled water was circulated through a small tubing into and out of the pharynx of the animals. The cortical as well as the rectal temperature were recorded. After the injection of a single dose of bicuculline (1 mg/kg i.v.) per animal the duration of the induced seizure activity was measured and compared with the temperature prior to the induction of seizure activity. The cortical blood flow (CBF) was detected using intra tissue Doppler signals in the rat cortex in the same location as the EP-study. The influence of a brain temperature reduction between 36.5 degrees to 31.5 degrees C on the seizure duration was examined. There was a positive correlation between the seizure duration and the cortical temperature (r=0.64). Also the CBF was increased during seizure activity (p=0.02) and the increase correlated weakly with cortical temperature (r=0.18). The core temperature remained in the normothermic range (36.9+/-0.7 degrees C) Conclusion: The duration of induced seizures correlates with local brain temperature. In the future further studies should examine the efficiency of induced (selective) brain cooling to treat prolonged seizure activity.  相似文献   

12.
13.
By cooling the hypothalamus during hyperthermia, selective brain cooling reduces the drive on evaporative heat loss effectors, in so doing saving body water. To investigate whether selective brain cooling was increased in dehydrated sheep, we measured brain and carotid arterial blood temperatures at 5-min intervals in nine female Dorper sheep (41 +/- 3 kg, means +/- SD). The animals, housed in a climatic chamber at 23 degrees C, were exposed for nine days to a cyclic protocol with daytime heat (40 degrees C for 6 h). Drinking water was removed on the 3rd day and returned 5 days later. After 4 days of water deprivation, sheep had lost 16 +/- 4% of body mass, and plasma osmolality had increased from 290 +/- 8 to 323 +/- 9 mmol/kg (P < 0.0001). Although carotid blood temperature increased during heat exposure to similar levels during euhydration and dehydration, selective brain cooling was significantly greater in dehydration (0.38 +/- 0.18 degrees C) than in euhydration (-0.05 +/- 0.14 degrees C, P = 0.0008). The threshold temperature for selective brain cooling was not significantly different during euhydration (39.27 degrees C) and dehydration (39.14 degrees C, P = 0.62). However, the mean slope of lines of regression of brain temperature on carotid blood temperature above the threshold was significantly lower in dehydrated animals (0.40 +/- 0.31) than in euhydrated animals (0.87 +/- 0.11, P = 0.003). Return of drinking water at 39 degrees C led to rapid cessation of selective brain cooling, and brain temperature exceeded carotid blood temperature throughout heat exposure on the following day. We conclude that for any given carotid blood temperature, dehydrated sheep exposed to heat exhibit selective brain cooling up to threefold greater than that when euhydrated.  相似文献   

14.
We have studied the cardiorespiratory effects of the rapid infusion (100 ml/min) of 2 liters of saline in four normal seated subjects. Cardiac output and pulmonary arterial pressure increased, while vital capacity (VC) and total lung capacity (TLC) decreased. There was an increase in closing volume (CV) without any detectable change in lung compliance or flow-volume characteristics. There was an increase in Pao2 during infusion period which can be related to better matching of ventilation to perfusion and to improved hemoglobin transport. In the recovery stage as cardiac output, pulmonary arterial pressure, TLC, and VC all returned toward control values CV remained high. In two subjects CV occurred within the normal tidal range of ventilation and in these two subjects Pao2 fell significantly below values obtained in the control period. The results suggest that rapid saline infusion in man can cause interstitial edema and lead to premature airway closure and hypoxemia.  相似文献   

15.
16.
17.
The development of controllable and reproducible animal models of intracerebral hemorrhage (ICH) is essential for the systematic study of the pathophysiology and treatment of hemorrhagic stroke. In recent years, we have used a modified version of a murine ICH model to inject blood into mouse basal ganglia. According to our protocol, autologous blood is stereotactically infused in two stages into the right striatum to mimic the natural events of hemorrhagic stroke. Following ICH induction, animals demonstrate reproducible hematomas, brain edema formation and marked neurological deficits. Our technique has proven to be a reliable and reproducible means of creating ICH in mice in a number of acute and chronic studies. We believe that our model will serve as an ideal paradigm for investigating the complex pathophysiology of hemorrhagic stroke. The protocol for establishing this model takes about 2 h.  相似文献   

18.
After administration of enriched [1-13C]glucose, the rate of 13C label incorporation into glutamate C4, C3, and C2, glutamine C4, C3, and C2, and aspartate C2 and C3 was simultaneously measured in six normal subjects by 13C NMR at 4 Tesla in 45-ml volumes encompassing the visual cortex. The resulting eight time courses were simultaneously fitted to a mathematical model. The rate of (neuronal) tricarboxylic acid cycle flux (V(PDH)), 0.57 +/- 0.06 micromol. g(-1). min(-1), was comparable to the exchange rate between (mitochondrial) 2-oxoglutarate and (cytosolic) glutamate (Vx), 0.57 +/- 0.19 micromol. g(-1). min(-1)), which may reflect to a large extent malate-aspartate shuttle activity. At rest, oxidative glucose consumption [CMR(Glc(ox))] was 0.41 +/- 0.03 miccromol. g(-1). min(-1), and (glial) pyruvate carboxylation (VPC) was 0.09 +/- 0.02 micromol. g(-1). min(-1). The flux through glutamine synthetase (Vsyn) was 0.26 +/- 0.06 micromol. g(-1). min(-1). A fraction of Vsyn was attributed to be from (neuronal) glutamate, and the corresponding rate of apparent glutamatergic neurotransmission (VNT) was 0.17 +/- 0.05 micromol. g(-1). min(-1). The ratio [VNT/CMR(Glcox)] was 0.41 +/- 0.14 and thus clearly different from a 1:1 stoichiometry, consistent with a significant fraction (approximately 90%) of ATP generated in astrocytes being oxidative. The study underlines the importance of assumptions made in modeling 13C labeling data in brain.  相似文献   

19.
20.
This study is the first report on human intracranial temperature in conscious patients during and after an upper respiratory bypass. Temperatures were measured in four subjects subdurally between the frontal lobes and cribriform plate (T(cr)) and on the vault of the skull (T(sd)). Further measurements were taken in the esophagus (T(es)) and on the tympanic membrane. Reinstitution of airflow in the upper respiratory tract under conditions of mild hyperthermia gave a rapid drop in T(cr) of 0.4-0.8 degrees C. In three patients the intracranial temperature at the basal aspect of the frontal lobes fell below T(es). Thus local selective cooling of the brain surface below that of the trunk temperature was shown to occur. Intensive breathing by the patients after extubation for a 3-min period produced a cooling at the site of T(cr) measurement at a rate of up to 0.1 degrees C/min, and this response could be evoked on demand. The results support the view that cooling of the upper airway can directly influence human brain temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号