首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In cloned pregnancies, placental deficiencies, including increased placentome size, reduced placentome number, and increased accumulation of allantoic fluid, have been associated with low cloning efficiency. To assess differences in paracrine and endocrine growth regulation in cloned versus normal bovine placentomes and pregnancies, we have examined the expression of insulin-like growth factor (IGF)-I and -II and their binding proteins (IGFBP)-1 through -3 in placentomes of artificially inseminated (AI), in vitro-produced (IVP), and nuclear transfer (NT) pregnancies at Days 50, 100, and 150 of gestation. Fetal, maternal, and binucleate cell counts in representative placentomes were performed on Days 50-150 of gestation in all three groups. Increased numbers of fetal, maternal, and binucleate cells were present in NT placentomes at all stages of gestation examined. Immunolocalization studies showed that spatial and temporal patterns of expression of IGFBP-2 and -3 were markedly altered in the placentomes of NT pregnancies compared to AI/IVP controls. Concentrations of IGF-I in fetal plasma, as determined by RIA, were significantly higher (P = 0.001) in NT pregnancies (mean +/- SEM, 30.3 +/- 2.3 ng/ml) compared with AI (19.1 +/- 5.5 ng/ml) or IVP (24.2 +/- 2.5 ng/ml) pregnancies on Day 150 of gestation. Allantoic fluid levels of IGFBP-1 were also increased in NT pregnancies. These findings suggest that endocrine and paracrine perturbations of the IGF axis may modulate placental dysfunction in NT pregnancies. Furthermore, increased cell numbers in NT placentomes likely have significant implications for fetomaternal communication and may contribute to the placental overgrowth observed in the NT placentomes.  相似文献   

2.
The production of cloned animals is, at present, an inefficient process. This study focused on the fetal losses that occur between Days 30-90 of gestation. Fetal and placental characteristics were studied from Days 30-90 of gestation using transrectal ultrasonography, maternal pregnancy specific protein b (PSPb) levels, and postslaughter collection of fetal tissue. Pregnancy rates at Day 30 were similar for recipient cows carrying nuclear transfer (NT) and control embryos (45% [54/120] vs. 58% [11/19]), although multiple NT embryos were often transferred into recipients. From Days 30-90, 82% of NT fetuses died, whereas all control pregnancies remained viable. Crown-rump (CR) length was less in those fetuses that were destined to die before Day 90, but no significant difference was found between the CR lengths of NT and control fetuses that survived to Day 90. Maternal PSPb levels at Days 30 and 50 of gestation were not predictive of fetal survival to Day 90. The placentas of six cloned and four control (in vivo or in vitro fertilized) bovine pregnancies were compared between Days 35 and 60 of gestation. Two cloned placentas showed rudimentary development, as indicated by flat, cuboidal trophoblastic epithelium and reduced vascularization, whereas two others possessed a reduced number of barely discernable cotyledonary areas. The remaining two cloned placentas were similar to the controls, although one contained hemorrhagic cotyledons. Poor viability of cloned fetuses during Days 35-60 was associated with either rudimentary or marginal chorioallantoic development. Our findings suggest that future research should focus on factors that promote placental and vascular growth and on fetomaternal interactions that promote placental attachment and villous formation.  相似文献   

3.
Presence of placental tissues from more normal noncloned embryos could reduce the pregnancy failure of somatic cloning in cattle. In this study, inner cell mass (ICM) cells of in vitro-produced (IVP) embryos was replaced with those of nuclear transfer (NT) embryos to reconstruct bovine blastocysts with ICM and trophoblast cells from NT and IVP embryos, respectively. A total of 65 of these reconstructed embryos were nonsurgically transferred to 20 recipient beef females. Of those, two females were diagnosed pregnant by ultrasonography on day 30 of gestation. One pregnancy was lost at 60-90 days of gestation, and the other recipient cow remained pregnant at day 240 of gestation; however, this female died on day 252 of gestation. Gross pathology of the internal organs of the recipient female, a large fetus, and a large placental tissue mass suggested the massive size of the fetus and placental tissue were likely involved in terminating the life of the recipient female. Biopsy samples were harvested from the skin of the dead recipient cow, the fetus and from cotyledonary tissue. Microsatellite DNA analysis of these samples revealed that the genotype of the fetus was the same as that of the NT donor cells and different from that of the recipient cow. Correspondingly, neither the fetus nor recipient cow had the same genotype with that of the fetal cotyledonary tissue. These results present the first known documented case of a bovine somatic NT pregnancy with nonclone placental tissues after transfer of a blastocyst reconstructed by a microsurgical method to exchange of ICM cells and trophoblast tissue between NT and IVP blastocysts.  相似文献   

4.
Somatic cell nuclear transfer (SCNT) has been successfully used in many species to produce live cloned offspring, albeit with low efficiency. The low frequency of successful development has usually been ascribed to incomplete or inappropriate reprogramming of the transferred nuclear genome. Elucidating the genetic differences between normal fertilized and cloned embryos is key to understand the low efficiency of SCNT. Here, we show that expression of HSPC117, which encodes a hypothetical protein of unknown function, was absent or very low in cloned mouse blastocysts. To investigate the role of HSPC117 in embryo development, we knocked-down this gene in normal fertilized embryos using RNA interference. We assessed the post-implantation survival of HSPC117 knock-down embryos at 3 stages: E9 (prior to placenta formation); E12 (after the placenta was fully functional) and E19 (post-natal). Our results show that, although siRNA-treated in vivo fertilized/produced (IVP) embryos could develop to the blastocyst stage and implanted without any difference from control embryos, the knock-down embryos showed substantial fetal death, accompanied by placental blood clotting, at E12. Furthermore, comparison of HSPC117 expression in placentas of nuclear transfer (NT), intracytoplasmic sperm injection (ICSI) and IVP embryos confirmed that HSPC117 deficiency correlates well with failures in embryo development: all NT embryos with a fetus, as well as IVP and ICSI embryos, had normal placental HSPC117 expression while those NT embryos showing reduced or no expression of HSPC117 failed to form a fetus. In conclusion, we show that HSPC117 is an important gene for post-implantation development of embryos, and that HSPC117 deficiency leads to fetal abnormalities after implantation, especially following placental formation. We suggest that defects in HSPC117 expression may be an important contributing factor to loss of cloned NT embryos in vivo.  相似文献   

5.
Amniotic and allantoic fluid volumes and composition change dynamically throughout gestation. Cattle that are pregnant with somatic cell nuclear transfer (NT) fetuses show a high incidence of abnormal fluid accumulation (particularly hydrallantois) and fetal mortality from approximately midgestation. To investigate fetal fluid homeostasis in these pregnancies, Na, K, Cl, urea, creatinine, Ca, Mg, total PO(4), glucose, fructose, lactate, total protein, and osmolalities were measured in amniotic and allantoic fluids collected at Days 50, 100, and 150 of gestation from NT pregnancies and those generated by the transfer of in vitro-produced embryos or by artificial insemination. Deviations in fetal fluid composition between NT and control pregnancies were apparent after placental and fetal organ development, even when no gross morphological abnormalities were observed. Individual NT fetuses were affected to varying degrees. Elevated allantoic Na was associated with lower K and increased allantoic fluid volume or edema of the fetal membranes. Total PO(4) levels in NT allantoic and amniotic fluid were elevated at Days 100 and 150. This was not accompanied by hypophosphatemia at Day 150, suggesting that PO(4) acquisition by NT fetuses was adequate but that its readsorption by the kidneys may be impaired. Excessive NT placental weight was associated with low allantoic glucose and fructose as well as high lactate levels. However, the fructogenic ability of the NT placenta appeared to be normal. The osmolality of the fetal fluids was maintained within a narrow range, suggesting that the regulation of fluid composition, but not osmolality, was impaired in NT pregnancies.  相似文献   

6.
Wells KD  Powell AM 《Cloning》2000,2(1):9-22
A marker has been developed to allow detection of blastomeres that originate from embryos produced by nuclear transfer (NT) of genetically engineered fetal fibroblasts. A plasmid (phEFnGFP) was constructed with a G418 resistance cassette for selection in fibroblasts and a nuclear localized green fluorescent protein (nGFP) expression cassette that expresses in every cell of day-6, -7, and -8 bovine embryos. This construct was utilized to follow the blastomere distribution in aggregation chimeras produced from fertilized embryos (in vitro produced, IVP) or parthenotes and NT embryos. Fluorescent and nonfluorescent NT embryos were aggregated early on day 4 and evaluated on day 8. Nuclei of blastomeres that carried the transgene were fluorescent under both UV epifluorescence (Hoechst 33342) and blue epifluorescence (nGFP). There was no bias in the distribution of green fluorescent blastomeres in the inner cell mass (ICM) or trophectoderm in NT<>NT chimeras. However, there was a strong bias for NT blastomeres to populate the ICM when aggregated with IVP embryos or parthenotes. There was also a strong bias against NT blastomeres in the trophectoderm when aggregated to IVP embryos. However, the bias against NT blastomeres in the trophectoderm was significantly less (p < 0.05) when aggregated with parthenotes as compared to aggregation with IVP embryos. In NT<>NT aggregates, no chimeric embryos were produced that had an ICM composed of blastomeres from a single origin. However, in NT<>Parthenote aggregates, 67% of the blastocysts had an ICM composed exclusively of NT origin. The remaining blastocysts ranged from 0% to 83% of the ICM that expressed nGFP. Similarly, in NT<>IVP aggregates 50% of the blastocysts had an ICM composed exclusively of NT origin. The remaining blastocysts ranged from 19% to 71% of the ICM being of NT origin. We conclude that production of divaricated chimeras from NT origin is feasible. Other applications of this technology are discussed.  相似文献   

7.
Hill J  Winger Q  Jones K  Keller D  King WA  Westhusin M 《Cloning》1999,1(4):201-208
Two experiments, one comparing nuclear transfer (NT) embryo activation compounds, the other donor cell treatments, were conducted with a goal of identifying factors that improve the in vitro development of cloned bovine embryos. In experiment 1, 539 NT embryos were produced by combining serum starved bovine fetal fibroblasts with enucleated in vitro matured oocytes, activated with ionomycin, then randomly allocated to be incubated for 4 hours in either Butyrolactone-I (BL-I) or 6-dimethylaminopurine (DMAP). There was no significant difference in development to blastocyst or compact morula of fused embryos at Day 6.5 between BL-I and DMAP activated embryos (22.4% vs. 20.2%; p = 0.18). Karyotyping of 20 blastocysts and compact morula from each group determined that 65% of BL1 and 63% of DMAP embryos were diploid with the remainder mixoploid (2n + 4n). In Experiment 2, the development of 389 NT embryos reconstructed from either serum starved or serum fed fetal fibroblasts was assessed. More Day 7 blastocysts and compact morula developed in the serum starved group (34.5% vs. 18.8%; p = 0.008). To verify the viability of BL-I activated embryos, 10 blastocytes from experiment 2 were transferred into 4 recipient cows. Two morphologically normal fetuses, genetically identical to the original fetal cell line, were surgically recovered at day 45 of gestation. In summary, serum starvation of bovine fetal fibroblasts prior to NT significantly improved development to blastocyst. Additionally, we have shown that BL-I is a novel alternative compound for use in combination with ionomycin to activate NT embryos.  相似文献   

8.
Although healthy animals are born after nuclear transfer with somatic cells nuclei, the success of this procedure is generally poor (2%-10%) with high perinatal losses. Apparently normal surviving animals may have undiagnosed pathologies that could develop later in life. The gross pathology of 16 abnormal bovine fetuses produced by nuclear transfer (NT) and the clinical, endocrinologic (insulin-like growth factors I and II [IGF-I and IGF-II], IGF binding proteins, post-ACTH stimulation cortisol, leptin, glucose, and insulin levels), and biochemical characteristics of a group of 21 apparently normal cloned calves were compared with those of in vitro-produced (IVP) controls and controls resulting from artificial insemination. Oocytes used for NT or IVP were matured in vitro. NT to enucleated oocytes was performed using cultured adult or fetal skin cells. After culture, Day 7, grade 1-2 embryos were transferred (one per recipient). All placentas and fetuses from clones undergoing an abnormal pregnancy showed some degree of edema due to hydrops. Mean placentome number was lower and mean placentome weight was higher in clones than in controls (69.9 +/- 9.2 placentomes with a mean weight of 144.3 +/- 21.4 g in clones vs. 99 and 137 placentomes with a mean individual weight of 34.8 and 32.4 g in two IVP controls). Erythrocyte mean cell volume was higher at birth (P < 0.01), and body temperature and plasma leptin concentrations were higher and T4 levels were lower during the first 50 days and the first week (P < 0.05), respectively, in clones. Plasma IGF-II concentrations were higher at birth and lower at Day 15 in clones (P < 0.05). Therefore, apparently healthy cloned calves cannot be considered as physiologically normal animals until at least 50 days of age.  相似文献   

9.
10.
Embryos produced through somatic cell nuclear transfer (NT) or in vitro production (IVP) are often associated with increased abortion and abnormalities thought to arise from disruptions in normal gene expression. The insulin-like growth factor (IGF) family has a major influence on embryonic, fetal and placental development; differences in IGF expression in NT- and IVP-derived embryos may account for embryonic losses during placental attachment. In the present study, expression of IGF-I, IGF-II, IGF-I receptor (IGF-IR), and IGF-IIR mRNAs was quantitated in Day 7 and 25 bovine embryos produced in vivo, by NT, IVP, or parthenogenesis, to further understand divergent changes occurring during development. Expression of the IGF-I gene was not detected in Day 7 blastocysts for any treatment. However, there were no differences (P>0.10) among Day 7 treatments in the amounts of IGF-IR, IGF-II, and IGF-IIR mRNA. For Day 25 conceptuses, there was higher expression of IGF-I mRNA for NT and IVP embryonic tissues than for in vivo embryonic tissues (P<0.05). Furthermore, embryonic tissues from NT-derived embryos had higher expression of IGF-II mRNA than IVP embryonic tissues (P<0.05). Placental expression of IGF-IIR mRNA was greater for NT-derived than in vivo-derived embryos (P<0.05). There were no differences in IGF-IR mRNA across all treatments and tissues (P>0.10). In conclusion, these differences in growth factor gene expression during early placental attachment and rapid embryonic growth may directly or indirectly contribute to increased losses and abnormalities in IVP- and NT-derived embryos.  相似文献   

11.
In vitro systems for oocyte maturation, fertilization and embryo culture [in vitro production (IVP)] have the potential for more wide-spread use in creative breeding programs for dairy and beef cattle. However, one negative consequence of both IVP and somatic cell nuclear transfer (SCNT) in cattle and other species is that embryos, fetuses, placentas, and offspring can differ significantly in morphology and developmental competence compared with those from embryos produced in vivo. Fetuses and placentas derived from IVP and SCNT embryos may fall within the normal range of development, may have obvious abnormalities such as increased fetal and placental weights, or may have subtle abnormalities such as aberrant development of fetal skeletal muscle, placental blood vessels, and altered metabolism. Failures in physiologic and/or genetic mechanisms essential for proper fetal growth and survival outside of the uterus contribute significantly to pregnancy and neonatal losses. Oversized fetuses are at increased risk of death during parturition and the adverse consequences of severe dystocia may compromise the dam. Collectively, these abnormalities have been referred to as 'large offspring syndrome' or 'large calf syndrome'. Abnormal phenotypes resulting from IVP and SCNT embryos are stochastic in occurrence and they have not been consistently linked to aberrant expression of single genes or specific pathophysiology. Thus, reliable methods of early diagnosis of the condition are not yet available. The objective of this paper is to examine abnormal development of fetuses and placentas resulting from embryos produced using in vitro systems. The term 'abnormal offspring syndrome (AOS)' is introduced and a classification system of developmental outcomes is proposed to facilitate research efforts on the mechanisms of the various abnormal phenotypes. We also discuss potential genetic and physiologic mechanisms that may contribute to abnormal phenotypes following transfer of IVP and SCNT embryos.  相似文献   

12.
The effects of in vitro culture systems for sheep zygotes on subsequent fetal growth and development to day 61 and day 125 of gestation were studied. Zygotes recovered from superovulated Scottish Blackface ewes approximately 36 h after intrauterine insemination using semen from a single Suffolk sire were cultured for 5 days in (a) a granulosa cell co-culture system (co-culture); (b) synthetic oviductal fluid medium without serum (SOF-); and (c) synthetic oviductal fluid medium supplemented with human serum (SOF+). Control embryos were recovered from superovulated donor ewes at day 6 after oestrus. Embryos were transferred at day 6 to synchronous Scottish Blackface recipient ewes. In total, 146 gravid uteri were recovered, comprising 97 at day 61 (20 co-culture, 27 SOF-, 25 SOF+ and 25 control) and 49 at day 125 (13 co-culture, 8 SOF-, 6 SOF+ and 22 control) of gestation. Fetuses derived from co-cultured embryos were 14% heavier (P < 0.01) by day 61 of gestation than those derived from control embryos. Growth coefficients derived from the linear allometric equation logey = logea + b logex (where y = organ mass; x = fetal mass) were significantly greater (P < 0.05) for liver, heart, kidneys and plantaris muscle in fetuses derived from co-cultured embryos, and for liver in fetuses derived from SOF+ embryos than those for control fetuses. Fetuses derived from co-cultured embryos were 34% heavier (P < 0.001) and fetuses derived from SOF+ embryos were 18% heavier (P < 0.01) by day 125 of gestation than those derived from control embryos. Growth coefficients for liver and heart for fetuses derived from co-culture and SOF+ embryos were also significantly greater (P < 0.05) at this stage of gestation than those for control group fetuses. In contrast, allometric coefficients for these organs in fetuses derived from embryos cultured in SOF without serum supplementation were not different from those for controls. Excessive volumes of amniotic fluid (polyhydramnios) were observed in 23% of conceptuses derived from co-cultured embryos. In vitro embryo culture can significantly influence fetal growth and this study provides quantitative evidence of major shifts in the patterns of organ and tissue development.  相似文献   

13.
The cloning of cattle by somatic cell nuclear transfer (NT) is associated with a high incidence of abnormal placentation, excessive fluid accumulation in the fetal sacs (hydrops syndrome), and fetal overgrowth. Fetal and placental development was investigated at Day 50, during placentome formation; at Day 100, when placentation was completed; and at Day 150, when the hydrops syndrome frequently develops. The NT fetuses were compared with contemporary half-siblings generated from in vitro-produced embryos or by artificial insemination (AI). Fetal cotyledon formation and vascularization of the chorioallantoic membranes was initiated normally in NT conceptuses, but fewer cotyledons successfully formed placentomes. By Day 100, the mean number of placentomes was significantly lower in surviving NT fetuses. Only those with normal placentome numbers were represented in surviving NT pregnancies at Day 150. The mean total caruncle tissue weight of the placentomes was significantly higher in the surviving NT groups at Days 100 and 150, irrespective of the placentome numbers, indicating that increased NT placental weight was caused by excessive uterine tissue growth. By Day 100, NT fetuses exhibited growth deregulation, and those that survived to Day 150 were 17% heavier than contemporary AI controls. Placentome, liver, and kidney overgrowth accompanied the hydrops syndrome at Day 150. The NT fetal overgrowth was not a consequence of in vitro embryo culture and showed no correlation with placental overgrowth. However, in vitro culture and incomplete reprogramming of the donor genome are epigenetic effects that may override genetic traits and contribute to the greater variability in placental and fetal development in the NT group compared with AI half-siblings.  相似文献   

14.
15.
The effect of restriction of placental growth on the supply of glucose to the gravid uterus and fetus and on fetal and utero-placental metabolism of glucose and lactate was examined in this study. Endometrial caruncles were removed from 13 sheep (caruncle sheep) prior to mating, which restricted placental growth in the subsequent pregnancy. Half the fetuses of caruncle sheep were small or growth retarded, with the remainder normal in size. After insertion of vascular catheters at 110 days gestation, the caruncle sheep, together with 16 control sheep, were studied between 121 and 130 days of gestation. Glucose delivery to and consumption by the gravid uterus and its contents, both as a total and per kg of tissue mass, was significantly lower in caruncle ewes with small fetuses, although glucose extraction was similar to that in controls. Utero-placental glucose consumption was significantly lower in caruncle ewes carrying small fetuses compared to that in control ewes, both as a total and per kg of placenta. Small caruncle fetuses were hypoxaemic and hypoglycaemic and the lactate concentration in the common umbilical vein was significantly higher than in control sheep. Glucose delivery to and consumption by the fetus was significantly lower in normal-sized and in small caruncle fetuses compared to controls. Fetal glucose consumption per kg of fetus was similar in control and caruncle sheep. Fetal glucose extraction increased as fetal weight decreased. Utero-placental production of lactate was similar in control and caruncle ewes. However, uterine output of lactate decreased as placental weight fell. Utero-placental production of lactate per kg of placenta was significantly higher in caruncle ewes compared to controls and increased as oxygen content in blood from the fetal femoral artery decreased. Fetal lactate consumption per kg of fetus increased as the concentration of lactate in blood from the common umbilical vein increased. It is concluded that intrauterine growth retardation due to restriction of placental growth is associated with a reduced supply of glucose to both the pregnant uterus and fetus and a redistribution of glucose therein to the fetus, both directly as glucose and indirectly as lactate. This reflects the disproportionate maintenance of fetal weight relative to that of the placenta, reduced utero-placental consumption of glucose per kg of placenta, conversion of a greater proportion of that glucose or other substrate(s) to lactate by the placenta and an increase in the fraction of the lactate produced by utero-placental tissues that is secreted into the fetal circulation.  相似文献   

16.
Successful somatic cloned animal production has been reported in various domesticated species, including cattle; however, it is associated with a high rate of pregnancy failure. The low cloning yield could possibly arise from either an abnormal and/or poorly developed placenta. In comparison to control cows, fewer placentomes were found in somatic cell nuclear recipient (NT) cows at day 60 of gestation, suggesting a retardation of fetal/placental growth in these animals. NT cows not only had fewer numbers of chorionic villi but also had poorly developed caruncles. Macroscopic examination revealed atypical development of the placentome in terms of shape and size. Histological disruption of chorionic villi and caruncular septum was found in NT cows. Of particular interest was that the expression of genes, as well as proteins in the placentome, was disparate between NT and artificially inseminated cows, especially placental lactogen (PL) and pregnancy-associated glycoprotein (PAG). In contrast, prolactin-related protein-1 (PRP-1) signals were comparable across cows, including NT cows carrying immotile fetuses. The expression of extracellular matrix degrading molecule, heparanase (HPA), in NT cows was divergent from that of control cows. Microarray data suggest that gene expression was disorientated in early stages of implantation in NT cows, but this was eliminated with progression of gestation. These findings strongly support a delay in trophoblast development during early stages of placentation in NT cows, and suggest that placental specific proteins, including PLs, PAGs, and HPA, are key indicators for the aberration of gestation and placental function in cows.  相似文献   

17.
The aim of this work is to study the effect of the vitrification procedure on prenatal survival and on placental development at the end of gestation in rabbits (Oryctolagus cuniculus). One hundred eighty-one females were slaughtered at 72 h of gestation. Morphologically normal embryos recovered at 72 h of gestation were kept at room temperature until transfer or vitrification. Vitrified embryos (320 embryos) were transferred into a total of 24 does and fresh embryos (712 embryos) were transferred into a total of 43 does. Females were induced to ovulate 72 h before transfer when fresh embryos were transferred and 60 to 63 h before transfer when vitrified embryos were transferred. Each recipient doe received eight embryos into the left oviduct and eight embryos into the right oviduct. The number of implanted embryos was estimated by laparoscopy as number of implantation sites at Day 14 of gestation. Recipient females were slaughtered by stunning and exsanguination 25 d after the transfer, and fetuses were classified according to their status. Live fetuses and fetal and maternal placenta were weighed Pregnancy rate was defined as the total number of females having at least one live fetus at Day 28 of gestation divided by the total number of females. Prenatal survival was estimated as live fetuses at Day 28 of gestation divided by the number of transferred embryos. The pregnancy rate after transfer of vitrified embryos (92%) was similar to that achieved with fresh embryos (86%), but prenatal survival was lower for vitrified than for fresh embryos (53% vs. 34%). We did not find differences in embryo survival from 72 h to implantation. Transfer of vitrified embryos reduced fetal survival from implantation to Day 28 (57% vs. 82%). Differences in the number of live fetuses at Day 28 of gestation were mainly due to the higher fetal mortality observed soon after implantation in pregnancies resulting from the transfer of vitrified embryos. A higher percentage of decidual reactions and atrophic maternal placentas (27.5% vs. 8.3%) and also of atrophic fetal and maternal placentas (12.1% vs. 5.3%) were observed after transfer of vitrified embryos. Both treatments showed similar percentage of dead fetuses (3.3% vs. 4%). Maternal placenta of the fetuses from fresh embryos was 15% heavier than maternal placenta of fetuses from vitrified embryos.  相似文献   

18.
Early gestation is critical for placentomal growth, differentiation, and vascularization, as well as fetal organogenesis. The fetal origins of adult disease hypothesis proposes that alterations in fetal nutrition and endocrine status result in developmental adaptations that permanently change structure, physiology, and metabolism, thereby predisposing individuals to cardiovascular, metabolic, and endocrine disease in adult life. Multiparous ewes were fed to 50% (nutrient restricted) or 100% (control fed) of total digestible nutrients from Days 28 to 78 of gestation. All ewes were weighed weekly and diets adjusted for individual weight loss or gain. Ewes were killed on Day 78 of gestation and gravid uteri recovered. Fetal body and organ weights were determined, and numbers, morphologies, diameters, and weights of all placentomes were obtained. From Day 28 to Day 78, restricted ewes lost 7.4% of body weight, while control ewes gained 7.5%. Maternal and fetal blood glucose concentrations were reduced in restricted versus control pregnancies. Fetuses were markedly smaller in the restricted group than in the control group. Further, restricted fetuses exhibited greater right- and left-ventricular and liver weights per unit fetal weight than control fetuses. No treatment differences were observed in any gross placentomal measurement. However, caruncular vascularity was enhanced in conceptuses from nutrient-restricted ewes but only in twin pregnancies. While these alterations in fetal/placental development may be beneficial to early fetal survival in the face of a nutrient restriction, their effects later in gestation as well as in postnatal life need further investigation.  相似文献   

19.
Dairy goats are ideal for the transgenic production of therapeutic recombinant proteins. The use of recombinant somatic cell lines for nuclear transfer (NT) allows the introduction of genes by transfection, increases the efficiency of transgenic animal production to 100%, and overcomes the problem of founder mosaicism. Although viable animals have been cloned via NT from somatic cells of 11 species, the efficiency has been extremely low. Both blastomere and somatic cell NT increased fetal loss and perinatal morbidity/mortality in cattle and sheep, but fetal loss and perinatal mortality appear to be relatively low in goats. In this study, we produced cloned goats by NT from cumulus cells and long-term cultured fetal fibroblast cells (FFCs) to abattoir-derived oocytes. NT embryos were constructed from electrofusion of cumulus cells (CCs), FFCs, or skin fibroblast cells (SFCs) with cytoplasts prepared from abattoir-derived ovaries. The NT embryos were activated with an optimized activating protocol (1 min exposure to 2.5 microM ionomycin followed by 2 hr incubation in 2mM 6-DMAP). Two viable cloned kids from CCs and one from long-term cultured FFCs (at passage 20-25) were born. Microsatellite analysis of 10 markers confirmed that all cloned offspring were derived from corresponding donor cells. To our knowledge, the production of cloned goat offspring using abattoir-derived oocytes receiving nuclei from CCs and long-term cultured FFCs has not been reported. The production of viable cloned animals after activation with reduced intensity of ionomycin and 6-DMAP treatment has also not been reported. Loss of cloned embryos was obvious after 45 and 90 days of pregnancy, and a lack of cotyledons, heart defects, and improperly closed abdominal wall were observed in the aborted fetuses and one cloned kid. The fusibility and in vitro developmental potential of embryos reconstructed from FFCs at passage 20-25 were significantly lower than those of embryos reconstructed from FFCs at passage 3-5, and the cloning efficiency of the long-term cultured cells was low (0.5%).  相似文献   

20.
In vitro systems are commonly used for the production of bovine embryos. Comparisons between in vivo and in vitro produced embryos illustrate that the morphology of preimplantation-stage embryos differ significantly, the survival of embryos and fetuses is decreased, the size distributions of the populations of conceptuses and fetuses are altered throughout gestation, and placental development is significantly changed. Taken together these findings indicate that exposure to some in vitro environments during the first 7 days of life can profoundly influence fetal and placental development in cattle. An understanding of how in vitro oocyte maturation, in vitro fertilization, and embryo culture systems influence both fetal and placental development should result in systems that consistently produce normal embryos, fetuses, and calves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号