首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recombinant equine luteinizing hormone/chorionic gonadotropin (eLH/CG) was expressed in Mimic insect cells, that are commercial stably transformed Spodoptera frugiperda (Sf9) cells expressing five mammalian genes encoding glycosyltransferases involved in the synthesis of complex-type monosialylated N-glycans. We previously showed that it exhibited no in vivo bioactivity although expressing full in vitro bioactivity, and it was suspected that this was because of insufficient sialylation of eLH/CG N-glycans. Lectin binding analyses were performed with recombinant dimeric eLH/CG or its alpha subunit, secreted in the serum-containing supernatant of infected Sf9 and Mimic cells. Two types of specific lectin affinity assays (blot analyses and enzyme-linked immunosorbent assay) were used to compare the ability or inability of natural and recombinant gonadotropins to bind to various lectins. In natural equine chorionic gonadotropin (eCG), complex-type N-glycans terminating with both Siaalpha2,3Gal (based on Maackia amurensis agglutinin [MAA] binding) and Siaalpha2,6Gal (based on Sambucus nigra agglutinin [SNA] binding) were found, but in the alpha subunit dissociated from natural eCG, we only detected Siaalpha2-6Gal. In eLH/CG and its alpha subunit produced by Sf9 cells, N-glycans were found to be terminated by mannosyl residues (based on Galanthus nivalis agglutinin [GNA] binding), whereas those produced in Mimic cells were terminated by galactoses (based on binding to Ricinus communis agglutinin I [RCA I] , but not to SNA or MAA). This is in agreement with the fact that the nucleotide donor substrate of sialic acid is not naturally synthesized in insect cells. On the basis of binding to Arachis Hypogaea agglutinin [PNA], O-glycans exhibited the Galbeta1-3GalNAc structure in recombinant-free alpha and eLH/CG from both Sf9 and Mimic cell lines. Both N- and O-linked carbohydrate side chains synthesized in Mimic cells should thus be amenable to further acellular sialylation.  相似文献   

2.
A distinct difference in ganglioside composition among various rat ascites hepatomas and Yoshida sarcoma was observed on TLC-immunostaining with anti-fucosyl GM1 antibody, and chemical and enzymatic analyses. Yoshida sarcoma and ascites hepatomas, AH13, AH66F and AH66, but not the other 9 tumor cell lines investigated, specifically contained a disialoganglioside, NeuAc alpha 2-3Gal beta 1-3(NeuAc alpha 2-6)GalNAc beta 1-4Gal beta 1-4Glc beta 1-1ceramide (GD1e), whereas the 9 ascites hepatoma cells without GD1e contained fucosyl GM1. The differential expression of fucosyl GM1 and GD1e in various tumor cell lines indicates that different cell lineages express distinct metabolic pathways for gangliosides, and that the gangliosides are useful markers for distinguishing tumor cell lines.  相似文献   

3.
The Ia+ B cell lymphoma, AKTB-1b, fails to stimulate thymic lymphocytes in a one-way mixed lymphocyte reaction unless pretreated with sialidase or inhibitors of N-linked oligosaccharide processing. A comparison of different sialidases and sialyltransferases suggests that the removal of only a subset of total surface sialic acid, rather than net desialylation of the cell surface, is required. Three sialidases were compared, including Vibrio cholerae (VC) and Clostridium perfringens (CP), which will cleave alpha 2-3, alpha 2-6, and alpha 2-8, sialic acid linkages, and Newcastle Disease virus (NDV), which will remove only alpha 2-3 and alpha 2-8 linked sialic acid. When treated with equivalent units of sialidase, CP-, VC-, and NDV-treated cells were 24-fold, sixfold, and threefold better stimulators than untreated cells. In contrast, VC released 1.3-fold and 2.5-fold more sialic acid per cell than did CP or NDV, respectively. Furthermore, VC was superior in reducing the levels of binding of the sialic acid-specific lectin, Limulus polyphemus agglutinin, in exposing Gal beta 1-3GalNAc and Gal beta 1-4GlcNAc residues, and in desialylating gangliosides. Two-dimensional gel analysis indicated that VC and CP were both equal and superior to NDV in the desialylation of iodinatable cell-surface proteins, including H-2Kk, I-A beta k, and a highly sialylated 65,000 dalton protein of unknown identity. Maximal resialylation of CP-treated cells with exogenously added CMP-NANA and either the alpha 2-3(Gal beta 1-3GalNAc) or alpha 2-6(Gal beta 1-4GlcNAc) sialyltransferase did not reduce the stimulatory capacity of these cells. However, resialylation of VC-treated cells with just CMP-NANA alone resulted in 49% reversal of their stimulatory capacity, and no additional reversal could be achieved with either of the sialyltransferases. Although the alpha 2-6(Gal beta 1-4GlcNAc) sialyltransferase was capable of adding back approximately 10% of the sialic acid removed, the endogenous activity added back approximately 0.1% of the total sialic acid removed. SDS-PAGE gels of the sialylated cells indicated that the exogenously added sialyltransferase labeled many different proteins, whereas the endogenous activity labeled far fewer proteins, predominantly in 46,000 and 25,000 m.w. range. Both the desialylation and resialylation data suggest that the sialidase-dependent stimulation is due to the desialylation of specific membrane structures. Together with previous studies, these data suggest that the sialic acids involved are probably alpha 2-6 linked to N-linked glycosyl moieties.  相似文献   

4.
The similarity or identity of O-glycosylation in glycoproteins from natural sources or produced in heterologous cell lines, a central problem for the development of many biotechnologically relevant production processes, was examined using interleukin-2 (IL-2) as a model. Human interleukin-2 was constitutively expressed in several mammalian cell lines in high amounts. The recombinant proteins were purified to homogeneity and their carbohydrate structures were analyzed. Only the NeuAc alpha 2-3Gal beta 1-3[NeuAc alpha 2-6]GalNAc oligosaccharide structure or the NeuAc alpha 2-3Gal beta 1-3GalNAc were found in all IL-2 preparations secreted from recombinant Ltk-, Chinese hamster ovary, and baby hamster kidney cell lines. The O-linked chains were exclusively linked to Thr in position 3 of the polypeptide chain which is the carbohydrate attachment site in natural human IL-2. The proportions of O-glycosylated versus nonglycosylated forms of the protein secreted by each recombinant cell line were independent of productivity or of cell culture conditions. Our results show that O-glycosylated human IL-2 can be produced by applying recombinant DNA technology in heterologous cell lines with the same type of post-translational modification that is observed for the protein secreted from natural T lymphocytes.  相似文献   

5.
A novel type of N-linked glycopeptides representing a major part of the glycans in human small intestinal epithelial cells from blood group A and O individuals were isolated by gel filtrations and affinity chromatography on concanavalin A-Sepharose and Bandeiraea simplicifolia lectin I-Sepharose. Sugar composition, methylation analysis, 1H NMR spectroscopy of the underivatized glycopeptides and FAB-mass spectrometry and electron impact-mass spectrometry of the permethylated glycopeptides indicated a tri- and tetra-antennary structure containing an intersecting N-acetylglucosamine and an alpha (1----6)-linked fucose residue in the core unit for the majority of the glycans. In contrast to most glycopeptides of other sources, the intestinal glycopeptides were devoid of sialic acid, but contained 6-7 residues of fucose. The outer branches contained the following structures: Fuc alpha 1-2Gal beta 1-3GleNAc beta 1- (H type 1) Fuc alpha 1-2Gal beta 1-4GleNAc beta 1- (H type 2) Gal beta 1-4 (Fuc alpha 1-3)GlcNAc beta 1- (X) Fuc alpha 1-2Gal beta 1-4(Fuc alpha 1-3)GleNAc beta 1- (Y) GalNAc alpha 1-3(Fuc alpha 1-2)Gal beta 1-3GleNAc beta 1- (A type 1) GalNAc alpha 1-3(Fuc alpha 1-2)Gal beta 1-4GleNAc beta 1- (monofucosyl A type 2) GalNAc alpha 1-3(Fuc alpha 1-2)Gal beta 1-4 (Fuc alpha 1-3)GlcNAc beta 1- (trifucosyl A type 2) The blood group determinant structures were mainly of type 2, whereas glycolipids from the same cells contained mainly type 1 determinants. The polyfucosylated glycans represent a novel type of blood group active glycopeptides. The unique properties of the small intestinal glycopeptides as compared with glycopeptides of other tissue sources may be correlated with the specialized functional properties of the small intestinal epithelial cells.  相似文献   

6.
Two hybridomas, derived by fusing mouse myeloma cells with spleen cells from a rat immunized with mouse mammary tumors, have been shown to produce antibodies that recognize cell surface antigens on mesenchymal cells in a variety of tissues. Evidence presented in this report suggests that these antibodies detect overlapping epitopes on the Forssman glycolipid hapten (GalNAc alpha 1-3GalNAc beta 1-3Gal alpha 1-4Gal beta 1-4Glc beta 1-1Cer). One antibody (33B12) reacts with the terminal sugar sequence GalNAc alpha 1-3GalNAc and is specific for Forssman. The other antibody (117C9) recognizes the internal sugar sequence GalNAc beta 1-3Gal. The terminal sugar sequence GalNAc beta 1-3Gal in globoside, as well as the internal sugar sequence GalNAc beta 1-4Gal in asialo-GM1, is not recognized as an antigenic determinant by 117C9. Nevertheless, the 117C9 antibody does not react exclusively with the Forssman antigen. In a lipid extract fractionated by Folch partition of mouse mammary tumors, the antibody also detects other glycolipids.  相似文献   

7.
The O-linked oligosaccharides of the cloned, murine cytotoxic T cell line B6.1.SF.1 were compared with the corresponding oligosaccharides from a Vicia villosa lectin-resistant mutant of B6.1.SF.1 called VV6 (Conzelmann, A., Pink, R., Acuto, O., Mach, J.-P., Dolivo, S., and Nabholz, M. (1980) Eur. J. Immunol. 10, 860-868). The VV6 mutant cells are deficient in binding sites for this GalNAc-specific lectin. Cells were grown in the presence of [3H]glucosamine and [3H] galactose to label the glycoproteins, and the desialyzed, alkaline borohydride-released oligosaccharides were isolated and characterized. The VV6 cells contained a series of O-linked oligosaccharides ranging in size from a disaccharide to a pentasaccharide. These were composed of galactose, N-acetylglucosamine, and N-acetylhexosaminitol, the latter sugar being derived from the reducing terminus. The predominant oligosaccharide had the partial structure Gal beta GlcNAc beta-(Gal beta)N-acetylhexosaminitol. In contrast, the analogous oligosaccharides of the parental cells contained additional beta-linked GalNAc residues located at nonreducing termini. The smallest of these had the structure GalNAc beta 1,4Gal beta-N-acetylhexosaminitol. Neither cell line contained significant amounts of terminal GalNAc linked to Ser/Thr which is the main binding site for the V. villosa B4 lectin on Tn erythrocytes (Tollefsen, S. R., and Kornfeld, R. (1983) J. Biol. Chem. 258, 5172-5176). These findings suggest that the major binding sites for the V. villosa lectin on the parental cytotoxic T cell line consist of structures containing beta 1,4-linked GalNAc residues at the nonreducing ends of conventional O-linked structures. The VV6 cells lack these beta-linked GalNAc residues, and this may account for their deficiency of V. villosa lectin-binding sites. In the following paper (Conzelmann, A., and Kornfeld, S. (1984) J. Biol. Chem. 259, 12536-12542), we demonstrate that the VV6 cells are missing the N-acetylgalactosaminyltransferase that is responsible for the synthesis of these unusual oligosaccharides.  相似文献   

8.
The Wiskott-Aldrich syndrome (WAS) is an X-linked recessive immunodeficiency affecting B lymphocytes, T lymphocytes, and platelets. Previous studies on lymphocytes from WAS patients have revealed that leu-kosialin (CD43), a cell-surface glycoprotein bearing approximately 90 O-linked oligosaccharide chains, shows an aberrant electrophoretic mobility. To determine whether this finding reflects a different pattern of O-linked glycosylation in WAS cells, we have compared healthy individuals and WAS patients with respect to glycosyltransferase activities in T lymphocytes, platelets, and Epstein-Barr virus (EBV)-immortalized B cell lines. Stimulation of peripheral T cells from normal individuals in vitro with anti-CD3 antibodies and interleukin-2 was associated with a 3-fold increase in UDP-GlcNAc:Gal beta 3GalNAc-R (GlcNAc to GalNAc) beta 6-N-acetylglucosaminyltransferase (core 2 GlcNAc-T) from 0.8 to 2.2 nmol/mg/h. In contrast, peripheral T lymphocytes from WAS patients showed an inversion of this phenotype with high core 2 GlcNAc-T activity in unstimulated cells (2.3 nmol/mg/h) and a 2-3-fold decrease in activity following stimulation. Core 2 GlcNAc-T activity was also three times higher in platelets from WAS patients than in normal platelets. Glycosyltransferase activities were measured in immortalized B cell lines established from WAS and normal subjects by infection with EBV. Core 2 GlcNAc-T was less than 0.4 nmol/mg/h in WAS EBV-B cell lines compared to 2.4 nmol/mg/h in EBV-B cell lines from healthy individuals, In contrast, CMP-SA:SA alpha 2-3Gal beta 1-3GalNAc-R (where SA represents sialyl (sialic acid to GalNAc) alpha 6-sialyltransferase II activity was 2.0 nmol/mg/h in the WAS EBV-B cell and less than .01 nmol/mg/h in EBV-B cell lines derived from normal subjects. Eleven other glycosyltransferase activities were measured and found to be similar in EBV-B cell lines from WAS and normal individuals. Polylactosamine sequences were much reduced in the O-linked oligosaccharides of CD43 from WAS EBV-B cells consistent with decreased core 2 GlcNAc-T activity and expression of core 1 oligosaccharides in the cells. In conclusion, B cells, T cells, and platelets in WAS patients show abnormal expression of two developmentally regulated glycosyltransferases, consistent with the idea that the WAS immunodeficiency is due to a failure of normal lymphocyte maturation.  相似文献   

9.
The enzyme activities involved in O-glycosylation have been studied in three insect cell lines, Spodoptera frugiperda (Sf-9), Mamestra brassicae (Mb) and Trichoplusia ni (Tn) cultured in two different serum-free media. The structural features of O-glycoproteins in these insect cells were investigated using a panel of lectins and the glycosyltransferase activities involved in O-glycan biosynthesis of insect cells were measured (i.e., UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase, UDP-Gal:core-1 beta1, 3-galactosyltransferase, CMP-NeuAc:Galbeta1-3GalNAc alpha2, 3-sialyltransferase, and UDP-Gal:Galbeta1-3GalNAc alpha1, 4-galactosyltransferase activities). First, we show that O-glycosylation potential depends on cell type. All three lepidopteran cell lines express GalNAcalpha-O-Ser/Thr antigen, which is recognized by soy bean agglutinin and reflects high UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase activity. Capillary electrophoresis and mass spectrometry studies revealed the presence of at least two different UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferases in these insect cells. Only some O-linked GalNAc residues are further processed by the addition of beta1,3-linked Gal residues to form T-antigen, as shown by the binding of peanut agglutinin. This reflects relative low levels of UDP-Gal:core-1 beta1,3-galactosyltransferase in insect cells, as compared to those observed in mammalian control cells. In addition, we detected strong binding of Bandeiraea simplicifolia lectin-I isolectin B4 to Mamestra brassicae endogenous glycoproteins, which suggests a high activity of a UDP-Gal:Galbeta1-3GalNAc alpha1, 4-galactosyltransferase. This explains the absence of PNA binding to Mamestra brassicae glycoproteins. Furthermore, our results substantiated that there is no sialyltransferase activity and, therefore, no terminal sialic acid production by these cell lines. Finally, we found that the culture medium influences the O-glycosylation potential of each cell line.  相似文献   

10.
9-O-Acetylation of sialic acid is known as a cell type-specific modification of secretory and plasma membrane glycoconjugates of higher vertebrates with important functions in modulating cell-cell recognition. Using a recombinant probe derived from influenza C virus hemagglutinin, we discovered 9-O-acetylated protein in the Golgi complex of various cell lines, most of which did not display 9-O-acetylated sialic acid on the cell surface. All cell lines expressed a sulfated glycoprotein of 50 kDa (sgp50) carrying 9-O-acetylated sialic acids, which was used as a model substrate. Like gp40, the major receptor for influenza C virus of Madin-Darby canine kidney I cells, sgp50 is 9-O-acetylated on O-linked glycans. However, gp40 was not 9-O-acetylated when expressed in Madin-Darby canine kidney II or COS-7 cells. The results demonstrate the existence of two 9-O-acetylation machineries for O-glycosylated proteins with distinct substrate specificities. The widespread occurrence of 9-O-acetylated protein in the Golgi furthermore suggests an additional intracellular role for this modification.  相似文献   

11.
We have previously reported the molecular cloning of beta1, 3-galactosyltransferase-V (beta3GalT-V), which catalyzes the transfer of Gal to GlcNAc-based acceptors with a preference for the core3 O-linked glycan GlcNAc(beta1,3)GalNAc structure. Further characterization indicated that the recombinant beta3GalT-V enzyme expressed in Sf9 insect cells also utilized the glycolipid Lc3Cer as an efficient acceptor. Surprisingly, we also found that beta3GalT-V catalyzes the transfer of Gal to the terminal GalNAc unit of the globoside Gb4, thereby synthesizing the glycolipid Gb5, also known as the stage-specific embryonic antigen-3 (SSEA-3). The SSEA-3 synthase activity of beta3GalT-V was confirmed in vivo by stable expression of the human beta3GalT-V gene in F9 mouse teratocarcinoma cells, as detected with the monoclonal antibody MC-631 by flow cytometry analysis and immunostaining of extracted glycolipids. The biological relation between SSEA-3 formation and beta3GalT-V was further documented by showing that F9 cells treated with the differentiation-inducing agent retinoic acid induced the expression of both the SSEA-3 epitope and the endogenous mouse beta3GalT-V gene. This study represents the first example of a glycosyltransferase, which utilizes two kinds of sugar acceptor substrates without requiring any additional modifier molecule.  相似文献   

12.
The Asn-linked oligosaccharides from bovine lutropin (bLH(Pit] are predominantly dibranched complex-type structures with the terminal sequence SO4-4GalNAc beta 1,4GlcNAc beta 1,2Man alpha. Recombinant bLH expressed in Chinese hamster ovary cells (bLH(CHO] bears di- (60%) and tribranched (30%) complex-type oligosaccharides; however, these terminate in the sequence Sia alpha 2,3Gal beta 1,4GlcNAc beta 1,2Man alpha. In contrast to the limited spectrum of oligosaccharide structures present on recombinant bLH(CHO), the endogenous glycoproteins synthesized by CHO cells bear a heterogeneous array of Asn-linked oligosaccharides with 0, 1, 2, 3, or 4 sialic acid moieties. The sialic acid moieties on the Asn-linked oligosaccharides of both endogenous glycoproteins and recombinant bLH(CHO) are exclusively alpha 2,3-linked, suggesting that the alpha 2,6-sialyl-transferase is not active in CHO cells. The bioactivities of bLH(Pit) and bLH(CHO) were compared using MA-10 cells following sequential digestion with neuraminidase and beta-galactosidase. Neither the ED50 (dose producing 50% of the maximum response) for progesterone production (7.2 ng/ml) nor the Pmax (maximum level of progesterone produced) (470 ng/ml) was altered for bLH(Pit) by these treatments, consistent with the absence of either sialic acid or Gal on bLH(Pit). The ED50 for progesterone production by recombinant bLH(CHO) (16.4 ng/ml) was significantly greater than for bLH(Pit) but was reduced to 5.3 ng/ml following removal of terminal sialic acid. Removal of the subterminal Gal was without further effect. The Pmax for bLH(CHO) (180 ng/ml) was not altered by these treatments. The reduction in bLH(CHO) bioactivity caused by the presence of terminal sialic acid suggests that the presence of terminal sulfate on bLH(Pit) oligosaccharides may also reduce its bioactivity and may play a modulatory role in regulating hormone bioactivity.  相似文献   

13.
Previous studies have shown that the glycoprotein oligosaccharides synthesized by adult Schistosoma mansoni, the organism responsible for human schistosomiasis, are unusual in that they contain terminal beta-GalNAc residues and lack sialic acid. These observations and other studies indicating that schistosome glycoproteins and glycolipids are antigenic in infected animals led us to investigate the structures of the glycosphingolipids synthesized by these organisms and to determine whether they are structurally related to those synthesized by their vertebrate hosts. For our studies, adult schistosomes were metabolically radiolabeled with either [3H]galactose or [3H]glucosamine, and the newly synthesized glycosphingolipids were isolated and characterized. The major glycosphingolipids synthesized by adult schistosomes were found to be galactosylceramide and glucosylceramide. The adult worms synthesized no lactosylceramide (Gal beta 1-4Glc-ceramide), a common constituent of vertebrate cells; however, another disaccharide-containing glycosphingolipid cleavable by ceramide glycanase was found. The results of compositional and methylation analyses and exoglycosidase treatments demonstrated that this ceramide-disaccharide has the structure GalNAc beta 1-4Glc-ceramide. We also found that extracts of adult schistosomes are unable to transfer Gal from UDP-Gal to glucosylceramide, whereas extracts of Chinese hamster ovary cells, as a control, are able to do so, confirming that schistosomes are unable to synthesize lactosylceramide. Low levels of higher molecular weight glycosphingolipids were also found to be synthesized by adult schistosomes, and although their levels were too small to allow definitive characterization, compositional analyses indicated that they also contained GalNAc. We have tentatively designated the new disaccharide structure GalNAc beta 1, 4Glc- the "schistocore", which may represent a new type of glycosphingolipid core series.  相似文献   

14.
Wu AM  Wu JH  Tsai MS  Hegde GV  Inamdar SR  Swamy BM  Herp A 《Life sciences》2001,69(17):2039-2050
In order to investigate the functional roles of a phytopathogenic fungal lectin (SRL) isolated from the bodies of Sclerotium rolfsii, the binding properties of SRL were studied by enzyme linked lectinosorbent assay and by inhibition of SRL-glycan interaction. Among glycoproteins (gp) tested for binding, SRL reacted strongly with GalNAc alpha1-->4Ser/Thr (Tn) and/or Gal beta1-->3GalNAc alpha1-->(T(alpha)) containing gps: human T(alpha) and Tn glycophorin, asialo salivary gps, and asialofetuin, but its reactivity toward sialylated glycoproteins was reduced significantly. Of the sugar ligands tested for inhibition of SRL-asialofetuin binding, Thomsen-Friedenreich residue (T(alpha)) was the best, being 22.4 and 2.24 x 10(3) more active than GalNAc and Gal beta1--> residues, respectively. Other ligands tested were inactive. When the glycans used as inhibitors, T(alpha), and/or Tn containing gps, especially asialo PSM, asialo BSM, asialo OSM, active antifreeze gp, asialo glycophorin and Tn-glycophorin were very active, and 1.0 x 10(4) times more potent than GalNAc. From these results, it is clear that the combining site of SRL should be of a cavity type and recognizes only Tn and T(alpha) residues of glycans; it is suggested that T(alpha) and Tn glycotopes, which are present only in abnormal carbohydrate sequences of higher orders of mammal, are the most likely sites for phytopathogenic fungal attachment as an initial step of infection. The affinity of SRL for ligands can be ranked in decreasing order as follows: multivalent T(alpha) and Tn > monomeric T(alpha) and Tn > GalNAc > II (Gal beta1-->4GlcNAc), L (Gal beta1-->4Glc), and Gal.  相似文献   

15.
Isoglobotetraosylceramide (GalNAc(beta 1-3)Gal(alpha 1-3)Gal(beta 1-4)Glc (beta 1-1)Cer), the major glycolipid species in dimethylhydrazine-induced rat tumors of colorectal origin, was not detected in epithelial cells of normal colon but was present in the non-epithelial stroma and could be extracted from each of nine tumors studied. Monoclonal antibodies produced against isoglobotetraosylceramide detected this and another novel rat tumor-associated glycolipid not present in epithelial cells nor in non-epithelial stroma of normal rat colon (Brodin, T., Thurin, J., Str?mberg, N., Karlsson, K.-A. and Sj?gren, H.O. (1985) Eur. J. Immunol. 16, 951-956). This novel glycolipid was present in 8/9 of the studied tumors and was also present in two in vitro cell clones. These were originally obtained from a W49/T4 colon tumor isograft. The novel glycolipid was characterized by mass spectrometry, 1H-NMR, and methylation analysis as a hybrid between the isoglobo- and neolacto-series, with the structure GalNAc(beta 1-3)Gal(alpha 1-3)Gal(beta 1-4)GlcNA(beta 1-3)Gal (beta 1-4)Glc(beta 1-1)Cer.  相似文献   

16.
Siglec-7 is a sialic acid-binding lectin recently identified as an inhibitory receptor on natural killer cells. Here we characterize the sugar-binding specificity of Siglec-7 expressed on Chinese hamster ovary cells using polyvalent streptavidin-based glyco-probes. Glyco-probes carrying unique oligosaccharide structures such as GD3 (NeuAc alpha 2,8NeuAc alpha 2,3Gal beta 1,4Glc) and LSTb (Gal beta 1,3[NeuAc alpha 2,6]GlcNAc beta 1,3Gal beta 1,4Glc) oligosaccharides bound to Siglec-7 better than those carrying LSTc (NeuAc alpha 2,6Gal beta 1,4GlcNAc beta 1,3Gal beta 1,4Glc) or GD1a (NeuAc alpha 2,3Gal beta 1,3GalNAc beta 1,4[NeuAc alpha 2,3]Gal beta 1,4Glc) oligosaccharides. In contrast, Siglec-9, which is 84% identical to Siglec-7, did not bind to the GD3 and LSTb probes but did bind to the LSTc and GD1a probes. To identify a region(s) responsible for their difference in binding specificity, we prepared a series of V-set domain chimeras between Siglecs-7 and -9. Substitution of a small region, Asn(70)-Lys(75), of Siglec-7 with the equivalent region of Siglec-9 resulted in loss of Siglec-7-like binding specificity and acquisition of Siglec-9-like binding properties. In comparison, a Siglec-9-based chimera, which contains Asn(70)-Lys(75) with additional amino acids derived from Siglec-7, exhibited Siglec-7-like specificity. These results, combined with molecular modeling, suggest that the C-C' loop in the sugar-binding domain plays a major role in determining the binding specificities of Siglecs-7 and -9.  相似文献   

17.
Wu AM  Wu JH  Liu JH  Singh T 《Life sciences》2004,74(14):1763-1779
Bauhinia purpurea agglutinin (BPA) is a Galbeta1-3GalNAc (T) specific leguminous lectin that has been widely used in multifarious cytochemical and immunological studies of cells and tissues under pathological or malignant conditions. Despite these diverse applications, knowledge of its carbohydrate specificity was mainly limited to molecular or submolecular T disaccharides. Thus, the requirement of high density polyvalent or multi-antennary carbohydrate structural units for BPA binding and an updated affinity profile were further evaluated by enzyme-linked lectinosorbent (ELLSA) and inhibition assays. Among the glycoproteins (gps) tested and expressed as 50% nanogram inhibition, the high density polyvalent GalNAcalpha1-Ser/Thr (Tn) and Galbeta1-3/4GlcNAc (I/II) glycotopes present on macromolecules generated a great enhancement of binding affinity for BPA as compared to their monomers. The most potent inhibitors were a Tn-containing gp (asialo OSM) and a I/II containing gp (human blood group precursor gp), which were up to 1.7 x 10(4) and 2.3 x 10(3) times more potent than monovalent Gal and GalNAc, respectively. However, multi-antennary glycopeptides, such as tri-antennary Galbeta1-4GlcNAc, which was slightly more active than II or Gal, gave only a minor contribution. Regarding the carbohydrate structural units studied by the inhibition assay, blood group GalNAcbeta1-3/4Gal (P/S) active glycotopes were active ligands. The overall binding profile of BPA was: high density polyvalent T/Tn and II clusters > Tn-glycopeptides (M.W. <3.0 x 10(3))/Talpha monomer > monovalent P/S > Tn monomer and GalNAc > tri-antennary II > Gal > Man and Glc (inactive). These findings give evidence for the binding of this lectin to dense cell surface T, Tn and I/II glycoconjugates and should facilitate future usage of this lectin in biotechnological and medical applications.  相似文献   

18.
Endo-alpha-N-acetylgalactosaminidase (endo-alpha-GalNAc-ase) catalyzes the hydrolysis of the O-glycosidic bond between alpha-GalNAc at the reducing end of mucin-type sugar chains and serine/threonine of proteins to release oligosaccharides. Previously, we identified the gene engBF encoding endo-alpha-GalNAc-ase from Bifidobacterium longum, which specifically released the disaccharide Gal beta 1-3GalNAc (Fujita K, Oura F, Nagamine N, Katayama T, Hiratake J, Sakata K, Kumagai H, Yamamoto K. 2005. Identification and molecular cloning of a novel glycoside hydrolase family of core 1 type O-glycan-specific endo-alpha-N-acetylgalactosaminidase from Bifidobacterium longum. J Biol Chem. 280:37415-37422). Here we cloned a similar gene named engCP from Clostridium perfringens, a pathogenic enterobacterium, and characterized the gene product EngCP. Detailed analyses on substrate specificities of EngCP and EngBF using a series of p-nitrophenyl-alpha-glycosides chemically synthesized by the di-tert-butylsilylene-directed method revealed that both enzymes released Hex/HexNAc beta 1-3GalNAc (Hex = Gal or Glc). EngCP could also release the core 2 trisaccharide Gal beta 1-3(GlcNAc beta 1-6)GalNAc, core 8 disaccharide Gal alpha 1-3GalNAc, and monosaccharide GalNAc. Our results suggest that EngCP possesses broader substrate specificity than EngBF. Actions of the two enzymes on native glycoproteins and cell surface glycoproteins were also investigated.  相似文献   

19.
Recombinant expression systems differ in the type of glycosylation they impart on expressed antigens such as the human immunodeficiency virus type 1 (HIV-1) envelope glycoproteins, potentially affecting their biological properties. We performed head-to-head antigenic, immunogenic and molecular profiling of two distantly related Env surface (gp120) antigens produced in different systems: (a) mammalian (293 FreeStyle™ cells; 293F) cells in the presence of kifunensine, which impart only high-mannose glycans; (b) insect cells (Spodoptera frugiperda, Sf9), which confer mainly paucimannosidic glycans; (c) Sf9 cells recombinant for mammalian glycosylation enzymes (Sf9 Mimic™), which impart high-mannose, hybrid and complex glycans without sialic acid; and (d) 293F cells, which impart high-mannose, hybrid and complex glycans with sialic acid. Molecular models revealed a significant difference in gp120 glycan coverage between the Sf9-derived and wild-type mammalian-cell-derived material that is predicted to affect ligand binding sites proximal to glycans. Modeling of solvent-exposed surface electrostatic potentials showed that sialic acid imparts a significant negative surface charge that may influence gp120 antigenicity and immunogenicity. Gp120 expressed in systems that do not incorporate sialic acid displayed increased ligand binding to the CD4 binding and CD4-induced sites compared to those expressed in the system that do, and imparted other more subtle differences in antigenicity in a gp120 subtype-specific manner. Non-sialic-acid-containing gp120 was significantly more immunogenic than the sialylated version when administered in two different adjuvants, and induced higher titers of antibodies competing for CD4 binding site ligand-gp120 interaction. These findings suggest that non-sialic-acid-imparting systems yield gp120 immunogens with modified antigenic and immunogenic properties, considerations that should be considered when selecting expression systems for glycosylated antigens to be used for structure-function studies and for vaccine use.  相似文献   

20.
Aryl-N-acetyl-alpha-galactosaminides (aryl-GalNAc) are acceptor substrates for UDP-Gal:alpha-GalNAc beta 1-3 galactosyltransferase and, in vivo, aryl-GalNAc have been shown to inhibit O-linked oligosaccharide biosynthesis (Kuan et al., J. Biol. Chem. 264, 19271, 1989). Since aryl-GalNAc, appears to enter viable cells and serve as an acceptor for O-glycosylation enzymes, the recovery and characterization of the aryl-oligosaccharides from cell culture medium may reflect cellular pattems of O-glycosylation. To pursue this possibility, the following paranitrophenyl-linked oligosaccharide standards were enzymatically synthesized and characterized by 1H-NMR: Gal beta 1-3(GlcNAc beta 1-6)Gal-NAc alpha-pNp; Gal beta 1-3(Gal beta 1-4GlcNAc beta 1-6)GalNAc alpha-pNp; SA alpha 2-3Gal beta 1-3(SA alpha 2-3Gal beta 1-4GlcNAc,beta 1-6)GalNAc alpha-pNp; SA alpha 2-3Gal beta 1-3GalNAc alpha-pNp. As a model system, MDAY-D2 lymphoid tumour cells were cultured for various periods in medium containing 2 mM GalNAc alpha-pNp. The secreted aryl-oligosaccharides were separated by Biogel P2 chromatography and DEAE HPLC, followed by further fractionation of the disialyl oligosaccharides on an Ultrahydrogel HPLC column. Absorbance of the paranitrophenyl aryl constituent at 303 nm allowed detection at the 10 pmol level and provided a relatively specific means of following the oligosaccharides. MDAY-D2 cells produced disialylated aryl-oligosaccharides at a rate of 20 pmol/h/10(6) cells with a half-time of transit to the cell surface of 13.6 min, a rate consistent with their movement from the Golgi to the cell surface by bulk flow.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号