首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Employing the metallochromic dye murexide and by monitoring the uptake of radiolabelled calcium, photoreversible calcium fluxes were measured in wheat leaf protoplast suspensions. Results obtained by both methods were identical — red light promoted and subsequent far-red irradiation reversed an influx of Ca++ ions into the protoplasts. These findings imply phytochrome regulation of Ca++ fluxes across the plasma membrane. The influx of Ca++ stimulated by 2 min red irradiation could be maintained in total darkness for the initial 16–18 min after illumination, after which a 6–8 min efflux process was triggered and the basal Ca++ level restored. Verapamil, a calcium channel blocker, inhibited the red-promoted influx, whereas the far-red mediated efflux could be checked by the use of the ATPase inhibitor vanadate, and also by the calmodulin antagonist chlorpromazine, thus suggesting a role of ion channels and pumps in phytochrome-controlled Ca++ fluxes. The possible involvement of phosphoinositides in phytochrome-modulated calcium fluxes was also investigated.Abbreviations A difference in absorbance - CPZ chlorpromazine - FR far-red (light) - MX murexide - PI phosphatidylinositol - PIP2 phosphatidylinositol 4, 5-bisphosphate - PIPES piperazine-N,N-bis[2-ethanesulfonic acid] - POPOP 1, 4-bis [2-(5-phenyl-1, 3-oxazolyl)]-benzene - PPO 2, 5-diphenyl-1, 3-oxazole - R red (light) - SOV sodium orthovanadate  相似文献   

2.
Etiolated wheat (Triticum aestivum L.) mesophyll protoplasts swell within 30 min in darkness after a red light (R) pulse or addition of acetylcholine (ACh), if 0.5 mM CaCl2 is present in the medium. In addition, ACh is also able to induce swelling in the presence of both 0.1 mM KCl or NaCl. Besides ACh, only carbamylcholine out of the choline derivatives tested was active in induction of swelling in the presence of K+ or Na+. The K+/Na+-dependent ACh-induced protoplast swelling was nullified by a ‘calmodulin inhibitor’, but not by Ca2+-channel blockers, Li+ or VO 4 3- . The antagonists atropine (of muscarine-sensitive ACh receptors, mAChRs) andd-tubocurarine (of nicotine-sensitive ACh receptors, nAChRs) nullified the Ca2+ — and the K+/Na+-dependent protoplast swelling responses, respectively, while having no effect on the Ca2+-dependent R-induced swelling response. Moreover, muscarine and nicotine mimicked ACh in the Ca2+- and K+/Na+-dependent swelling responses respectively. Just as is the case in animal cells, the proposed mAChRs appear to be associated with a phosphatidylinositol-dependent pathway, whereas the proposed nAChRs are phosphatidylinositol independent. Similarity between the action of ACh via the proposed mChRs and R via phytochrome in protoplast swelling indicates they share in common signal-transduction pathway. We dedicate this paper to Hans Mohr on the occasion of his 60th birthday We thank the Department of Molecular Biology of the Agricultural University, Wageningen for the use of the photomicroscope and Dr. G. Fassina, Department of Pharmacology, University of Padua, Italy for the gift of nifedipine. These studies were supported by The Foundation for Fundamental Biological Research (BION) which is subsidized by The Netherlands Organization for the Advancement of Research (NWO). A.T. was also supported by: a Research Fellowship from the Agricultural University, Wageningen; a Visitors Fellowship from NWO, the Netherlands; RP II 12.15 from Ministry of Education, Poland.  相似文献   

3.
Ca2+ is proposed to function as a messenger in such phytochrome-mediated responses as localized cell growth, intracellular movements, and control of plasma membrane properties. To test this hypothesis, the uptake of Ca2+ in irradiated and non-irradiated regions of individual threads of the green alga Mougeotia was studied with the aid of 45Ca2+ and low temperature autoradiography: 10–20 cells within 40–60 cell-long threads were irradiated for up to 1 min, transferred to darkness for 3 to 10 min, submersed in a radioactive medium for 1 min, washed in an unlabelled medium for 30 min, and then autoradiographed at-80° C for several days.The autoradiographs show that those cells which had been pre-irradiated with red light did take up 2–10 times more Ca2+ than the adjacent non-irradiated cells of the same thread. Cells pre-irradiated with farred light or red light followed by far-red light showed no enhanced uptake of Ca2+. These results might be interpreted to indicate, firstly, that phytochrome-Pfr is involved in the enhanced uptake of Ca2+ and secondly, that the accumulation of radioactive Ca2+ in red light irradiated cells is an expression of an increased intracellular concentration of Ca2+. This interpretation is based on the data that (i) the dark interval between irradiation and labelling precluded the involvement of photosynthesis, (ii) the effect of red light was reversible with far-red light, and (iii) the accumulation of Ca2+ persisted during the long wash-out period. We speculate, that the red light-enhanced accumulation of Ca2+ in Mougeotia cells is caused by a Pfr-mediated increase of the Ca-permeability of the plasma membrane, and perhaps by a Pfr-impeding of an active Ca2+-extrusion.Abbreviations APW artificial pond water - EGTA ethylene glycol-bis-(-amino ethyle ether) N,N-tetraacetic acid - R red irradiation - D darkness - FR far-red irradiation - Pfr physiologicallyactive form of phytochrome - Pr physiologically inactive form of phytochrome This paper is part of a Ph. D. Thesis submitted to the University of Erlangen-Nürnberg by E.M. Dreyer  相似文献   

4.
Isolated internodes of Nitella (N. opaca, N. flexilis) and Nitellopsis spec. were punctured with single microelectrodes and their membrane potentials were recorded continuously during various light treatments. In red light the initial response was always a depolarization. This depolarization began with a lag-time of 0.4-3.5s and reached a steady state within 1–2 min of continuous illumination. Repolarization began within several seconds after turning off the light. The magnitude of the red-light-induced depolarization increased with the Ca2+-concentration of the medium. The largest depolarizations were recorded in 5 m mol l-1 Ca2+. Ca2+ could not be replaced in this function by Na+, Mg2+, La3+ or mannitol. Far-red light alone had no effect on the resting membrane potential. Far-red light applied immediately after red light accelerated the repolarization of the membrane potential. Far-red light applied simultaneously with red light reduced the amount of depolarization and increased the rate of repolarization. The results indicate that phytochrome and Ca2+ are involved in the light-induced depolarization of the membrane. They are consistent with the hypothesis that phytochrome may act by triggering a Ca2+-influx at the plasma membrane.Abbreviations APW artificial pond water - Pfr far-red absorbing form of phytochrome - DCMU 3-(3,4-Dichlorphenyl)-1,1-dimethylurea  相似文献   

5.
Phytochrome-mediated germination of fern spores of Dryopteris paleacea Sw. was initiated by a saturating red-light (R) irradiation after 20 h of imbibition. For its realization external Ca2+ was required, with a threshold at a submicromolar concentration, and an optimum was reached around 10-4 M. At concentrations 10-1 M only a reduced response was obtained, based probably on an unspecific osmotic or ionic effect. The germination response was inhibited by La3+, an antagonist of Ca2+. From these results it is concluded that Ca2+ influx from the medium into the spores may be an important event in phytochrome-mediated germination. In the absence of Ca2+ the R-stimulated system remained capable of responding to Ca2+, added as late as 40 h after R. Moreover, Ca2+ was effective even if added after the active form of phytochrome, Pfr, had been abolished by far-red (FR) 24 h after R. Thus, the primary effect of Pfr, that initiates the transduction chain, does not require calcium. Coupling of Pfr to subsequent dark reactions has been investigated by R-FR irradiations with various dark intervals. The resulting escape kinetics were characterized by a lag phase (6 h) and half-maximal escape from FR reversibility (19 h). These kinetics were not significantly changed by the presence or absence of calcium. Thus, direct interaction of Pfr and calcium is not a step in the transduction chain initiated by the active form of photochrome.Abbreviations EGTA ethyleneglycol-bis(-aminoethyl ether)-N,N,N,N-tetraacetic acid - FR far-red light - Pr red-light-absorbing form of phytochrome - Pfr far red-light-absorbing form of phytochrome - Pipes piperazine-1,4-bis(2-ethanesulfonic acid) - R red light A preliminary report of this work was presented at the XIV Int. Bot. Congr., Berlin (West), Germany, Book of Abstracts, 2-116a-5 (1987)  相似文献   

6.
Using lettuce (Lactuca sativa L., cv. Grand Rapids) embryos in osmotica, we have demonstrated that when the growth rates of the embryonic axes of seeds treated with red (R) or far-red (FR) light are equalized, the axes of R-treated seeds develop a 3.4-bar decrease in water potential (paper No. III).As axial growth begins, reserve protein and phytin decrease rapidly, concomitant with increases in reducing sugars, -amino nitrogen, and inorganic and esterified soluble phosphates. However, no differences between the axes of R-and FR-treated seeds are found with respect to the changes in these compounds, indicating that these changes arise as a result of growth and are not under immediate phytochrome control. Little change in the total lipid content is found in either treatment. The axes of FR-treated seeds hydrolyze endogenous sucrose at a greater rate thant those of R-treated seeds. Axes of R-treated seeds accumulate K+ and Na+ to a greater extent than those of FR-treated seeds. When potassium salts are added to the incubation medium, R induces increased K+ uptake by the axis and greater medium acidification by the axis. Malate and other organic acids and acidic amino acids increase at equal rates in both treatments, indicating that inorganic anions may also be taken up to balance the ionic charges. The results are compatible with the assumption that changes in the osmotic and pressure potentials of the embryonic axes of R-treated seeds are the result of a phytochrome-stimulated proton pump which, in whole dormant seeds, would initiate water-potential changes allowing the embryos to overcome the mechanical restraint of the surrounding seed layers, resulting in germination.Abbreviations FR far-red light - PEG polyethylene glyeol 4000 - Pfr far-red-absorbing form of phytochrome - R red light III=Carpita et al. 1979  相似文献   

7.
D. C. Morgan  T. O'Brien  H. Smith 《Planta》1980,150(2):95-101
Treatment of the whole of aSinapis alba plant with supplementary far-red light (FR), in back-ground white light (WL), induces a rapid increase in stem extension rate. This rapid increase is regulated by the light environment of the stem itself. Supplementary FR to the stem increases extension rate after a lag period of 10–15 min. A lag period of 3–4 h follows FR irradiation of the leaf, before an increase in extension rate is detectable. When the stem is given supplementary FR, the change in extension rate which is induced increases with increasing FR fluence rate, and with decreasing phytochrome photoequilibrium. There is no difference between the effects of supplementary FR max 719 nm and supplementary FR max 739 nm for these relationships. The increase in extension rate induced by supplementary FR is reversed by an increase in the fluence rate of red light (R). These data indicate that the response is controlled by phytochrome photoequilibrium.Abbreviations B blue light - FR far-red light - R red light - WL white light - Pfr far-red absorbing form of phytochrome - Pr red absorbing form of phytochrome - Ptot total phytochrome level (=Pr+Pfr); -Pfr/Ptot, measured - ER difference in stem extension rate, before and after treatment  相似文献   

8.
Peter J. Watson  Harry Smith 《Planta》1982,154(2):121-127
The results reported in this paper provide strong evidence to support the belief that the small percentage of phytochrome recovered in low-speed centrifugation pellets, when prepared in the absence of divalent cations after various in vivo irradiations, is not simply a manifestation of non-specific co-precipitation of soluble phytochrome.The far-red reversibility of the observed near-doubling of phytochrome pelletability after in vivo red irradiation indicates that phytochrome pelletability in the absence of divalent cations is a phytochrome-controlled response. The characteristics of the pelleted phytochrome indicate a strong, hydrophobic interaction with membranes. A tentative proposal to explain the observed characteristics of the association of phytochrome with membranous material in the absence of divalent cations after different in vivo irradiations has been put forward.Abbreviations Pfr phytochrome in the far-red light absorbing form - Pr phytochrome in the fat-red light absorbing form - Ptot total phytochrome - R red light irradiation - FR far-red light irradiation  相似文献   

9.
Germination of certain dry seeds (achenes) of Lactuca sativa L. cv. Grand Rapids was increased to ca. 75% after irradiation with 665 nm red light (R; 1x103 J m-2); this response was eliminated by far-red light (FR) following the R. The response of dry seeds required an order of magnitude more light than that of wetted seeds, and was not maximal until 48 h after irradiation. Other seeds, which could not be stimulated by R in dry state, showed a partial response after 10 min hydration. Irradiation of dry seeds (or seeds wetted 1 h) with FR (1x103 J m-2) reduced dark germination from 26% to 2%. Seeds dehydrated in an oven (60°C, 90 min) showed a decrease in germination if irradiated with R (1x105 J m-2) before wetting. The results show that phytochrome is present in dry lettuce seeds (and functional in some seed lots) prior to wetting; and that in other seed lots the molecule becomes functional within minutes after wetting the seeds. Transformation of the FR absorbing from of phytochrome (PFR) to the inactive from (PR) occurs at lower seed moisture content than the reverse reaction. It appears that dormancy in seeds ripened in sunlight might be assured during seed drying and maturation by the more effective transformation of PFR to PR than vice versa as phytochrome is dehydrated.Abbreviations FR far-red - R red - CAL seeds from California - NC seeds from North Carolina (see text)  相似文献   

10.
H. Gabryś 《Planta》1985,166(1):134-140
The profile-to-face chloroplast movement in the green alga Mougeotia has been induced by strong blue and near-ultraviolet light pulses (6 J m-2). Simultaneously, strong red or far-red light (10 W m-2) was applied perpendicularly to the inducing beam. The response was measured photometrically. Against the far-red background the reciprocity law was found to hold for pulse durations varying two orders of magnitude. The action spectrum exhibited a maximum near 450 nm and a distinct increase in near-ultraviolet. The time-course and the spectral dependence of pulse responses of chloroplasts in Mougeotia were similar to those recorded for other plants which are sensitive only to blue. This points to an alternative sensor system active in the short-wavelength region in addition to the phytochrome system.Abbreviations FR far-red light - Pr red absorbing form of phytochrome - Pfr far-red absorbing form of phytochrome - R red light This paper is dedicated to the memory of Professor Jan Zurzycki  相似文献   

11.
V. Speth  V. Otto  E. Schäfer 《Planta》1987,171(3):332-338
The intracellular localisation of phytochrome and ubiquitin in irradiated oat coleoptiles was analysed by electron microscopy. We applied indirect immunolabeling with polyclonal antibodies against phytochrome from etiolated oat seedlings or polyclonal antibodies against ubiquitin from rabbit reticulocytes, together with a goldcoupled second antibody, on serial ultrathin sections of resin-embedded material. Immediately after a 5-min pulse of red light-converting phytochrome from the red-absorbing (Pr) to the far-redabsorbing (Pfr) form-the label for phytochrome was found to be sequestered in electron-dense areas. For up to 2 h after irradiation, the size of these areas increased with increasing dark periods. The ubiquitin label was found in the same electrondense areas only after a dark period of 30 min. A 5 min pulse of far-red light, which reverts Pfr to Pr, given immediately after the red light did not cause the electron-dense structures to disappear; moreover, they contained the phytochrome label immediately after the far-red pulse. In contrast, after the reverting far-red light pulse, ubiquitin could only be visualised in the electron-dense areas after prolonged dark periods (i.e. 60 min). The relevance of these data to light-induced phytochrome pelletability and to the destruction of both Pr and Pfr is discussed.Abbreviations FR far-red light; Pfr - Pr far-red-absorbing and red-absorbing forms of phytochrome, respectively - R red light  相似文献   

12.
H. Yatsuhashi  A. Kadota  M. Wada 《Planta》1985,165(1):43-50
An action spectrum for the low-fluencerate response of chloroplast movement in protonemata of the fern Adiantum capillus-veneris L. was determined using polarized light vibrating perpendicularly to the protonema axis. The spectrum had several peaks in the blue region around 450 nm and one in the red region at 680 nm, the blue peaks being higher than the red one. The red-light action was suppressed by nonpolarized far-red light given simultaneously or alternately, whereas the bluelight action was not. Chloroplast movement was also induced by a local irradiation with a narrow beam of monochromatic light. A beam of blue light at low energy fluence rates (7.3·10-3-1.0 W m-2) caused movement of the chloroplasts to the beam area (positive response), while one at high fluence rates (10 W m-2 and higher) caused movement to outside of the beam area (negative response). A red beam caused a positive response at fluence rates up to 100 W m-2, but a negative response at very high fluence rates (230 and 470 W m-2). When a far-red beam was combined with total background irradiation with red light at fluence rates causing a low-fluence-rate response in whole cells, chloroplasts moved out of the beam area. When blue light was used as background irradiation, however, a narrow far-red beam had no effect on chloroplast distribution. These results indicate that the light-oriented movement of Adiantum chloroplasts is caused by red and blue light, mediated by phytochrome and another, unidentified photoreceptor(s), respectively. This movement depends on a local gradient of the far-red-absorbing form of phytochrome or of a photoexcited blue-light photoreceptor, and it includes positive and negative responses for both red and blue light.Abbreviations BL blue light - FR far-red light - Pfr far-red-absorbing form of phytochrome - Pr red-absorbing form of phytochrome - R red light - UV ultraviolet  相似文献   

13.
The effect of external Ca2+ and Ca2+-channel modulators on the phytochrome-controlled swelling of etiolated wheat ( Triticum aestivum L. cv. Arminda) mesophyll protoplasts has been studied. The red light (R)-stimulated swelling of the protoplasts requires Ca2+ in the surrounding medium and maximum response was observed in a medium containing I m M CaCI2. Far-red light (FR) irradiation of protoplasts in the presence or absence of Ca2+ does not influence the protoplast volume. The Ca2+-channel antagonist nifedipine prevents R-induced protoplast swelling at very low concentrations (0.1 μ M ). The Ca2+ -channel agonist Bay K-8644 stimulates the swelling of protoplasts incubated in darkness or irradiated with FR. Action of nifedipine depends on whether it is applied before or after the R pulse. The results are compatible with the hypothesis that phytochrome controls the activity of dihydropyridine-sensitive L-type Ca2+ channels.  相似文献   

14.
When prothalli ofAdiantum capillus-veneris L. were kept for 2 d in the dark, chloroplasts gathered along the anticlinal walls (Kagawa and Wada, 1994, J Plant Res 107: 389–398). In these dark-adapted prothallial cells, irradiation with a microbeam (10 gm in diameter) of red (R) or blue light (B) for 60 s moved the chloroplasts towards the irradiated locus during a subsequent dark period. Chloroplasts located less than 20 gm from the center of the R microbeam (18 J·m–2) moved towards the irradiated locus. The higher the fluence of the light, the greater the distance from which chloroplasts could be attracted. The B microbeam was less effective than the R microbeam. Chloroplasts started to move anytime up to 20 min after the R stimulus, but with the B microbeam the effect of the stimulus was usually apparent within 10 min after irradiation. The velocity of chloroplast migration was independent of light-fluence in both R and B and was about - 0.3 m·min–1 between 15 min and 30 min after irradiation. Whole-cell irradiation with far-red light immediately after R- and B-microbeam irradiations demonstrated that these responses were mediated by phytochrome and a blue-light-absorbing pigment, respectively. Sequential treatment with R and B microbeams, whose fluence rates were less than the threshold values when applied separately, resulted in an additive effect and induced chloroplast movement, strongly suggesting that signals from phytochrome and the blue-light-absorbing pigment could interact at some point before the induction of chloroplast movement.Abbreviations B blue light - FR far-red light - IR infrared light - R red light  相似文献   

15.
In caulonemal filaments of the mossPhyscomitrella patens (Hedw.), red light triggers a phytochrome-mediated transient depolarisation of the plasma membrane and the formation of side branch initials. Three-electrode voltage clamp and ion flux measurements were employed to elucidate the ionic mechanism and physiological relevance of the red-light-induced changes in ion transport. Current-voltage analyses indicated that ion channels permeable to K+ and Ca2+ are activated at the peak of the depolarisation. Calcium influx evoked by red light coincided with the depolarisation in various conditions, suggesting the involvement of voltage-gated Ca2+ channels. Respective K+ fluxes showed a small initial influx followed by a dramatic transient efflux. A role of anion channels in the depolarising current is suggested by the finding that Cl efflux was also increased after red light irradiation. In the presence of tetraethylammonium (10 mM) or niflumic acid (1 M), which block the red-light-induced membrane depolarisation and ion fluxes, the red-light-promoted formation of side branch initials was also abolished. Lanthanum (100 M), which inhibits K+ fluxes and part of the initial Ca2+ influx activated by red light, reduced the development of side branch initials in red light by 50%. The results suggest a causal link between the red-light-induced ion fluxes and the physiological response. The sequence of events underlying the red-light-triggered membrane potential transient and the role of ion transport in stimulus-response coupling are discussed in terms of a new model for ion-channel interaction at the plasma membrane during signalling.Abbreviations [Ca2+]c cytosolic free Ca2+ - I-V current-voltage - E equilibrium potential - Pr red-light-absorbing phytochrome form - Pr far-red-light-absorbing phytochrome form - SPQ 6-methoxy-l-(3-sulphonatopropyl)quinolinium - TEA tetraethylammonium  相似文献   

16.
M. G. Holmes  W. H. Klein 《Planta》1985,166(3):348-353
Observations made with primary leaves of Phaseolus vulgaris L. demonstrated that phytochrome modulates light-induced stomatal movement. Removal of the far-red-absorbing form of the pigment (Pfr) with far-red (FR) radiation decreased the time required by the stomata to reach maximal opening following a dark-to-light transition; this effect of FR was fully reversible with red. Removal of Pfr with FR also decreased the time required to reach maximal closure following a light-to-dark transition, and the rate of closure was dependent on the final irradiation treatment before darkness. No evidence was found for phytochrome involvement in determining stomatal aperture under constant conditions of either darkness of light.Abbreviations and symbols Chl chlorophyll - D darkness - FR far-red - phytochrome photostationary state - Pfr, Pr FR- and R-absorbing forms of phytochrome, respectively - R red  相似文献   

17.
M. G. Holmes  E. Schäfer 《Planta》1981,153(3):267-272
Detailed action spectra are presented for the inhibition of hypocotyl extension in dark-grown Sinapis alba L. seedlings by continuous (24 h) narrow waveband monochromatic light between 336 nm and 783 nm. The results show four distinct wavebands of major inhibitory action; these are centred in the ultra-violet (max=367 nm), blue (max=446 nm), red (max=653 nm) and far-red (max=712 nm) wavebands. Previous irradiation of the plants with red light (which also decreases Ptot) causes decreased inhibitory action by all wavelengths except those responsible for the red light inhibitory response. Pre-irradiation did not alter the wavelength of the action maxima. It is concluded that ultra-violet and blue light act mainly on a photoreceptor which is different from phytochrome.Abbreviations B blue - D dark - FR far-red - HIR high irradiance reaction - HW half power bandwith - Pr R absorbing form of phytochrome - Pfr FR absorbing form of phytochrome - Ptot total phytochrome=Pr+Pfr - R red - UV ultra violet  相似文献   

18.
Jorge J. Casal  Harry Smith 《Planta》1988,176(2):277-282
Under continuous white light (WL), extension growth of the first internode in Sinapis alba L. was promoted by low red (R): far-red (FR) ratios reaching the stem and-or the leaves. Conversely, the growth promotion by end-of-day light treatments was only triggered by FR perceived by the leaves and cotyledons, while FR given to the growning internode alone was tatally ineffective. Continuous WL+FR given to the internode was also in-effective if the rest of the shoot remained in darkness. Both the background stem growth, and the growth promotion caused by either an end-of-day FR pulse or continuous WL+FR given to the internode, increased with increasing fluence rates of WL given to the rest of the shoot. The increase by WL of the growth-stimulatory effect of low phytochrome photoequilibria in the internode appears to be mediated by a specific blue-light-absorbing photoreceptor, as blue-deficient light from sodium-discharge lamps, or from filtered fluorescent tubes, promoted background stem growth similarly to WL but did not amplify the response to the R:FR ratio in the internode. Supplementing the blue-deficient light (94 mol·m-2·s-1) with low fluence rates of blue (<9 mol·m-2·s-1) restored the promotive effect of low R:FR reaching the internode.Abbreviations BL blue light - FR far-red light - PAR photosynthetically active radiation - Pfr/P ratio between the FR-absorbing form and total phytochrome - R red light - SOX low-pressure sodium lamp - WL white light Supported by the Consejo Nacional de Investigaciones Cientificas y Técnicas (República Argentina) and the ORS scheme (UK)  相似文献   

19.
A comparison of the photoregulation of development has been made for etiolated and light-grown plants of wild-type (WT) tobacco (Nicotiana tabacun L.) and an isogenic transgenic line which expresses an introduced oat phytochrome gene (phyA) under the control of a constitutive viral promoter. Etiolated seedlings of both the WT and transgenic line showed irradiance-dependent inhibition of hypocotyl growth under continuous far-red (FR) light; transgenic seedlings showed a greater level of inhibition under a given fluence rate and this is considered to be the result of the heterologous phytochrome protein (PhyA) functioning in a compatible manner with the native etiolated phytochrome. Deetiolation of WT seedlings resulted in a loss of responsiveness to prolonged FR. Light-grown transgenic seedlings, however, continued to respond in an irradiance-dependent manner to prolonged FR and it is proposed that this is a specific function of the constitutive PhyA. Mature green plants of the WT and transgenic lines showed a qualitatively similar growth promotion to a brief end-of-day FR-treatment but this response was abolished in the transgenic plants under prolonged irradiation by this same FR source. Growth inhibition (McCormac et al. 1991, Planta 185, 162–170) and enhanced levels of nitrate-reductase activity under irradiance of low red:far-red ratio, as achieved by the FR-supplementation of white light, emphasised that the introduced PhyA was eliciting an aberrant mode of photoresponse compared with the normal phytochrome population of light-grown plants. Total levels of the oat-encoded phytochrome in the etiolated transgenic tobacco were shown to be influenced by the wavelength of continuous irradiation in a manner which was qualitatively similar to that seen for the native, etiolated tobacco phytochrome, and distinct from that seen in etiolated oat tissues. These results are discussed in terms of the proposal that the constitutive oat-PhyA pool in the transgenic plants leads to a persistence of a mode of response normally restricted to the situation in etiolated plants.Abbreviations FR far-red light - R red light - WL white light - WL + FR white light supplemented with FR - HIR high-irradiance response - PAR photosynthetically active radiation - Pr, Pfr R- and FR-absorbing forms of phytochrome - Ptot total phytochrome - phyA (PhyA) gene (encoded protein) for phytochrome - WT wild type This work was supported by an Agricultural and Food Research Council research grant to H.S. and A.M.; J.R. Cherry and R.D. Vierstra, (Department of Horticulture, University of Wisconsin-Madison, USA) are thanked for the provision of the transgenic tobacco line.  相似文献   

20.
Loss of a blue-light photoreceptor in the hy4 mutants of Arabidopsis thaliana (L.) Heynh substantially delayed flowering (>100 d to flower vs. 40–50 d), especially with blue light exposure from lamps lacking much red (R) and/or far-red (FR) light. Red night breaks were promotory but flowering was still later for the hy4-101 mutant. However, with exposure to light from FR-rich lamps, flowering of all mutants was early and no different from the wild type. Thus, flowering of Arabidopsis involves a blue-light photoreceptor and other, often more effective photoreceptors. The latter may involve phytochrome photoresponses to R and FR, but with little or no phytochrome response to blue wavelengths.Abbreviations HIR high irradiance response - FR far-red - R red - WT wild type  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号