首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A proposed mechanism for metabolic flow regulation involves the saturation-dependent release of ATP by red blood cells, which triggers an upstream conducted response signal and arteriolar vasodilation. To analyze this mechanism, a theoretical model is used to simulate the variation of oxygen and ATP levels along a flow pathway of seven representative segments, including two vasoactive arteriolar segments. The conducted response signal is defined by integrating the ATP concentration along the vascular pathway, assuming exponential decay of the signal in the upstream direction with a length constant of approximately 1 cm. Arteriolar tone depends on the conducted metabolic signal and on local wall shear stress and wall tension. Arteriolar diameters are calculated based on vascular smooth muscle mechanics. The model predicts that conducted responses stimulated by ATP release in venules and propagated to arterioles can account for increases in perfusion in response to increased oxygen demand that are consistent with experimental findings at low to moderate oxygen consumption rates. Myogenic and shear-dependent responses are found to act in opposition to this mechanism of metabolic flow regulation.  相似文献   

2.
The autoregulation of blood flow, the maintenance of almost constant blood flow in the face of variations in arterial pressure, is characteristic of many tissue types. Here, contributions to the autoregulation of pressure-dependent, shear stress-dependent, and metabolic vasoactive responses are analyzed using a theoretical model. Seven segments, connected in series, represent classes of vessels: arteries, large arterioles, small arterioles, capillaries, small venules, large venules, and veins. The large and small arterioles respond actively to local changes in pressure and wall shear stress and to the downstream metabolic state communicated via conducted responses. All other segments are considered fixed resistances. The myogenic, shear-dependent, and metabolic responses of the arteriolar segments are represented by a theoretical model based on experimental data from isolated vessels. To assess autoregulation, the predicted flow at an arterial pressure of 130 mmHg is compared with that at 80 mmHg. If the degree of vascular smooth muscle activation is held constant at 0.5, there is a fivefold increase in blood flow. When myogenic variation of tone is included, flow increases by a factor of 1.66 over the same pressure range, indicating weak autoregulation. The inclusion of both myogenic and shear-dependent responses results in an increase in flow by a factor of 2.43. A further addition of the metabolic response produces strong autoregulation with flow increasing by a factor of 1.18 and gives results consistent with experimental observation. The model results indicate that the combined effects of myogenic and metabolic regulation overcome the vasodilatory effect of the shear response and lead to the autoregulation of blood flow.  相似文献   

3.
A growing number of studies support an important contribution of astrocytes to neurovascular coupling, i.e., the phenomenon by which variations in neuronal activity trigger localized changes in blood flow that serve to match the metabolic demands of neurons. However, since both constriction and dilations have been observed in brain parenchymal arterioles upon astrocyte stimulation, the specific influences of these cells on the vasculature remain unclear. Using acute brain slices, we present evidence showing that the specific degree of constriction of rat cortical arterioles (vascular tone) is a key determinant of the magnitude and polarity of the diameter changes elicited by signals associated with neurovascular coupling. Thus elevation of extracellular K+ concentration, stimulation of metabotropic glutamate receptors (mGluR), or 11,12-epoxyeicosatrienoic acid application all elicited vascular responses that were affected by the particular resting arteriolar tone. Interestingly, the data suggest that the extent and/or polarity of the vascular responses are influenced by a delimited set point centered between 30 and 40% tone. In addition, we report that distinct, tone-dependent effects on arteriolar diameter occur upon stimulation of mGluR during inhibition of enzymes of the arachidonic acid pathway [i.e., phospholipase A2, cytochrome P-450 (CYP) omega-hydroxylase, CYP epoxygenase, and cycloxygenase-1]. Our findings may reconcile previous evidence in which direct astrocytic stimulation elicited either vasoconstrictions or vasodilations and also suggest the novel concept that, in addition to participating in functional hyperemia, astrocyte-derived signals play a role in adjusting vascular tone to a range where dilator responses are optimal.  相似文献   

4.
At the onset of dynamic exercise, muscle blood flow increases within 1-2 s. It has been postulated that local vasodilatory agents produced by the vascular endothelium or the muscle itself contribute to this response. We hypothesized that only vasodilators that act directly on the vascular smooth muscle could produce vasodilation of skeletal muscle arterioles in <2 s. To test this hypothesis, we determined the time course of the vasodilatory response of isolated skeletal muscle arterioles to direct application of potassium chloride, adenosine, acetylcholine, and sodium nitroprusside. Soleus and gastrocnemius muscles were dissected from the hindlimbs of male Sprague-Dawley rats. First-order arterioles (100-200 microm) were isolated, cannulated on micropipettes, and pressurized to 60 cmH(2)O in an organ bath. Vasodilatory agents were added directly to the bath, and diameter responses of the arterioles were recorded in real time on a videotape recorder. Frame-by-frame analysis of the diameter responses indicated that none of the vasodilator agents tested produced significant diameter increases in <4 s in either soleus or gastrocnemius muscle arterioles. These results indicate that, although these local vasodilators produce significant vasodilation of skeletal muscle resistance arterioles, these responses are not rapid enough (within 1-2 s) to contribute to the initiation of the exercise hyperemic response at the onset of dynamic exercise.  相似文献   

5.
Vasodilatory mechanisms in contracting skeletal muscle.   总被引:11,自引:0,他引:11  
Skeletal muscle blood flow is closely coupled to metabolic demand, and its regulation is believed to be mainly the result of the interplay of neural vasoconstrictor activity and locally derived vasoactive substances. Muscle blood flow is increased within the first second after a single contraction and stabilizes within approximately 30 s during dynamic exercise under normal conditions. Vasodilator substances may be released from contracting skeletal muscle, vascular endothelium, or red blood cells. The importance of specific vasodilators is likely to vary over the time course of flow, from the initial rapid rise to the sustained elevation during steady-state exercise. Exercise hyperemia is therefore thought to be the result of an integrated response of more than one vasodilator mechanism. To date, the identity of vasoactive substances involved in the regulation of exercise hyperemia remains uncertain. Numerous vasodilators such as adenosine, ATP, potassium, hypoxia, hydrogen ion, nitric oxide, prostanoids, and endothelium-derived hyperpolarizing factor have been proposed to be of importance; however, there is little support for any single vasodilator being essential for exercise hyperemia. Because elevated blood flow cannot be explained by the failure of any single vasodilator, a consensus is beginning to emerge for redundancy among vasodilators, where one vasoactive compound may take over when the formation of another is compromised. Conducted vasodilation or flow-mediated vasodilation may explain dilation in vessels (i.e., feed arteries) not directly exposed to vasodilator substances in the interstitium. Future investigations should focus on identifying novel vasodilators and the interaction between vasodilators by simultaneous inhibition of multiple vasodilator pathways.  相似文献   

6.
Brimonidine, an alpha2-adrenergic receptor (AR) agonist, has been employed in the treatment of glaucoma due to its beneficial effects on intraocular pressure reduction and neuroprotection. In addition, some studies have implicated that brimonidine might influence ocular blood flow; however, its effect on the retinal microcirculation has not been documented. Herein, we examined the vasomotor action of brimonidine on different branching orders of retinal arterioles in vitro and determined the contribution of the alpha2-AR subtype and the role of endothelium-derived nitric oxide (NO) in this vasomotor response. First- and second-order retinal arterioles of pigs were isolated, cannulated, and pressurized for functional studies. Videomicroscopic techniques were employed to record diameter changes in response to brimonidine. RT-PCR was performed for detection of alpha-AR and endothelial NO synthase (eNOS) mRNA in retinal arterioles. All first-order arterioles (82 +/- 2 microm ID) dilated dose dependently to brimonidine (0.1 nM to 10 microM) with 10% dilation at the highest concentration. Second-order arterioles (50 +/- 1 microm ID) responded heterogeneously with either dilation or constriction. The incidence and magnitude of vasoconstriction were increased with increasing brimonidine concentration. Administration of the NO synthase inhibitor NG-nitro-L-arginine methyl ester abolished the brimonidine-induced vasodilation in first- and second-order arterioles. Regardless of vessel size, vasomotor responses (i.e., vasodilation and vasoconstriction) of retinal arterioles were sensitive to the alpha2-AR antagonist rauwolscine. Consistent with the functional data, alpha2A-AR and eNOS mRNAs were detected in retinal arterioles. Collectively, our data demonstrate that brimonidine at clinical doses evokes a consistent NO-dependent vasodilation in first-order retinal arterioles but a heterogeneous response in second-order arterioles. These vasomotor responses are mediated by the activation of alpha2-AR. It appears that brimonidine, depending on the concentration and vessel size, may alter local retinal blood flow.  相似文献   

7.
These studies tested the hypothesis that in obese Zucker rats (OZRs), a model of metabolic syndrome, the impaired functional vasodilation is due to increased thromboxane receptor (TP)-mediated vasoconstriction and/or decreased prostacyclin-induced vasodilation. Spinotrapezius arcade arterioles from 12-wk-old lean (LZR) and OZR were chosen for microcirculatory observation. Arteriolar diameter (5 LZR and 6 OZR) was measured after 2 min of muscle stimulation in the absence or presence of 1 microM SQ-29548 (TP antagonist). Additionally, arteriolar diameter (6 for each group) was measured after application of iloprost (prostacyclin analog; 0.28, 2.8, and 28 microM), arachidonic acid (10 microM), and sodium nitroprusside (0.1, 1, and 10 microM) in the absence or presence of 1 microM SQ-29548. A 10 microM concentration of adenosine was used to induce a maximal dilation. Basal diameters were not different between LZRs and OZRs. Functional hyperemia and arachidonic acid-mediated vasodilations were significantly attenuated in OZR compared with LZR, and treatment with 1 microM SQ-29548 significantly enhanced the dilations in OZRs, although it had no effect in LZRs. Vasodilatory responses to iloprost and sodium nitroprusside (1 and 10 microM) were significantly reduced in OZR. Adenosine-mediated vasodilation was not different between groups. These results suggest that the impaired functional dilation in the OZR is due to an increased TP-mediated vasoconstriction and a decreased PGI2-induced vasodilation.  相似文献   

8.
Astrocytes play an important role in the coupling between neuronal activity and brain blood flow via their capacity to "sense" neuronal activity and transmit that information to parenchymal arterioles. Here we show another role for astrocytes in neurovascular coupling: the ability to act as a signaling conduit for the vitally important process of upstream vasodilation (represented by pial arterioles) during both excessive (seizure) and physiological (sciatic nerve stimulation) increases in cerebral cortical neuronal activity. The predominance of an astrocytic rather than a vascular route was indicated by data showing that pial arteriolar-dilating responses to neuronal activation were completely blocked following selective disruption of the superficial glia limitans, whereas interference with interendothelial signaling was without effect. Results also revealed contributions from connexin 43, implying a role for gap junctions and/or hemichannels in the signaling process and that signaling from the glia limitans to pial arterioles may involve a diffusible mediator.  相似文献   

9.
The experiments on anesthetized dogs and on test-preparations of isolated vascular rings of femoral artery used for detection of appearance of vasoactive substances in venous blood demonstrated that the response of reactive hyperemia is accompanied by the appearance of vasodilation substances in the blood, the concentration of which taking into account the reaction of relaxation of vascular preparation, increases with the occlusion duration. Chemical inhibition of endothelium of a studied bed by saponin essentially decreases the reactive hyperemia and relaxation of test-preparation. The rise of pressure in an overlapped part of a bed and the decrease in the deformation of endothelium with the help of dimerized glutaraldehyde treatment affected the hyperemia and vascular preparation reaction in the similar way. We concluded that the reaction of reactive hyperemia is the result of the vasoactive substances secretion by endothelium in response to a decrease in intravascular pressure.  相似文献   

10.
Muscle blood flow is regulated to meet the metabolic needs of the tissue. With the vasculature arranged as a successive branching of arterioles and the larger, >50 microm, arterioles providing the major site of resistance, an increasing metabolic demand requires the vasodilation of the small arterioles first then the vasodilation of the more proximal, larger arterioles. The mechanism(s) for the coordination of this ascending vasodilation are not clear and may involve a conducted vasodilation and/or a flow-dependent response. The close arteriolar-venular pairing provides an additional mechanism by which the arteriolar diameter can be increased due to the diffusion of vasoactive substances from the venous blood. Evidence is presented that the venular endothelium releases a relaxing factor, a metabolite of arachidonic acid, that will vasodilate the adjacent arteriole. The stimulus for this release is not known, but it is hypothesized that hypoxia-induced ATP release from red blood cells may be responsible for the stimulation of arachidonic release from the venular endothelial cells. Thus the venous circulation is in an optimal position to monitor the overall metabolic state of the tissue and thus provide a feedback regulation of arteriolar diameter.  相似文献   

11.
Petzold GC  Albeanu DF  Sato TF  Murthy VN 《Neuron》2008,58(6):897-910
Functional neuroimaging uses activity-dependent changes in cerebral blood flow to map brain activity, but the contributions of presynaptic and postsynaptic activity are incompletely understood, as are the underlying cellular pathways. Using intravital multiphoton microscopy, we measured presynaptic activity, postsynaptic neuronal and astrocytic calcium responses, and erythrocyte velocity and flux in olfactory glomeruli during odor stimulation in mice. Odor-evoked functional hyperemia in glomerular capillaries was highly correlated with glutamate release, but did not require local postsynaptic activity. Odor stimulation induced calcium transients in astrocyte endfeet and an associated dilation of upstream arterioles. Calcium elevations in astrocytes and functional hyperemia depended on astrocytic metabotropic glutamate receptor 5 and cyclooxygenase activation. Astrocytic glutamate transporters also contributed to functional hyperemia through mechanisms independent of calcium rises and cyclooxygenase activation. These local pathways initiated by glutamate account for a large part of the coupling between synaptic activity and functional hyperemia in the olfactory bulb.  相似文献   

12.
Treadmill training increases functionalvasodilation in the rat spinotrapezius muscle, although there is noacute increase in blood flow and no increase in oxidative capacity. Toassess concurrent changes in vascular reactivity, we measured arterial diameters in the spinotrapezius muscle of sedentary (Sed) and treadmill-trained (Tr; 9-10 wk; terminal intensity 30 m/min,1.5° incline, for 90 min) rats during iontophoretic application of norepinephrine, epinephrine (Epi), andH+ (HCl) and during superfusionwith adenosine. Terminal-feed arteries and first-order arterioles in Trrats constricted more than those in Sed rats at the higher currentdoses of norepinephrine and Epi. In contrast, at low-current doses ofEpi, first- and second-order arterioles dilated in Tr but not in Sedrats. The vascular responses to HCl were highly variable, butsecond-order arterioles of Tr rats constricted more than those of Sedrats at intermediate-current doses. There were no significantdifferences between Sed and Tr rats in the vascular responses toadenosine. Both adrenergic vasodilation and vasoconstriction wereenhanced in the spinotrapezius muscle of Tr rats, and enhancedadrenergic vasodilation may contribute to increased functionalvasodilation. These observations further demonstrate vascularadaptations in "nontrained" skeletal muscle tissues.

  相似文献   

13.
14.
Impairment of flow-induced vasodilation in coronary resistance arterioles may contribute to the decline in coronary vasodilatory reserve that occurs with advancing age. This study investigated the effects of age on flow-induced signaling and activation of nitric oxide (NO)-mediated vasodilation in coronary resistance arterioles. Coronary arterioles were isolated from young (approximately 6 mo) and old (approximately 24 mo) male Fischer-344 rats to assess vasodilation to flow, vascular endothelial growth factor (VEGF), and ACh. Flow- and VEGF-induced vasodilation of coronary arterioles was impaired with age (P相似文献   

15.
Regional elevations in cerebral blood flow (CBF) often occur in response to localized increases in cerebral neuronal activity. An ever expanding literature has linked this neurovascular coupling process to specific signaling pathways involving neuronal synapses, astrocytes and cerebral arteries and arterioles. Collectively, these structures are termed the "neurovascular unit" (NVU). Astrocytes are thought to be the cornerstone of the NVU. Thus, not only do astrocytes "detect" increased synaptic activity, they can transmit that information to proximal and remote astrocytic sites often through a Ca(2+)- and ATP-related signaling process. At the vascular end of the NVU, a Ca(2+)-dependent formation and release of vasodilators, or substances linked to vasodilation, can occur. The latter category includes ATP, which upon its appearance in the extracellular compartment, can be rapidly converted to the potent vasodilator, adenosine, via the action of ecto-nucleotidases. In the present review, we give consideration to experimental model-specific variations in purinergic influences on gliovascular signaling mechanisms, focusing on the cerebral cortex. In that discussion, we compare findings obtained using in vitro (rodent brain slice) models and multiple in vivo models (2-photon imaging; somatosensory stimulation-evoked cortical hyperemia; and sciatic nerve stimulation-evoked pial arteriolar dilation). Additional attention is given to the importance of upstream (remote) vasodilation; the key role played by extracellular ATP hydrolysis (via ecto-nucleotidases) in gliovascular coupling; and interactions among multiple signaling pathways.  相似文献   

16.
Functional hyperemia is an important metabolic autoregulation mechanism by which increased neuronal activity is matched by a rapid and regional increase in blood supply. This mechanism is facilitated by a process known as "neurovascular coupling"--the orchestrated communication system involving neurons, astrocytes and arterioles. Important steps in this process are the production of EETs in the astrocyte and the release of potassium, via two potassium channels (BK and KIR), into the perivascular space. We provide a model which successfully accounts for several observations seen in experiment. The model is capable of simulating the approximate 15% arteriolar dilation caused by a 60-s neuronal activation (modelled as a release of potassium and glutamate into the synaptic cleft). This model also successfully emulates the paradoxical experimental finding that vasoconstriction follows vasodilation when the astrocytic calcium concentration (or perivascular potassium concentration) is increased further. We suggest that the interaction of the changing smooth muscle cell membrane potential and the changing potassium-dependent resting potential of the KIR channel are responsible for this effect. Finally, we demonstrate that a well-controlled mechanism of potassium buffering is potentially important for successful neurovascular coupling.  相似文献   

17.
It has been hypothesized that microgravity-induced orthostatic hypotension may result from an exaggerated vasodilatory responsiveness of arteries. The purpose of this study was to determine whether skeletal muscle arterioles exhibit enhanced vasodilation in rats after 2 wk of hindlimb unloading (HU). First-order arterioles isolated from soleus and white gastrocnemius muscles were tested in vitro for vasodilatory responses to isoproterenol (Iso), adenosine (Ado), and sodium nitroprusside (SNP). HU had no effect on responses induced by Iso but diminished maximal vasodilation to Ado and SNP in both muscles. In addition, vasodilatory responses in arterioles from control rats varied between muscle types. Maximal dilations induced by Iso (soleus: 42 +/- 6%; white gastrocnemius: 60 +/- 7%) and Ado (soleus: 51 +/- 8%; white gastrocnemius: 81 +/- 6%) were greater in arterioles from white gastrocnemius muscles. These data do not support the hypothesis that microgravity-induced orthostatic hypotension results from an enhanced vasodilatory responsiveness of skeletal muscle arterioles. Furthermore, the data support the concept that dilatory responsiveness of arterioles varies in muscle composed of different fiber types.  相似文献   

18.
Angiotensin-(1-7) [Ang-(1-7)], exerts a variety of actions in the cardiovascular system, with an important effect being vasodilation. In this work, we investigated the relationship between the vasodilatory activity of Ang-(1-7) and the kallikrein-kinin system. Intravital microscopy was used to study the vasodilation caused by Ang-(1-7) in the mesenteric vascular bed of anesthetized Wistar rats. The topical application of Ang-(1-7) caused vasodilation of mesenteric arterioles that was reduced by A-779, JE 049 and peptidase inhibitors (aprotinin, SBTI, PKSI 527, E-64, PMSF). These results indicated that the vasodilation induced by Ang-(1-7) in the mesenteric arterioles of Wistar rats was heavily dependent on the activation of kallikrein and subsequent kinin formation.  相似文献   

19.
Skeletal muscle arterioles from obese Zucker rats (OZR) exhibit oxidant stress-based alterations in reactivity, enhanced alpha-adrenergic constriction, and reduced distensibility vs. microvessels of lean Zucker rats (LZR). The present study determined the impact of these alterations for perfusion and performance of in situ skeletal muscle during periods of elevated metabolic demand. During bouts of isometric tetanic contractions, fatigue of in situ gastrocnemius muscle of OZR was increased vs. LZR; this was associated with impaired active hyperemia. In OZR, vasoactive responses of skeletal muscle arterioles from the contralateral gracilis muscle were impaired, due in part to elevated oxidant tone; reactivity was improved after treatment with polyethylene glycol-superoxide dismutase (PEGSOD). Arterioles of OZR also exhibited increased alpha-adrenergic sensitivity, which was abolished by treatment with phentolamine (10-5 M). Intravenous infusion of phentolamine (10 mg/kg) or PEG-SOD (2,000 U/kg) in OZR altered neither fatigue rates nor active hyperemia from untreated levels; however, combined infusion improved performance and hyperemia, although not to levels in LZR. Microvessel density in the contralateral gastrocnemius muscle, determined via histological analyses, was reduced by approximately 25% in OZR vs. LZR, while individual arterioles from the contralateral gracilis muscle demonstrated reduced distensibility. These data suggest that altered arteriolar reactivity contributes to reduced muscle performance and active hyperemia in OZR. Further, despite pharmacological improvements in arteriolar reactivity, reduced skeletal muscle microvessel density and arteriolar distensibility also contribute substantially to reduced active hyperemia and potentially to impaired muscle performance.  相似文献   

20.
Nitric oxide and vasodilation in human limbs   总被引:7,自引:0,他引:7  
Joyner, Michael J., and Niki M. Dietz.Nitric oxide and vasodilation in human limbs. J. Appl. Physiol. 83(6): 1785-1796, 1997.Both theskeletal muscle and skin of humans possess remarkable abilities tovasodilate. Marked vasodilation can be seen in these vascular beds inresponse to a variety of common physiological stimuli. These stimuliinclude reactive hyperemia (skin and muscle), exercise hyperemia(muscle), mental stress (muscle), and whole body heating (skin). Thephysiological mechanisms that cause vasodilation in response to thesestimuli are poorly understood, and the substance(s) responsible for itremain unclear. In this context, recent attention has been focused onthe possible contribution of nitric oxide (NO) to the regulation ofhyperemic responses in human skin and skeletal muscle. The emergingpicture is that NO is not an essential component of the dilatorresponse seen during reactive hyperemia. However, it does appear thatNO may play a modest role in exercise hyperemia. NO appears to play amajor role in the skeletal muscle vasodilation seen in response tomental stress in humans. Preliminary evidence also indicates that NO isnot essential for the normal dilator responses observed in thecutaneous circulation during body heating in humans, but this issueneeds further study. There are a number of possible mechanisms thatmight mediate NO release in humans, and the role of these mechanisms inthe various hyperemic responses is also poorly understood. The role ofaltered NO-mediated vasodilation in some disease states is alsodiscussed. Whereas NO is a potent vasodilating substance, the actionsof NO alone do not explain a variety of poorly understood vasodilatormechanisms in conscious humans. Much work remains for those interestedin the role of NO in the regulation of blood flow to the skin and skeletal muscle of humans.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号