首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
丝状真菌(Filamentous fungi)作为重要的工业发酵微生物,在有机酸、蛋白质及次级代谢产物等关键生物基产品生产方面发挥着重要作用.自20世纪90年代代谢工程理念提出以来,尤其是代谢工程使能技术的创新及发展,极大地促进了丝状真菌细胞工厂的构建及其在工业发酵领域的应用.文中将系统介绍近年来丝状真菌代谢工程技术的...  相似文献   

2.
Metabolic modelling is a useful tool that enables the rational design of metabolic engineering experiments and the study of the unique capabilities of biotechnologically important microorganisms. The extreme abiotic conditions of the Atacama Desert have selected microbial diversity with exceptional characteristics that can be applied in the mining industry for bioleaching processes and for production of specialised metabolites with antimicrobial, antifungal, antiviral, antitumoral, among other activities. In this review we summarise the scientific data available of the use of metabolic modelling and flux analysis to improve the performance of Atacama Desert microorganisms in biotechnological applications.  相似文献   

3.
Metabolic engineering has been defined as the purposeful modification of intermediary metabolism using recombinant DNA techniques. With this definition metabolic engineering includes: (1) inserting new pathways in microorganisms with the aim of producing novel metabolites, e.g., production of polyketides by Streptomyces; (2) production of heterologous peptides, e.g., production of human insulin, erythropoitin, and tPA; and (3) improvement of both new and existing processes, e.g., production of antibiotics and industrial enzymes. Metabolic engineering is a multidisciplinary approach, which involves input from chemical engineers, molecular biologists, biochemists, physiologists, and analytical chemists. Obviously, molecular biology is central in the production of novel products, as well as in the improvement of existing processes. However, in the latter case, input from other disciplines is pivotal in order to target the genetic modifications; with the rapid developments in molecular biology, progress in the field is likely to be limited by procedures to identify the optimal genetic changes. Identification of the optimal genetic changes often requires a meticulous mapping of the cellular metabolism at different operating conditions, and the application of metabolic engineering to process optimization is, therefore, expected mainly to have an impact on the improvement of processes where yield, productivity, and titer are important design factors, i.e., in the production of metabolites and industrial enzymes. Despite the prospect of obtaining major improvement through metabolic engineering, this approach is, however, not expected to completely replace the classical approach to strain improvement-random mutagenesis followed by screening. Identification of the optimal genetic changes for improvement of a given process requires analysis of the underlying mechanisms, at best, at the molecular level. To reveal these mechanisms a number of different techniques may be applied: (1) detailed physiological studies, (2) metabolic flux analysis (MFA), (3) metabolic control analysis (MCA), (4) thermodynamic analysis of pathways, and (5) kinetic modeling. In this article, these different techniques are discussed and their applications to the analysis of different processes are illustrated.  相似文献   

4.
The diversity of plant natural product (PNP) molecular structures is reflected in the variety of biochemical and genetic pathways that lead to their formation and accumulation. Plant secondary metabolites are important commodities, and include fragrances, colorants, and medicines. Increasing the extractable amount of PNP through plant breeding, or more recently by means of metabolic engineering, is a priority. The prerequisite for any attempt at metabolic engineering is a detailed knowledge of the underlying biosynthetic and regulatory pathways in plants. Over the past few decades, an enormous body of information about the biochemistry and genetics of biosynthetic pathways involved in PNPs production has been generated. In this review, we focus on the three large classes of plant secondary metabolites: terpenoids (or isoprenoids), phenylpropanoids, and alkaloids. All three provide excellent examples of the tremendous efforts undertaken to boost our understanding of biosynthetic pathways, resulting in the first successes in plant metabolic engineering. We further consider what essential information is still missing, and how future research directions could help achieve the rational design of plants as chemical factories for high-value products.  相似文献   

5.
14-16元环的大环内酯类抗生素(Macrolide antibiotics,MA)是临床上重要的抗感染药物.随着细菌耐药性的不断增加,迫切需要研发出新型MA来应对耐药菌.通过MA与核糖体靶点的相互作用可以指导MA的定向优化,结合快速发展的代谢工程方法可以高效获得所需的MA衍生物.近30年来,代谢工程在改造MA的生物合...  相似文献   

6.
In the past two decades, hairy root research for the production of important secondary metabolites has received a lot of attention. The addition of knowledge to overcome the limiting culture parameters of the regulation of the metabolic pathway by specific molecules and the development of novel tools for metabolic engineering now offer new possibilities to improve the hairy root technique for the production of metabolites. Furthermore, engineering hairy roots for the production of animal proteins of therapeutic interest in confined and controlled in vitro conditions is seen as one of the exciting spin-offs of the technology. Recent progress made in the scale-up of the hairy root cultures has paved the way for industrial exploitation of this system. This review highlights some of the significant progress made in the past three years and discusses the potential implications of that research.  相似文献   

7.
聚酮化合物是通过聚酮合成途径产生的一大类结构和生物活性多样的次级代谢产物,是链霉菌产生的主要次级代谢产物,具有重要的经济价值。为了在链霉菌中提高聚酮化合物产量,以满足工业生产需求,近年来,代谢工程的方法被广泛应用,例如,过表达合成途径中限速酶或途径特异性激活蛋白、强化前体供应、去除产物反馈抑制、合成基因簇异源表达等。本文将从代谢工程改造实例入手,全面综述链霉菌中聚酮化合物高效生物合成的研究方法及进展,并对利用合成生物学策略智能动态适配各个相关途径,进而提高该类化合物产量的研究思路进行展望。  相似文献   

8.
辅因子平衡对于酶制剂、药品和化学品的生产具有重要的作用。为了满足工业化生产的需求,维持辅因子长期有效的平衡是实现代谢流高效化导向目标代谢产物的必要手段。本文在总结辅因子生理功能的基础上,从生化工程和代谢工程两方面分析归纳了辅因子的代谢调控策略,并展望了辅因子进一步精深调控的发展方向。  相似文献   

9.
The electron transport chain (ETC) is one of the major energy generation pathways in microorganisms under aerobic condition. Higher yield of ATP can be achieved through oxidative phosphorylation with consumption of NADH than with substrate level phosphorylation. However, most value-added metabolites are in an electrochemically reduced state, which requires reducing equivalent NADH as a cofactor. Therefore, optimal production of value-added metabolites should be balanced with ETC in terms of energy production. In this study, we attempted to reduce the activity of ETC to secure availability of NADH. The ETC mutants exhibited poor growth rate and production of fermentative metabolites compared to parental strain. Introduction of heterologous pathways for synthesis of 2,3-butanediol and isobutanol to ETC mutants resulted in increased titres and yields of the metabolites. ETC mutants yielded higher NADH/NAD+ ratio but similar ATP content than that by the parental strain. Furthermore, ETC mutants operated fermentative metabolism pathways independent of oxygen supply in large-scale fermenter, resulting in increased yield and titre of 2,3-butanediol. Thus, engineering of ETC is a useful metabolic engineering approach for production of reduced metabolites.  相似文献   

10.
11.
The chloroplast is an essential organelle in microalgae for conducting photosynthesis, thus enabling the photoautotrophic growth of microalgae. In addition to photosynthesis, the chloroplast is capable of various biochemical processes for the synthesis of proteins, lipids, carbohydrates, and terpenoids. Due to these attractive characteristics, there has been increasing interest in the biotechnological utilization of microalgal chloroplast as a sustainable alternative to the conventional production platforms used in industrial biotechnology. Since the first demonstration of microalgal chloroplast transformation, significant development has occurred over recent decades in the manipulation of microalgal chloroplasts through genetic engineering. In the present review, we describe the advantages of the microalgal chloroplast as a production platform for various bioproducts, including recombinant proteins and high-value metabolites, features of chloroplast genetic systems, and the development of transformation methods, which represent important factors for gene expression in the chloroplast. Furthermore, we address the expression of various recombinant proteins in the microalgal chloroplast through genetic engineering, including reporters, biopharmaceutical proteins, and industrial enzymes. Finally, we present many efforts and achievements in the production of high-value metabolites in the microalgal chloroplast through metabolic engineering. Based on these efforts and advances, the microalgal chloroplast represents an economically viable and sustainable platform for biotechnological applications in the near future.  相似文献   

12.
Plants produce a large number of secondary metabolites, such as alkaloids, terpenoids, and phenolic compounds. Secondary metabolites have various functions including protection against pathogens and UV light in plants, and have been used as natural medicines for humans utilizing their diverse biological activities. Many of these natural compounds are accumulated in a particular compartment such as vacuoles, and some are even translocated from source cells to sink organs via long distance transport. Both primary and secondary transporters are involved in such compartmentation and translocation, and many transporter genes, especially genes belonging to the multidrug and toxin extrusion type transporter family, which consists of 56 members in Arabidopsis, have been identified as responsible for the membrane transport of secondary metabolites. Better understandings of these transporters as well as the biosynthetic genes of secondary metabolites will be important for metabolic engineering aiming to increase the production of commercially valuable secondary metabolites in plant cells.  相似文献   

13.
植物次生代谢基因工程研究进展   总被引:18,自引:0,他引:18  
随着对植物代谢网络日渐全面的认识,应用基因工程技术对植物次生代谢途径进行遗传改良已取得了可喜的进展.对次生代谢途径进行基因修饰的策略包括:导入单个、多个靶基因或一个完整的代谢途径,使宿主植物合成新的目标物质;通过反义RNA和RNA干涉等技术降低靶基因的表达水平,从而抑制竞争性代谢途径,改变代谢流和增加目标物质的含量;对控制多个生物合成基因的转录因子进行修饰,更有效地调控植物次生代谢以提高特定化合物的积累.作者结合对大豆种子异黄酮类代谢调控和基因工程改良的研究,着重介绍了花青素和黄酮类物质、生物碱、萜类化合物和安息香酸衍生物等次生代谢产物生物合成的基因工程研究进展.  相似文献   

14.
The application of metabolic engineering in Escherichia coli has resulted in the generation of strains with the capacity to produce metabolites of commercial interest. Biotechnological processes with these engineered strains frequently employ culture media containing glucose as the carbon and energy source. In E. coli, the phosphoenolpyruvate:sugar phosphotransferase system (PTS) transports glucose when this sugar is present at concentrations like those used in production fermentations. This protein system is involved in phosphoenolpyruvate-dependent sugar transport, therefore, its activity has an important impact on carbon flux distribution in the phosphoenolpyruvate and pyruvate nodes. Furthermore, PTS has a very important role in carbon catabolite repression. The properties of PTS impose metabolic and regulatory constraints that can hinder strain productivity. For this reason, PTS has been a target for modification with the purpose of strain improvement. In this review, PTS characteristics most relevant to strain performance and the different strategies of PTS modification for strain improvement are discussed. Functional replacement of PTS by alternative phosphoenolpyruvate-independent uptake and phosphorylation activities has resulted in significant improvements in product yield from glucose and productivity for several classes of metabolites. In addition, inactivation of PTS components has been applied successfully as a strategy to abolish carbon catabolite repression, resulting in E. coli strains that use more efficiently sugar mixtures, such as those obtained from lignocellulosic hydrolysates.  相似文献   

15.
Biotechnology is playing a vital alternative role in the production of pharmaceutical plant secondary metabolites to support industrial production and mitigate over-exploitation of natural sources. High-value pharmaceuticals that include alkaloids, flavonoids, terpenes, steroids, among others, are biosynthesized as a defensive strategy by plants in response to perturbations under natural environmental conditions. However, they can also be produced using plant cell, tissue, and organ culture techniques through the application of various in vitro approaches and strategies. In the past decades, efforts were on the clonal propagation, biomass and secondary metabolites production in the in vitro cultures of medicinally important plants that produce these molecules. In recent years, the effort has shifted towards optimizing culture conditions for their production through the application of cell line selection, elicitation, precursor feeding, two-phase co-culture among cell, tissue, and organ culture approaches. The efforts are made with the possibility to scale-up the production, meet pharmaceutical industry demand and conserve natural sources of the molecules. Applications of metabolic engineering and production from endophytes are also getting increasing attention but, the approaches are far from practical application in their industrial production.  相似文献   

16.
A plethora of bioactive plant metabolites has been explored for pharmaceutical, food chemistry and agricultural applications. The chemical synthesis of these structures is often difficult, so plants are favorably used as producers. While whole plants can serve as a source for secondary metabolites and can be also improved by metabolic engineering, more often cell or organ cultures of relevant plant species are of interest. It should be noted that only in few cases the production for commercial application in such cultures has been achieved. Their genetic manipulation is sometimes faster and the production of a specific metabolite is more reliable, because of less environmental influences. In addition, upscaling in bioreactors is nowadays possible for many of these cultures, so some are already used in industry. There are approaches to alter the profile of metabolites not only by using plant genes, but also by using bacterial genes encoding modifying enzymes. Also, strategies to cope with unwanted or even toxic compounds are available. The need for metabolic engineering of plant secondary metabolite pathways is increasing with the rising demand for (novel) compounds with new bioactive properties. Here, we give some examples of recent developments for the metabolic engineering of plants and organ cultures, which can be used in the production of metabolites with interesting properties.  相似文献   

17.
Nature produces an astonishing wealth of secondary metabolites with important biological functions. To access this diversity of structurally complex chemical compounds for industrial and biomedical applications, cells have been engineered to produce higher levels and/or novel compounds that were previously inaccessible. Recent examples of metabolic and combinatorial engineering illustrate different strategies for the production of secondary metabolites in microbial cells.  相似文献   

18.
Plastids, found in plants and some parasites, are of endosymbiotic origin. The best-characterized plastid is the plant cell chloroplast. Plastids provide essential metabolic and signaling functions, such as the photosynthetic process in chloroplasts. However, the role of plastids is not limited to production of metabolites. Plastids affect numerous aspects of plant growth and development through biogenesis, varying functional states and metabolic activities. Examples include, but are not limited to, embryogenesis, leaf development, gravitropism, temperature response and plant-microbe interactions. In this review, we summarize the versatile roles of plastids in plant growth and development.  相似文献   

19.
芦银华  姜卫红 《微生物学通报》2013,40(10):1847-1859
链霉菌具有强大的次级代谢能力, 能够产生众多具有生物活性的次级代谢产物, 如目前广泛应用的抗生素、抗肿瘤药物以及免疫抑制剂等。在链霉菌中, 次级代谢产物的生物合成受到包括途径特异性、多效性以及全局性调控基因在内的多层次严格调控。关键调控基因的缺失或过表达可以显著影响次级代谢产物的生物合成, 提示对于链霉菌次级代谢重要调控基因的功能及其作用机制的研究具有巨大的潜在应用价值。其中, 作为细菌信号传导系统的双组分系统(Two-component system, TCS)一直是大家研究的关注点。越来越多的研究表明TCS在链霉菌次级代谢过程中发挥着全局性的调控功能。本文重点介绍链霉菌模式菌株——天蓝色链霉菌中TCS(包括典型TCS)、孤立的组氨酸蛋白激酶(HK)以及应答调控蛋白(RR)参与次级代谢调控的研究进展。这些TCS的功能鉴定及机制解析为工业链霉菌的定向遗传改造以提高重要次级代谢产物的含量提供了理论依据。  相似文献   

20.
随着后基因组时代的到来,工业微生物的代谢工程改造在工业生产上发挥着越来越重要的作用。而基因组规模代谢网络模型(Genome-scalemetabolicmodel,GSMM)将生物体体内所有已知代谢信息进行整合,为全局理解生物体的代谢状态、理性指导代谢工程改造提供了最佳的平台。乳酸乳球菌NZ9000(Lactococcuslactis NZ9000)作为工业发酵领域的重要菌株之一,由于其遗传背景清晰且几乎不分泌蛋白,是基因工程改造和外源蛋白表达的理想模式菌株。文中基于基因组功能注释和比较基因组学构建了L.lactisNZ9000的首个基因组规模代谢网络模型iWK557,包含557个基因、668个代谢物、840个反应,并进一步在定性和定量两个层次验证了iWK557的准确性,以期为理性指导L. lactis NZ9000代谢工程改造提供良好工具。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号