首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pulmonary vascular medial hypertrophy in primary pulmonary hypertension (PPH) is mainly caused by increased proliferation and decreased apoptosis in pulmonary artery smooth muscle cells (PASMCs). Mutations of the bone morphogenetic protein (BMP) receptor type II (BMP-RII) gene have been implicated in patients with familial and sporadic PPH. The objective of this study was to elucidate the apoptotic effects of BMPs on normal human PASMCs and to examine whether BMP-induced effects are altered in PASMCs from PPH patients. Using RT-PCR, we detected six isoforms of BMPs (BMP-1 through -6) and three subunits of BMP receptors (BMP-RIa, -RIb, and -RII) in PASMCs. Treatment of normal PASMCs with BMP-2 or -7 (100-200 nM, 24-48 h) markedly increased the percentage of cells undergoing apoptosis. The BMP-2-mediated apoptosis in normal PASMCs was associated with a transient activation or phosphorylation of Smad1 and a marked downregulation of the antiapoptotic protein Bcl-2. In PASMCs from PPH patients, the BMP-2- or BMP-7-induced apoptosis was significantly inhibited compared with PASMCs from patients with secondary pulmonary hypertension. These results suggest that the antiproliferative effect of BMPs is partially due to induction of PASMC apoptosis, which serves as a critical mechanism to maintain normal cell number in the pulmonary vasculature. Inhibition of BMP-induced PASMC apoptosis in PPH patients may play an important role in the development of pulmonary vascular medial hypertrophy in these patients.  相似文献   

2.
Primary pulmonary hypertension (PPH) is defined clinically by sustained elevation of pulmonary arterial pressure without a demonstrable cause, and is a progressive, often-fatal disease. PPH can be associated with ingestion of appetite suppressants, human immunodeficiency virus infection and certain autoimmune diseases. Familial PPH is known to account for 6% of all cases. Mutations in the gene encoding the bone morphogenetic protein (BMP) type II receptor have been identified in 72% of affected families and 26% of apparently sporadic cases. BMPs are members of the transforming growth factor b superfamily and affect intracellular signalling via Smads and mitogen-activated protein kinases. Evidence supports a 'two-hit' hypothesis in which PPH is triggered by accumulation of genetic and environmental insults in a susceptible individual. Elucidation of the precise molecular and cellular mechanisms underlying PPH will provide a powerful basis for the development of novel therapeutic strategies in the treatment of this devastating condition.  相似文献   

3.
Familial primary pulmonary hypertension is a rare autosomal dominant disorder that has reduced penetrance and that has been mapped to a 3-cM region on chromosome 2q33 (locus PPH1). The phenotype is characterized by monoclonal plexiform lesions of proliferating endothelial cells in pulmonary arterioles. These lesions lead to elevated pulmonary-artery pressures, right-ventricular failure, and death. Although primary pulmonary hypertension is rare, cases secondary to known etiologies are more common and include those associated with the appetite-suppressant drugs, including phentermine-fenfluramine. We genotyped 35 multiplex families with the disorder, using 27 microsatellite markers; we constructed disease haplotypes; and we looked for evidence of haplotype sharing across families, using the program TRANSMIT. Suggestive evidence of sharing was observed with markers GGAA19e07 and D2S307, and three nearby candidate genes were examined by denaturing high-performance liquid chromatography on individuals from 19 families. One of these genes (BMPR2), which encodes bone morphogenetic protein receptor type II, was found to contain five mutations that predict premature termination of the protein product and two missense mutations. These mutations were not observed in 196 control chromosomes. These findings indicate that the bone morphogenetic protein-signaling pathway is defective in patients with primary pulmonary hypertension and may implicate the pathway in the nonfamilial forms of the disease.  相似文献   

4.
Fibroblast proliferation, differentiation, and migration contribute to the characteristic pulmonary vascular remodeling seen in primary pulmonary hypertension (PPH). The identification of mutations in the bone morphogenetic protein type II receptor (BMPRII) in PPH have led us to question what role BMPRII and its ligands play in pulmonary vascular remodeling. Thus, to further understand the functional significance of BMPRII in the pulmonary vasculature, we examined the expression of TGF-beta superfamily receptors in human fetal lung fibroblasts (HFL) and investigated the role of BMP4 on cell cycle regulation, fibroblast proliferation, and differentiation. Furthermore, signaling pathways involved in these processes were examined. HFL expressed BMPRI and BMPRII mRNA and demonstrated specific I(125)-BMP4 binding sites. BMP4 inhibited [(3)H]thymidine incorporation and proliferation of HFL; protein expression was increased for the cell cycle inhibitor p21 and reduced for the positive regulators cyclin D and cdk2 by BMP4. BMP4 induced differentiation of HFL into a smooth muscle cell phenotype since protein expression of alpha-smooth muscle actin and smooth muscle myosin was increased. Furthermore, p38(MAPK), ERK1/2, JNK, and Smad1 were phosphorylated by BMP4. Using specific MAPK inhibitors, a dominant negative Smad1 construct, and Smad1 siRNA, we found that the antiproliferative and prodifferentiation effects of BMP4 were Smad1 dependent with JNK also contributing to differentiation. Because failure of Smad phosphorylation is a major feature of BMPRII mutations, these results imply that BMPRII mutations may promote the expansion of fibroblasts resistant to the antiproliferative, prodifferentiation effects of BMPs and suggest a mechanism for the vascular obliteration seen in familial PPH.  相似文献   

5.
Germline mutations in the BMPR2 gene encoding bone morphogenetic protein (BMP) type II receptor (BMPR-II) have been reported in patients with primary pulmonary hypertension (PPH), but the contribution of various types of mutations found in PPH to the pathogenesis of clinical phenotypes has not been elucidated. To determine the biological activities of these mutants, we performed functional assays testing their abilities to transduce BMP signals. We found that the reported missense mutations within the extracellular and kinase domains of BMPR-II abrogated their signal-transducing abilities. BMPR-II proteins containing mutations at the conserved cysteine residues in the extracellular and kinase domains were detected in the cytoplasm, suggesting that the loss of signaling ability of certain BMPR-II mutants is due at least in part to their altered subcellular localization. In contrast, BMPR-II mutants with truncation of the cytoplasmic tail retained the ability to transduce BMP signals. The differences in biological activities among the BMPR-II mutants observed thus suggest that additional genetic and/or environmental factors may play critical roles in the pathogenesis of PPH.  相似文献   

6.
BMP signaling in vascular diseases   总被引:1,自引:0,他引:1  
  相似文献   

7.
8.
Primary pulmonary hypertension (PPH) is a potentially lethal disorder, because the elevation of the pulmonary arterial pressure may result in right-heart failure. Histologically, the disorder is characterized by proliferation of pulmonary-artery smooth muscle and endothelial cells, by intimal hyperplasia, and by in situ thrombus formation. Heterozygous mutations within the bone morphogenetic protein type II receptor (BMPR-II) gene (BMPR2), of the transforming growth factor beta (TGF-beta) cell-signaling superfamily, have been identified in familial and sporadic cases of PPH. We report the molecular spectrum of BMPR2 mutations in 47 additional families with PPH and in three patients with sporadic PPH. Among the cohort of patients, we have identified 22 novel mutations, including 4 partial deletions, distributed throughout the BMPR2 gene. The majority (58%) of mutations are predicted to lead to a premature termination codon. We have also investigated the functional impact and genotype-phenotype relationships, to elucidate the mechanisms contributing to pathogenesis of this important vascular disease. In vitro expression analysis demonstrated loss of BMPR-II function for a number of the identified mutations. These data support the suggestion that haploinsufficiency represents the common molecular mechanism in PPH. Marked variability of the age at onset of disease was observed both within and between families. Taken together, these studies illustrate the considerable heterogeneity of BMPR2 mutations that cause PPH, and they strongly suggest that additional factors, genetic and/or environmental, may be required for the development of the clinical phenotype.  相似文献   

9.
Adrenomedullin in the treatment of pulmonary hypertension   总被引:10,自引:0,他引:10  
Nagaya N  Kangawa K 《Peptides》2004,25(11):2013-2018
Adrenomedullin (AM) is a potent, long-lasting pulmonary vasodilator peptide. Plasma AM level is elevated in patients with primary pulmonary hypertension (PPH), and circulating AM is partially metabolized in the lungs. These findings suggest that AM plays an important role in the regulation of pulmonary vascular tone and vascular remodeling. We have demonstrated the effects of three types of AM delivery systems: intravenous administration, inhalation, and cell-based gene transfer. Despite endogenous production of AM, intravenously administered AM at a pharmacologic level decreased pulmonary vascular resistance in patients with PPH. Inhalation of AM improved hemodynamics with pulmonary selectivity and exercise capacity in patients with PPH. Cell-based AM gene transfer ameliorated pulmonary hypertension rats. These results suggest that additional administration of AM may be effective in patients with pulmonary hypertension. AM may be a promising endogenous peptide for the treatment of pulmonary hypertension.  相似文献   

10.
Bone morphogenetic proteins (BMPs) are critically involved in early development and cell differentiation. In humans, dysfunction of the bone morphogenetic protein type II receptor (BMPR-II) is associated with pulmonary arterial hypertension (PAH) and neoplasia. The ability of Kaposi sarcoma-associated herpesvirus (KSHV), the etiologic agent of Kaposi sarcoma and primary effusion lymphoma, to down-regulate cell surface receptor expression is well documented. Here we show that KSHV infection reduces cell surface BMPR-II. We propose that this occurs through the expression of the viral lytic gene, K5, a ubiquitin E3 ligase. Ectopic expression of K5 leads to BMPR-II ubiquitination and lysosomal degradation with a consequent decrease in BMP signaling. The down-regulation by K5 is dependent on both its RING domain and a membrane-proximal lysine in the cytoplasmic domain of BMPR-II. We demonstrate that expression of BMPR-II protein is constitutively regulated by lysosomal degradation in vascular cells and provide preliminary evidence for the involvement of the mammalian E3 ligase, Itch, in the constitutive degradation of BMPR-II. Disruption of BMP signaling may therefore play a role in the pathobiology of diseases caused by KSHV infection, as well as KSHV-associated tumorigenesis and vascular disease.  相似文献   

11.
Heterozygous mutations of the bone morphogenetic protein type II receptor (BMPR-II) gene have been identified in patients with primary pulmonary hypertension. The mechanisms by which these mutations contribute to the pathogenesis of primary pulmonary hypertension are not fully elucidated. To assess the impact of a heterozygous mutation of the BMPR-II gene on the pulmonary vasculature, we studied mice carrying a mutant BMPR-II allele lacking exons 4 and 5 (BMPR-II(+/-) mice). BMPR-II(+/-) mice had increased mean pulmonary arterial pressure and pulmonary vascular resistance compared with their wild-type littermates. Histological analyses revealed that the wall thickness of muscularized pulmonary arteries (<100 mum in diameter) and the number of alveolar-capillary units were greater in BMPR-II(+/-) than in wild-type mice. Breathing 11% oxygen for 3 wk increased mean pulmonary arterial pressure, pulmonary vascular resistance, and hemoglobin concentration to similar levels in BMPR-II(+/-) and wild-type mice, but the degree of muscularization of small pulmonary arteries and formation of alveolar-capillary units were reduced in BMPR-II(+/-) mice. Our results suggest that, in mice, mutation of one copy of the BMPR-II gene causes pulmonary hypertension but impairs the ability of the pulmonary vasculature to remodel in response to prolonged hypoxic breathing.  相似文献   

12.
Germ line mutations in the bone morphogenetic protein (BMP) receptor type II (BMPRII) gene have been found in >50% of familial idiopathic pulmonary arterial hypertension (IPAH) patients and in 30% of sporadic cases of IPAH. Mutations of BMPRII occur in the extracellular ligand-binding domain, in the cytoplasmic serine/threonine kinase domain, or in the long carboxy terminus domain of unknown function. In this study, we demonstrate that BMPs promote apoptotic cell death in normal human pulmonary artery smooth muscle cells (PASMCs) by activation of caspases-3, -8, and -9, cytochrome c release, and downregulation of Bcl-2. Normal PASMCs expressing a kinase domain mutant or a carboxy-terminal domain deletion mutant of BMPRII identified in IPAH patients are resistant to BMP-mediated apoptosis. This dominant-negative effect may act in heterozygous patients and lead to the development of the pulmonary vascular medial hypertrophy found in IPAH patients. Our study also demonstrates an essential role of the carboxy terminus domain of BMPRII in the activation of the apoptotic signaling cascade.  相似文献   

13.
The role of bone morphogenetic proteins in endochondral bone formation   总被引:5,自引:0,他引:5  
Bone morphogenetic proteins (BMPs) were originally identified as proteins capable of inducing endochondral bone formation when implanted at extraskeletal sites. BMPs have diverse biological activities during early embryogenesis and various aspects of organogenesis. BMPs bind to BMP receptors on the cell surface, and these signals are transduced intracellularly by Smad proteins. BMP signal pathways can be inhibited by both extra- and intracellular mechanisms. As for skeletal development, genetic studies suggest that BMPs are skeletal mesoderm inducers. Recent studies of tissue-specific activation and inactivation of BMP signals have revealed that BMP signals control proliferation and differentiation of chondrocytes, differentiation of osteoblasts and bone quality. These findings may contribute not only to understanding of bone biology and pathology, but also to improvement of the clinical efficacy of BMPs.  相似文献   

14.
Vascular remodeling due to excessive proliferation of endothelial and smooth muscle cells is a hallmark feature of pulmonary hypertension. microRNAs (miRNAs) are a class of small, non-coding RNA fragments that have recently been associated with remodeling of pulmonary arteries, in particular by silencing the bone morphogenetic protein receptor type II (BMPR2). Here we identified a novel pathway involving the concerted action of miR-125a, BMPR2 and cyclin-dependent kinase inhibitors (CDKN) that controls a proliferative phenotype of endothelial cells. An in silico approach predicted miR-125a to target BMPR2. Functional inhibition of miR-125a resulted in increased proliferation of these cells, an effect that was found accompanied by upregulation of BMPR2 and reduced expression of the tumor suppressors CDKN1A (p21) and CDKN2A (p16). These data were confirmed in experimental pulmonary hypertension in vivo. Levels of miR-125a were elevated in lung tissue of hypoxic animals that develop pulmonary hypertension. In contrast, circulating levels of miR-125a were found to be lower in mice with pulmonary hypertension as compared to control mice. Similar findings were observed in a small cohort of patients with precapillary pulmonary hypertension. These translational data emphasize the pathogenetic role of miR-125a in pulmonary vascular remodeling.  相似文献   

15.
Emerging role of bone morphogenetic proteins in angiogenesis   总被引:2,自引:0,他引:2  
Bone morphogenetic proteins (BMPs) are multifunctional growth factors belonging to the transforming growth factor β (TGFβ) superfamily. Recent observations clearly emphasize the emerging role of BMPs in angiogenesis: (i) two genetic vascular diseases (hereditary hemorrhagic telangiectasia (HHT) and pulmonary arterial hypertension (PAH)) are caused by mutations in genes encoding components of the BMP signalling pathway (endoglin, ALK1 and BMPRII). (ii) BMP9 has been identified as the physiological ligand of the endothelial receptor ALK1 in association with BMPRII. This review will focus on the diverse functions of BMPs in angiogenesis. We will propose a model that distinguishes the BMP2, BMP7 and GDF5 subgroups from the BMP9 subgroup on the basis of their functional implication in the two phases of angiogenesis (activation and maturation).  相似文献   

16.
Bone morphogenetic proteins (BMPs) regulate a wide range of cellular functions that contribute to embryonic development from mesoderm formation to organogenesis. BMP type II receptor (BMPR-II) transduces BMP signals by forming heteromeric complexes with and phosphorylating BMP type I receptors. Heterozygous germline mutations of BMPR-II gene have been identified in patients with familial and sporadic primary pulmonary hypertension, indicating that BMPR-II may contribute to the maintenance of normal pulmonary vascular structure and function. Since embryos homozygous for a null BMPR-II allele died during gastrulation, precluding further studies of BMPR-II function in organ formation and in adult tissues, we generated mice carrying a conditional mutant BMPR-II allele in which exons 4 and 5 were flanked by loxP sequences. We anticipate that studies of mice carrying a floxed BMPR-II allele and a Cre transgene (under the control of a tissue-specific promoter) will enable characterization of the role of BMPR-II in specific cell types during development and in the pathogenesis of cardiovascular diseases.  相似文献   

17.
Bone morphogenetic proteins (BMPs) have been implicated in the pathogenesis of familial pulmonary arterial hypertension. The type 2 receptor (BMPR2) is required for recognition of all BMPs. Transgenic mice with a smooth muscle cell-targeted mutation in this receptor (SM22-tet-BMPR2(delx4+)) developed increased pulmonary artery pressure, associated with a modest increase in arterial muscularization, after 8 wk of transgene activation (West J, Fagan K, Steudel W, Fouty B, Lane K, Harral J, Hoedt-Miller M, Tada Y, Ozimek J, Tuder R, and Rodman DM. Circ Res 94: 1109-1114, 2004). In the present study, we show that these transgenic mice developed increased right ventricular pressures after only 1 wk of transgene activation, without significant remodeling of the vasculature. We then tested the hypothesis that the increased pulmonary artery pressure due to loss of BMPR2 signaling was mediated by reduced K(V) channel expression. There was decreased expression of K(V)1.1, K(V)1.5, and K(V)4.3 mRNA isolated from whole lung. Western blot confirmed decreased K(V)1.5 protein in these lungs. Human pulmonary artery smooth muscle cells (PASMC) treated with recombinant BMP2 had increased K(V)1.5 protein and macroscopic K(V) current density, which was blocked by anti-K(V)1.5 antibody. In vivo, nifedipine, a selective L-type Ca(2+) channel blocker, reduced RV systolic pressure in these dominant-negative BMPR2 mice to levels seen in control animals. This suggests that activation of L-type Ca(2+) channels caused by reduced K(V)1.5 mediates increased pulmonary artery pressure in these animals. These studies suggest that BMP regulates K(V) channel expression and that loss of this signaling pathway in PASMC through a mutation in BMPR2 is sufficient to cause pulmonary artery vasoconstriction.  相似文献   

18.
Patients with familial pulmonary arterial hypertension inherit heterozygous mutations of the type 2 bone morphogenetic protein (BMP) receptor BMPR2. To explore the cellular mechanisms of this disease, we evaluated the pulmonary vascular responses to chronic hypoxia in mice carrying heterozygous hypomorphic Bmpr2 mutations (Bmpr2 delta Ex2/+). These mice develop more severe pulmonary hypertension after prolonged exposure to hypoxia without an associated increase in pulmonary vascular remodeling or proliferation compared with wild-type mice. This is associated with defective endothelial-dependent vasodilatation and enhanced vasoconstriction in isolated intrapulmonary artery preparations. In addition, there is a selective decrease in hypoxia-induced, BMP-dependent, endothelial nitric oxide synthase expression and Smad signaling in the intact lungs and in cultured pulmonary microvascular endothelial cells from Bmpr2 delta Ex2/+ mutant mice. These findings indicate that the pulmonary endothelium is a target of abnormal BMP signaling in Bmpr2 delta Ex2/+ mutant mice and suggest that endothelial dysfunction contributes to their increased susceptibility to hypoxic pulmonary hypertension.  相似文献   

19.
20.
Bone morphogenetic proteins (BMPs) have diverse and important roles in the proliferation and differentiation of adult stem cells in our tissues. Especially, BMPs are well known to be the main inducers of bone formation, by facilitating both proliferation and differentiation of bone stem cells. Interestingly, in skin stem cells, BMPs repress their proliferation but are indispensable for the proper differentiation into several lineages of skin cells. Here, we tested whether BMP antagonists have an effect on the prevention of wrinkle formation. For this study we used an in vivo wrinkle-induced mouse model. As a positive control, retinoic acid, one of the top anti-wrinkle effectors, showed a 44% improvement compared to the non-treated control. Surprisingly, bone morphogenetic protein receptor 1a extracellular domain (BMPR1a-ECD) exhibited an anti-wrinkle effect which was 6-fold greater than that of retinoic acid. Our results indicate that BMP antagonists will be good targets for skin or hair diseases. [BMB Reports 2013; 46(9): 465-470]  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号