首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thymic stromal lymphopoietin (TSLP) is a cytokine that promotes CD4(+) T cell homeostasis and contributes to allergic and inflammatory responses. TSLP can act directly on mouse CD4(+) T cells, but in humans, the available data have indicated that TSLP receptors are not expressed on CD4(+) T cells and that TSLP instead activates dendritic cells, which in turn promote the proliferation and differentiation of CD4(+) T cells. We now unexpectedly demonstrate the presence of TSLP receptors on activated human CD4(+) T cells. Strikingly, whereas freshly isolated peripheral blood human T cells show little if any response to TSLP, TCR stimulation allows a potent response to this cytokine. Moreover, TSLP increases the sensitivity of human CD4(+) T cells to low doses of IL-2, augmenting responsiveness of these cells to TCR engagement. Our results establish that human CD4(+) T cells are direct targets for TSLP.  相似文献   

2.
3.
Th cell differentiation from naive precursors is a tightly controlled process; the most critical differentiation factor is the action of the driving cytokine: IL-12 for Th1 development, IL-4 for Th2 development. We found that CD4(+) T cells from nonobese diabetic mice spontaneously differentiate into IFN-gamma-producing Th1 cells in response to polyclonal TCR stimulation in the absence of IL-12 and IFN-gamma. Instead, IL-2 was necessary and sufficient to direct T cell differentiation to the Th1 lineage by nonobese diabetic CD4(+) T cells. Its ability to direct Th1 differentiation of both naive and memory CD4(+) T cells was clearly uncoupled from its ability to stimulate cell division. Autocrine IL-2-driven Th1 differentiation of nonobese diabetic T cells may represent a genetic liability that favors development of IFN-gamma-producing autoreactive T cells.  相似文献   

4.
Although extracellular signal-regulated kinase (Erk) activation influences IL-4 production in various experimental systems, its role during Th differentiation is unclear. In this study, we show that Erk plays a critical role in IL-4 expression during TCR-induced Th differentiation of naive CD4(+) T cells. Stimulation of CD4(+) T cells with a high affinity peptide resulted in sustained Erk activation and Th1 differentiation. However, reduction of Erk activity led to a dramatic increase in IL-4 production and Th2 generation. Analysis of RNA and nuclear proteins of CD4(+) T cells 48 h after stimulation revealed that this was due to early IL-4 expression. Interestingly, transient Erk activation resulted in altered AP-1 DNA binding activity and the induction of an AP-1 complex that was devoid of Fos protein and consisted of Jun-Jun dimers. These data show that in the presence of a strong TCR signal, IL-4 expression can be induced in naive CD4(+) T cells by altering the strength of Erk activation. In addition, these data suggest that TCR-induced Erk activation is involved in the regulation of IL-4 expression by altering the composition of the AP-1 complex and its subsequent DNA binding activity.  相似文献   

5.
Improper homeostasis of Th1 and Th2 cell differentiation can promote pathological immune responses such as autoimmunity and asthma. A number of factors govern the development of these cells including TCR ligation, costimulation, death effector expression, and activation-induced cell death (AICD). Although chronic morphine administration has been shown to selectively promote Th2 development in unpurified T cell populations, the direct effects of chronic morphine on Th cell skewing and cytokine production by CD4(+) T cells have not been elucidated. We previously showed that morphine enhances Fas death receptor expression in a T cell hybridoma and human PBL. In addition, we have demonstrated a role for Fas, Fas ligand (FasL), and TRAIL in promoting Th2 development via killing of Th1 cells. Therefore, we analyzed whether the ability of morphine to affect Th2 cytokine production was mediated by regulation of Fas, FasL, and TRAIL expression and AICD directly in purified Th cells. We found that morphine significantly promoted IL-4 and IL-13 production but did not alter IL-5 or IFN-gamma. Furthermore, morphine enhanced the mRNA expression of Fas, FasL and TRAIL and promoted Fas-mediated AICD of CD4(+) T cells. Additionally, blockade of Fas/FasL interaction by anti-FasL inhibited the morphine-induced production of IL-4 and IL-13 and AICD of CD4(+) T cells. These results suggest that morphine preferentially enhances Th2 cell differentiation via killing of Th1 cells in a Fas/FasL-dependent manner.  相似文献   

6.
TGF-beta has been shown to be critical in the generation of CD4(+)CD25(+)Foxp3(+) regulatory T cells (Tregs). Because Th3 cells produce large amounts of TGF-beta, we asked whether induction of Th3 cells in the periphery was a mechanism by which CD4(+)CD25(+) Tregs were induced in the peripheral immune compartment. To address this issue, we generated a TGF-beta1-transgenic (Tg) mouse in which TGF-beta is linked to the IL-2 promoter and T cells transiently overexpress TGF-beta upon TCR stimulation but produce little or no IL-2, IL-4, IL-10, IL-13, or IFN-gamma. Naive TGF-beta-Tg mice are phenotypically normal with comparable numbers of lymphocytes and thymic-derived Tregs. We found that repeated antigenic stimulation of pathogenic myelin oligodendrocyte glycoprotein (MOG)-specific CD4(+)CD25(-) T cells from TGF-beta Tg mice crossed to MOG TCR-Tg mice induced Foxp3 expression in both CD25(+) and CD25(-) populations. Both CD25 subsets were anergic and had potent suppressive properties in vitro and in vivo. Furthermore, adoptive transfer of these induced regulatory CD25(+/-) T cells suppressed experimental autoimmune encephalomyelitis when administrated before disease induction or during ongoing experimental autoimmune encephalomyelitis. The suppressive effect of TGF-beta on T cell responses was due to the induction of Tregs and not to the direct inhibition of cell proliferation. The differentiation of Th3 cells in vitro was TGF-beta dependent as anti-TGF-beta abrogated their development. Thus, Ag-specific TGF-beta-producing Th3 cells play a crucial role in inducing and maintaining peripheral tolerance by driving the differentiation of Ag-specific Foxp3(+) regulatory cells in the periphery.  相似文献   

7.
Innate effector cells that produce Th2-type cytokines are critical in Th2 cell-mediated immune responses. However, it is not known how these cells acquire the ability to produce Th2 cytokines. IL-4 is a potent inducer that directs differentiation of naive CD4(+) T cells into CD4(+) Th2 effector cells. To determine whether IL-4 can induce differentiation and expansion of Th2 cytokine-producing innate cells, we used mice whose il-4 gene was replaced by a knock-in green fluorescence protein (gfp) gene. We found that, directly ex vivo, IL-4 increased the number of GFP(+) cells in the airway and the lung tissue in an Ag-specific manner. The majority of GFP(+) cells were eosinophils, suggesting that IL-4 plays a pivotal role in expanding IL-4-producing eosinophils in vivo. IL-4-producing eosinophils showed some unique features compared with IL-4-producing CD4(+) T cells. They exhibited biallelic expression of the il-4 gene when stimulated and were more dominant IL-4- and IL-5-producing cells. Furthermore, we show that IL-4 drove bone marrow progenitor cells to differentiate into Th2 cytokine-producing eosinophils in vitro. These results strongly suggest IL-4 is a potent factor in directing bone marrow progenitor cells to differentiate into Th2 cytokine-producing eosinophils.  相似文献   

8.
9.
10.
In previous studies, we have shown that Th2 cell differentiation is diminished but Th1 cell differentiation is increased in Stat5a-deficient (Stat5a(-/-)) CD4(+) T cells. In the present study, we clarified the molecular mechanisms of Stat5a-mediated Th cell differentiation. We found that enhanced Th1 cell differentiation and the resultant IFN-gamma production played a dominant inhibitory role in the down-regulation of IL-4-induced Th2 cell differentiation of Stat5a(-/-) CD4(+) T cells. We also found that IL-12-induced Stat4 phosphorylation and Th1 cell differentiation were augmented in Stat5a(-/-) CD4(+) T cells. Importantly, the expression of suppressor of cytokine signaling (SOCS)3, a potent inhibitor of IL-12-induced Stat4 activation, was decreased in Stat5a(-/-) CD4(+) T cells. Moreover, a reporter assay showed that a constitutively active form of Stat5a but not Stat6 activated the SOCS3 promoter. Furthermore, chromatin immunoprecipitation assays revealed that Stat5a binds to the SOCS3 promoter in CD4(+) T cells. Finally, the retrovirus-mediated expression of SOCS3 restored the impaired Th cell differentiation of Stat5a(-/-) CD4(+) T cells. These results suggest that Stat5a forces the Th1/Th2 balance toward a Th2-type by preventing IL-12-induced Th1 cell differentiation through the induction of SOCS3.  相似文献   

11.
Recombinant hemagglutinin B (rHagB), a virulence factor of the periodontal pathogen Porphyromonas gingivalis, has been shown to induce protective immunity against bacterial infection. Furthermore, we have demonstrated that rHagB is a TLR4 agonist for dendritic cells. However, it is not known how rHagB dendritic cell stimulation affects the activation and differentiation of T cells. Therefore, we undertook the present study to examine the role of TLR4 signaling in shaping the CD4(+) T cell response following immunization of mice with rHagB. Immunization with this Ag resulted in the induction of specific CD4(+) T cells and Ab responses. In TLR4(-/-) and MyD88(-/-) but not Toll/IL-1R domain-containing adapter inducing IFN-β-deficient (TRIF(Lps2)) mice, there was an increase in the Th2 CD4(+) T cell subset, a decrease in the Th1 subset, and higher serum IgG(1)/IgG(2) levels of HagB-specific Abs compared with those in wild-type mice. These finding were accompanied by increased GATA-3 and Foxp3 expression and a decrease in the activation of CD4(+) T cells isolated from TLR4(-/-) and MyD88(-/-) mice. Interestingly, TLR4(-/-) CD4(+) T cells showed an increase in IL-2/STAT5 signaling. Whereas TRIF deficiency had minimal effects on the CD4(+) T cell response, it resulted in increased IFN-γ and IL-17 production by memory CD4(+) T cells. To our knowledge, these results demonstrate for the first time that TLR4 signaling, via the downstream MyD88 and TRIF molecules, exerts a differential regulation on the CD4(+) T cell response to HagB Ag. The gained insight from the present work will aid in designing better therapeutic strategies against P. gingivalis infection.  相似文献   

12.
Recent studies have shown that TGF-beta together with IL-6 induce the differentiation of IL-17-producing T cells (Th17) T cells. We therefore examined whether CD4(+)CD25(+)Foxp3(+) regulatory T cells, i.e., cells previously shown to produce TGF-beta, serve as Th17 inducers. We found that upon activation purified CD25(+) T cells (or sorted GFP(+) T cells obtained from Foxp3-GFP knockin mice) produce high amounts of soluble TGF-beta and when cultured with CD4(+)CD25(-)Foxp3(-) T cells in the presence of IL-6 induce the latter to differentiate into Th17 cells. Perhaps more importantly, upon activation, CD4(+)CD25(+)Foxp3(+)(GFP(+)) T cells themselves differentiate into Th17 cells in the presence of IL-6 (and in the absence of exogenous TGF-beta). These results indicate that CD4(+)CD25(+)Foxp3(+) regulatory T cells can function as inducers of Th17 cells and can differentiate into Th17 cells. They thus have important implications to our understanding of regulatory T cell function and their possible therapeutic use.  相似文献   

13.
Naturally occurring CD4(+)CD25(+)FOXP3(+) regulatory T cells suppress the activity of pathogenic T cells and prevent development of autoimmune responses. There is growing evidence that TLRs are involved in modulating regulatory T cell (Treg) functions both directly and indirectly. Specifically, TLR2 stimulation has been shown to reduce the suppressive function of Tregs by mechanisms that are incompletely understood. The developmental pathways of Tregs and Th17 cells are considered divergent and mutually inhibitory, and IL-17 secretion has been reported to be associated with reduced Treg function. We hypothesized that TLR2 stimulation may reduce the suppressive function of Tregs by regulating the balance between Treg and Th17 phenotype and function. We examined the effect of different TLR2 ligands on the suppressive functions of Tregs and found that activation of TLR1/2 heterodimers reduces the suppressive activity of CD4(+)CD25(hi)FOXP3(low)CD45RA(+) (naive) and CD4(+)CD25(hi)FOXP3(hi)CD45RA(-) (memory or effector) Treg subpopulations on CD4(+)CD25(-)FOXP3(-)CD45RA(+) responder T cell proliferation while at the same time enhancing the secretion of IL-6 and IL-17, increasing RORC, and decreasing FOXP3 expression. Neutralization of IL-6 or IL-17 abrogated Pam3Cys-mediated reduction of Treg suppressive function. We also found that, in agreement with recent observations in mouse T cells, TLR2 stimulation can promote Th17 differentiation of human T helper precursors. We conclude that TLR2 stimulation, in combination with TCR activation and costimulation, promotes the differentiation of distinct subsets of human naive and memory/effector Tregs into a Th17-like phenotype and their expansion. Such TLR-induced mechanism of regulation of Treg function could enhance microbial clearance and increase the risk of autoimmune reactions.  相似文献   

14.
Stat6-dependent and -independent pathways for IL-4 production   总被引:10,自引:0,他引:10  
Stat6 has been shown to have a crucial role in the IL-4-dependent differentiation of Th2 cells. In this report, we explore whether in vitro Th2 differentiation driven by altered costimulatory signals or Ag dose is Stat6 dependent. We find that blocking B7-1 signaling in vitro promotes the differentiation of IL-4-secreting Th2 cells in wild-type but not Stat6-deficient T cell cultures. Additionally, stimulation with peptide Ag doses that normally result in the production of Th2 cells in vitro fails to do so in cultures of Stat6-deficient cells. We also demonstrate that Stat6 is required for the in vitro differentiation of CD8+ T cells into IL-4-secreting cytotoxic T cell type 2 cells. However, IL-4 expression is not absolutely dependent on Stat6. We demonstrate that populations of T cells that do not require IL-4 for their development, such as NK T cells, are still competent to secrete IL-4 in the absence of Stat6. These results demonstrate that Stat6 is required for the differentiation program leading to the generation of Th2 and cytotoxic T cell type 2 cells but not for IL-4 expression in cells that do not undergo differentiation in response to IL-4.  相似文献   

15.
Central memory CD4(+) T cells provide a pool of lymph node-homing, Ag-experienced cells that are capable of responding rapidly after a secondary infection. We have previously described a population of central memory CD4(+) T cells in Leishmania major-infected mice that were capable of mediating immunity to a secondary infection. In this study, we show that the Leishmania-specific central memory CD4(+) T cells require IL-12 to produce IFN-gamma, demonstrating that this population needs additional signals to develop into Th1 cells. In contrast, effector cells isolated from immune mice produced IFN-gamma in vitro or in vivo in the absence of IL-12. In addition, we found that when central memory CD4(+) T cells were adoptively transferred into IL-12-deficient hosts, many of the cells became IL-4 producers. These studies indicate that the central memory CD4(+) T cell population generated during L. major infection is capable of developing into either Th1 or Th2 effectors. Thus, continued IL-12 production may be required to ensure the development of Th1 cells from this central memory T cell pool, a finding that has direct relevance to the design of vaccines dependent upon central memory CD4(+) T cells.  相似文献   

16.
Regulatory T cells are critical in regulating the immune response, and therefore play an important role in the defense against infection and control of autoimmune diseases. However, a therapeutic role of regulatory T cells in an established disease has not been fully established. In this study, we provide direct evidence that CD4(+)CD25(+) regulatory T cells can cure an established, severe, and progressive colitis. SCID mice developed severe colitis when adoptively transferred with naive CD4(+)CD25(-) T cells and infected with the protozoan parasite Leishmania major. The disease development can be completely halted and symptoms reversed, with a healthy outcome, by transferring freshly isolated or activated CD4(+)CD25(+) T cells from syngeneic donors. The therapeutic effect of the regulatory T cells was completely blocked by treatment of the recipients with anti-IL-10R, anti-CTLA4, or anti-TGF-beta Ab. However, the resurgence of colitis under these treatments was not accompanied by the reactivation of Th1 or Th2 response nor was it correlated to the parasite load. These results therefore demonstrate that CD4(+)CD25(+) T cells are therapeutic and that the effect is mediated by both IL-10/TGF-beta-dependent and independent mechanisms. Furthermore, colitis can manifest independent of Th1 and Th2 responses.  相似文献   

17.
The T cell-dependent B cell response relies on cognate interaction between B cells and CD4(+) Th cells. However, the consequences of this interaction for CD4(+) T cells are not entirely known. B cells generally promote CD4(+) T cell responses to pathogens, albeit to a variable degree. In contrast, CD4(+) T cell responses to self- or tumor Ags are often suppressed by B cells. In this study, we demonstrated that interaction with B cells dramatically inhibited the function of virus-specific CD4(+) T cells in retroviral infection. We have used Friend virus infection of mice as a model for retroviral infection, in which the behavior of virus-specific CD4(+) T cells was monitored according to their TCR avidity. We report that avidity for Ag and interaction with B cells determine distinct aspects of the primary CD4(+) T cell response to Friend virus infection. Virus-specific CD4(+) T cells followed exclusive Th1 and T follicular helper (Tfh) differentiation. High avidity for Ag facilitated expansion during priming and enhanced the capacity for IFN-γ and IL-21 production. In contrast, Tfh differentiation was not affected by avidity for Ag. By reducing or preventing B cell interaction, we found that B cells promoted Tfh differentiation, induced programmed death 1 expression, and inhibited IFN-γ production by virus-specific CD4(+) T cells. Ultimately, B cells protected hosts from CD4(+) T cell-mediated immune pathology, at the detriment of CD4(+) T cell-mediated protective immunity. Our results suggest that B cell presentation of vaccine Ags could be manipulated to direct the appropriate CD4(+) T cell response.  相似文献   

18.
Capsular components of Cryptococcus neoformans induce several deleterious effects on T cells. However, it is unknown how the capsular components act on these lymphocytes. The present study characterized cellular and molecular events involved in immunoregulation of splenic CD4(+) T cells by C. neoformans capsular polysaccharides (CPSs). The results showed that CPSs induce proliferation of normal splenic CD4(+) T cells, but not of normal CD8(+) T or B lymphocytes. Such proliferation depended on physical contact between CPSs and viable splenic adherent cells (SAC) and CD40 ligand-induced intracellular signal transduction. The absence of lymphoproliferation after fixation of SAC with paraformaldehyde has discarded the hypothesis of a superantigen-like activation. The evaluation of a cytokine pattern produced by the responding CD4(+) T lymphocytes revealed that CPSs induce a dominant Th2 pattern, with high levels of IL-4 and IL-10 production and undetectable inflammatory cytokines, such as TNF-alpha and IFN-gamma. Blockade of CD40 ligand by relevant mAb down-regulated the CPS-induced anti-inflammatory cytokine production and abolished the enhancement of fungus growth in cocultures of SAC and CD4(+) T lymphocytes. Our findings suggest that CPSs induce proliferation and differentiation of normal CD4(+) T cells into a Th2 phenotype, which could favor parasite growth and thus important deleterious effects to the host.  相似文献   

19.
Murine CD4(+)CD25(+) T regulatory (Treg) cells were cocultured with CD4(+)CD25(-) Th cells and APCs or purified B cells and stimulated by anti-CD3 mAb. Replacement of APCs by B cells did not significantly affect the suppression of CD4(+)CD25(-) Th cells. When IL-4 was added to separate cell populations, this cytokine promoted CD4(+)CD25(-) Th and CD4(+)CD25(+) Treg cell proliferation, whereas the suppressive competence of CD4(+)CD25(+) Treg cells was preserved. Conversely, IL-4 added to coculture of APCs, CD4(+)CD25(-) Th cells, and CD4(+)CD25(+) Treg cells inhibited the suppression of CD4(+)CD25(-) Th cells by favoring their survival through the induction of Bcl-2 expression. At variance, suppression was not affected by addition of IL-13, although this cytokine shares with IL-4 a receptor chain. When naive CD4(+)CD25(-) Th cells were replaced by Th1 and Th2 cells, cell proliferation of both subsets was equally suppressed, but suppression was less pronounced compared with that of CD4(+)CD25(-) Th cells. IL-4 production by Th2 cells was also inhibited. These results indicate that although CD4(+)CD25(+) Treg cells inhibit IL-4 production, the addition of IL-4 counteracts CD4(+)CD25(+) Treg cell-mediated suppression by promoting CD4(+)CD25(-) Th cell survival and proliferation.  相似文献   

20.
IL-16 binds to CD4 and induces a migratory response in CD4(+) T cells. Although it has been assumed that CD4 is the sole receptor and that IL-16 induces a comparable migratory response in all CD4(+) T cells, this has not been investigated. In this study, we determined that IL-16 preferentially induces a migratory response in Th1 cells. Because chemokine receptor CCR5 is expressed predominantly in Th1 cells and is physically associated with CD4, we investigated whether IL-16/CD4 stimulation was enhanced in the presence of CCR5. Using T cells from CCR5(null) mice, we determined that IL-16-induced migration was significantly greater in the presence of CCR5. The presence of CCR5 significantly increased IL-16 binding vs CD4 alone; however, IL-16 could not bind to CCR5 alone. Because CD4(+)CCR5(+) cells are prevalent at sites of inflammation, this intimate functional relationship likely plays a pivotal role for the recruitment and activation of Th1 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号