首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To address the issues of redundancy and specificity of chemokines and their receptors in lymphocyte biology, we investigated the expression of CC chemokine receptors CCR1, CCR2, CCR3, CCR5, CXCR3, and CXCR4 and responses to their ligands on memory and naive, CD4 and CD8 human T cells, both freshly isolated and after short term activation in vitro. Activation through CD3 for 3 days had the most dramatic effects on the expression of CXCR3, which was up-regulated and functional on all T cell populations including naive CD4 cells. In contrast, the effects of short term activation on expression of other chemokine receptors was modest, and expression of CCR2, CCR3, and CCR5 on CD4 cells was restricted to memory subsets. In general, patterns of chemotaxis in the resting cells and calcium responses in the activated cells corresponded to the patterns of receptor expression among T cell subsets. In contrast, the pattern of calcium signaling among subsets of freshly isolated cells did not show a simple correlation with receptor expression, so the propensity to produce a global rise in the intracellular calcium concentration differed among the various receptors within a given T cell subset and for an individual receptor depending on the cell where it was expressed. Our data suggest that individual chemokine receptors and their ligands function on T cells at different stages of T cell activation/differentiation, with CXCR3 of particular importance on newly activated cells, and demonstrate T cell subset-specific and activation state-specific responses to chemokines that are achieved by regulating receptor signaling as well as receptor expression.  相似文献   

2.
FTY720 stimulates CCR7-driven T cell homing to peripheral lymph nodes (LN) by direct activation of sphingosine 1-phosphate receptors, along with the participation of multidrug transporters, 5-lipoxygenase, and G protein-coupled receptors for chemokines. In this study, we demonstrate that FTY720 also directly stimulates in vitro T cell chemotaxis to CCR2-CCL2, but not to a variety of other chemokines, including CCR5-CCL3/4/5 and CXCR4-CXCL12. FTY720 influences CCR2-CCL2-driven migration through activation of the multidrug transporters, Abcb1 and Abcc1, and through 5-lipoxygenase activity. In vivo administration of FTY720 induces chemokine-dependent migration of T cells in the thymus, peripheral blood, LN, and spleen. The CCR7 and CCR2 chemokine ligands are required for both T cell sequestration in LN and thymic T cell egress following FTY720 administration. Furthermore, FTY720 administration uncovers a requirement for CXCR4 ligands for LN homing, but not for thymic egress, and CCR5 for thymic egress, but not LN homing. FTY720-driven splenic and peripheral blood T cell egress are both independent of CCR2, CCR5, CCR7, or CXCR4. These results indicate that FTY720- and sphingosine 1-phosphate receptor-stimulated T cell migration are dependent on the restricted usage of chemokine receptor-ligand pairs within discrete anatomic compartments.  相似文献   

3.
Little is known about the role of chemokines/chemokines receptors on T cells in natural DENV infection. Patients from DENV-2 and -3- outbreaks were studied prospectively during the acute or convalescent phases. Expression of chemokine receptor and activation markers on lymphocyte subpopulations were determined by flow cytometry analysis, plasma chemokine ligands concentrations were measured by ELISA and quantification of CCL5/RANTES(+) cells in liver tissues from fatal dengue cases was performed by immunochemistry. In the acute DENV-infection, T-helper/T-cytotoxic type-1 cell (Th1/Tc1)-related CCR5 is significantly higher expressed on both CD4 and CD8 T cells. The Th1-related CXCR3 is up-regulated among CD4 T cells and Tc2-related CCR4 is up-regulated among CD8 T cells. In the convalescent phase, all chemokine receptor or chemokine ligand expression tends to reestablish control healthy levels. Increased CCL2/MCP-1 and CCL4/MIP-1β but decreased CCL5/RANTES levels were observed in DENV-patients during acute infection. Moreover, we showed an increased CD107a expression on CCR5 or CXCR3-expressing T cells and higher expression of CD29, CD44(HIGH) and CD127(LOW) markers on CCR4-expressing CD8 T cells in DENV-patients when compared to controls. Finally, liver from dengue fatal patients showed increased number of cells expressing CCL5/RANTES in three out of four cases compared to three death from a non-dengue patient. In conclusion, both Th1-related CCR5 and CXCR3 among CD4 T cells have a potential ability to exert cytotoxicity function. Moreover, Tc1-related CCR5 and Tc2-related CCR4 among CD8 T cells have a potential ability to exert effector function and migration based on cell markers evaluated. The CCR5 expression would be promoting an enhanced T cell recruitment into liver, a hypothesis that is corroborated by the CCL5/RANTES increase detected in hepatic tissue from dengue fatal cases. The balance between protective and pathogenic immune response mediated by chemokines during dengue fever will be discussed.  相似文献   

4.
CD4+ T cells are essential to pathogenesis of ocular surface disease in dry eye. Two subtypes of CD4+ T cells, Th1 and Th17 cells, function concurrently in dry eye to mediate disease. This occurs in spite of the cross-regulation of IFN-γ and IL-17A, the prototypical cytokines Th1 and Th17 cells, respectively. Essential to an effective immune response are chemokines that direct and summon lymphocytes to specific tissues. T cell trafficking has been extensively studied in other models, but this is the first study to examine the role of chemokine receptors in ocular immune responses. Here, we demonstrate that the chemokine receptors, CCR6 and CXCR3, which are expressed on Th17 and Th1 cells, respectively, are required for the pathogenesis of dry eye disease, as CCR6KO and CXCR3KO mice do not develop disease under desiccating stress. CD4+ T cells from CCR6KO and CXCR3KO mice exposed to desiccating stress (DS) do not migrate to the ocular surface, but remain in the superficial cervical lymph nodes. In agreement with this, CD4+ T cells from CCR6 and CXCR3 deficient donors exposed to DS, when adoptively transferred to T cell deficient recipients manifest minimal signs of dry eye disease, including significantly less T cell infiltration, goblet cell loss, and expression of inflammatory cytokine and matrix metalloproteinase expression compared to wild-type donors. These findings highlight the important interaction of chemokine receptors on T cells and chemokine ligand expression on epithelial cells of the cornea and conjunctiva in dry eye pathogenesis and reveal potential new therapeutic targets for dry eye disease.  相似文献   

5.
During human immunodeficiency virus (HIV) infection, enhanced migration of infected cells to lymph nodes leads to efficient propagation of HIV-1. The selective chemokine receptors, including CXCR4 and CCR7, may play a role in this process, yet the viral factors regulating chemokine-dependent T cell migration remain relatively unclear. The functional cooperation between the CXCR4 ligand chemokine CXCL12 and the CCR7 ligand chemokines CCL19 and CCL21 enhances CCR7-dependent T cell motility in vitro as well as cell trafficking into the lymph nodes in vivo. In this study, we report that a recombinant form of a viral CXCR4 ligand, X4-tropic HIV-1 gp120, enhanced the CD4 T cell response to CCR7 ligands in a manner dependent on CXCR4 and CD4, and that this effect was recapitulated by HIV-1 virions. HIV-1 gp120 significantly enhanced CCR7-dependent CD4 T cell migration from the footpad of mice to the draining lymph nodes in in vivo transfer experiments. We also demonstrated that CXCR4 expression is required for stable CCR7 expression on the CD4 T cell surface, whereas CXCR4 signaling facilitated CCR7 ligand binding to the cell surface and increased the level of CCR7 homo- as well as CXCR4/CCR7 hetero-oligomers without affecting CCR7 expression levels. Our findings indicate that HIV-evoked CXCR4 signaling promotes CCR7-dependent CD4 T cell migration by up-regulating CCR7 function, which is likely to be induced by increased formation of CCR7 homo- and CXCR4/CCR7 hetero-oligomers on the surface of CD4 T cells.  相似文献   

6.
Gammadelta T lymphocytes play an important role in the immune defense against infection, based on the unique reactivity of human Vdelta2Vgamma9 gammadelta T cells toward bacterial phosphoantigens. Chemokines and their corresponding receptors orchestrate numerous cellular reactions, including leukocyte migration, activation, and degranulation. In this study we investigated the expression of various receptors for inflammatory and homeostatic chemokines on peripheral blood gammadelta T cells and compared their expression patterns with those on alphabeta T cells. Although several of the analyzed receptors (including CCR6, CCR7, CXCR4, and CXCR5) were not differentially expressed on gammadelta vs alphabeta T cells, gammadelta T cells expressed strongly increased levels of the RANTES/macrophage inflammatory protein-1alpha/-1beta receptor CCR5 and also enhanced levels of CCR1-3 and CXCR1-3. CCR5 expression was restricted to Vdelta2 gammadelta T cells, while the minor subset of Vdelta1 gammadelta T cells preferentially expressed CXCR1. Stimulation with heat-killed extracts of Mycobacterium tuberculosis down-modulated cell surface expression of CCR5 on gammadelta T cells in a macrophage-dependent manner, while synthetic phosphoantigen isopentenyl pyrophosphate and CCR5 ligands directly triggered CCR5 down-modulation on gammadelta T cells. The functionality of chemokine receptors CCR5 and CXCR3 on gammadelta T cells was demonstrated by Ca(2+) mobilization and chemotactic response to the respective chemokines. Our results identify high level expression of CCR5 as a characteristic and selective feature of circulating Vdelta2 gammadelta T cells, which is in line with their suspected function as Th1 effector T cells.  相似文献   

7.
Evidence for NK cell subsets based on chemokine receptor expression   总被引:3,自引:0,他引:3  
To help understand the role of chemokines in NK cell trafficking, we determined the chemokine receptor profiles of three different human NK cell lines and freshly isolated primary human NK cells. The cell lines overlapped in their chemokine receptor profiles: CXCR3 and CXCR4 were expressed by all three lines, whereas CCR1, CCR4, CCR6, CCR7, and CX3CR1 were expressed by only one or two of the lines, and no other chemokine receptors were detected. Freshly isolated primary NK cells were found to express CXCR1, CXCR3, and CXCR4, and to contain subsets expressing CCR1, CCR4, CCR5, CCR6, CCR7, CCR9, CXCR5, and CXCR6. With the exception of CCR4, these chemokine receptors were expressed at higher percentages by CD56(bright) NK cells than by CD56(dim) NK cells. In particular, CCR7 was expressed by almost all CD56(bright) NK cells but was not detected on CD56(dim) NK cells. CCR9 and CXCR6 have not been described previously on primary NK cells. These results indicate that within both the CD56(bright) and CD56(dim) NK cell populations, subsets with the capacity for differential trafficking programs exist, which likely influence their functions in innate and adaptive immunity.  相似文献   

8.
Chemokines and their receptors are essential in the recruitment and positioning of lymphocytes. To address the question of B cell migration into the inflamed synovial tissue of patients with rheumatoid arthritis (RA), peripheral blood naive B cells, memory B cells and plasma cells were analyzed for cell surface expression of the chemokine receptors CXCR3, CXCR4, CXCR5, CCR5, CCR6, CCR7 and CCR9. For comparison, B cells in the peripheral blood of patients with the autoimmune disease systemic lupus erythematosus (SLE) or with the degenerative disease osteoarthritis (OA) were analyzed. Expression levels of chemokine receptors were measured by flow cytometry and were compared between the different patient groups and healthy individuals. The analysis of chemokine receptor expression showed that the majority of peripheral blood B cells is positive for CXCR3, CXCR4, CXCR5, CCR6 and CCR7. Whereas a small fraction of B cells were positive for CCR5, practically no expression of CCR9 was found. In comparison with healthy individuals, in patients with RA a significant fraction of B cells showed a decreased expression of CXCR5 and CCR6 and increased levels of CXCR3. The downregulation of CXCR5 correlated with an upregulation of CXCR3. In patients with SLE, significant changes in CXCR5 expression were seen. The functionality of the chemokine receptors CXCR3 and CXCR4 was demonstrated by transmigration assays with the chemokines CXCL10 and CXCL12, respectively. Our results suggest that chronic inflammation leads to modulation of chemokine receptor expression on peripheral blood B cells. However, differences between patients with RA and patients with SLE point toward a disease-specific regulation of receptor expression. These differences may influence the migrational behavior of B cells.  相似文献   

9.
Th1 and Th2 lymphocytes express a different repertoire of chemokine receptors (CCRs). CXCR3, the receptor for I-TAC (interferon-inducible T cell alpha-chemoattractant), Mig (monokine induced by gamma-interferon), and IP10 (interferon-inducible protein 10), is expressed preferentially on Th1 cells, whereas CCR3, the receptor for eotaxin and several other CC chemokines, is characteristic of Th2 cells. While studying responses that are mediated by these two receptors, we found that the agonists for CXCR3 act as antagonists for CCR3. I-TAC, Mig, and IP10 compete for the binding of eotaxin to CCR3-bearing cells and inhibit migration and Ca(2+) changes induced in such cells by stimulation with eotaxin, eotaxin-2, MCP-2 (monocyte chemottractant protein-2), MCP-3, MCP-4, and RANTES (regulated on activation normal T cell expressed and secreted). A hybrid chemokine generated by substituting the first eight NH(2)-terminal residues of eotaxin with those of I-TAC bound CCR3 with higher affinity than eotaxin or I-TAC (3- and 10-fold, respectively). The hybrid was 5-fold more potent than I-TAC as an inhibitor of eotaxin activity and was effective at concentrations as low as 5 nm. None of the antagonists described induced the internalization of CCR3, indicating that they lack agonistic effects and thus qualify as pure antagonists. These results suggest that chemokines that attract Th1 cells via CXCR3 can concomitantly block the migration of Th2 cells in response to CCR3 ligands, thus enhancing the polarization of T cell recruitment.  相似文献   

10.
Human immunodeficiency virus type 1 (HIV-1) requires, in addition to CD4, coreceptors of the CC or CXC chemokine families for productive infection of T cells and cells of the monocyte-macrophage lineage. Based on the hypothesis that coreceptor expression on alveolar macrophages (AM) may influence HIV-1 infection of AM in the lung, this study analyzes the expression and utilization of HIV-1 coreceptors on AM of healthy individuals. AM were productively infected with five different primary isolates of HIV-1. Levels of surface expression of CCR5, CXCR4, and CD4 were low compared to those of blood monocytes, but CCR3 was not detectable. mRNA for CCR5, CXCR4, CCR2, and CCR3 were all detectable, but to varying degrees and with variability among donors. Expression of CCR5, CXCR4, and CCR2 mRNA was downregulated following stimulation with lipopolysaccharide (LPS). In contrast, secretion of the chemokines RANTES, MIP-1alpha, and MIP-1beta was upregulated with LPS stimulation. Interestingly, HIV-1 replication was diminished following LPS stimulation. Infection of AM with HIV-1 in the presence of the CC chemokines demonstrated blocking of infection. Together, these studies demonstrate that AM can be infected by a variety of primary HIV-1 isolates, AM express a variety of chemokine receptors, the dominant coreceptor used for HIV entry into AM is CCR5, the expression of these receptors is dependent on the state of activation of AM, and the ability of HIV-1 to infect AM may be modulated by expression of the chemokine receptors and by chemokines per se.  相似文献   

11.
The lung is an important tertiary lymphoid organ with constant trafficking of T cells through the lung in both health and disease. T cell migration is controlled by a combination of adhesion receptors and chemokines expressed on vascular endothelium and in the tissue, often in an organ-specific manner. This leads to selective accumulation of different T cell subsets, a process called lymphocyte homing. There is evidence for a distinct lung-homing pathway, but no specific lung-homing receptors have been described. We analyzed the chemokine receptor profile of lung T cells to determine the extent to which lung T cells shared homing pathways with other organs such as the gut and skin. In addition, we compared expression of receptors in normal and asthmatic individuals to determine whether different pathways were used in health and disease. We observed that lung T cells expressed a profile of chemokine and adhesion receptors distinct from that of gut- and skin-homing T cells although no chemokine receptor specific for the lung was found. In particular, lung T cells expressed CCR5 and CXCR3, but not CCR9 or cutaneous lymphocyte Ag, and only low levels of CCR4 and alpha(4)beta(7). No differences were observed between lung T cells from normal vs asthmatic subjects. This study provides added support for the concept of a lung-homing pathway separate from other mucosal organs such as the gut and suggests that the chemokine pathways that control T cell migration in normal homeostasis and Th2-type inflammatory responses are similar.  相似文献   

12.
CXC and CC chemokine receptors on coronary and brain endothelia   总被引:11,自引:0,他引:11       下载免费PDF全文
BACKGROUND: Chemokine receptors on leukocytes play a key role in inflammation and HIV-1 infection. Chemokine receptors on endothelia may serve an important role in HIV-1 tissue invasion and angiogenesis. MATERIALS AND METHODS: The expression of chemokine receptors in human brain microvascular endothelial cells (BMVEC) and coronary artery endothelial cells (CAEC) in vitro and cryostat sections of the heart tissue was determined by light and confocal microscopy and flow cytometry with monoclonal antibodies. Chemotaxis of endothelia by CC chemokines was evaluated in a transmigration assay. RESULTS: In BMVEC, the chemokine receptors CCR3 and CXCR4 showed the strongest expression. CXCR4 was localized by confocal microscopy to both the cytoplasm and the plasma membrane of BMVEC. In CAEC, CXCR4 demonstrated a strong expression with predominantly periplasmic localization. CCR5 expression was detected both in BMVEC and CAEC but at a lower level. Human umbilical cord endothelial cells (HUVEC) expressed strongly CXCR4 but only weakly CCR3 and CCR5. Two additional CC chemokines, CCR2A and CCR4, were detected in BMVEC and CAEC by immunostaining. Immunocytochemistry of the heart tissues with monoclonal antibodies revealed a high expression of CXCR4 and CCR2A and a low expression of CCR3 and CCR5 on coronary vessel endothelia. Coronary endothelia showed in vitro a strong chemotactic response to the CC chemokines RANTES, MIP-1alpha, and MIP-1beta. CONCLUSIONS: The endothelia isolated from the brain display strongly both the CCR3 and CXCR4 HIV-1 coreceptors, whereas the coronary endothelia express strongly only the CXCR4 coreceptor. CCR5 is expressed at a lower level in both endothelia. The differential display of CCR3 on the brain and coronary endothelia could be significant with respect to the differential susceptibility of the heart and the brain to HIV-1 invasion. In addition, CCR2A is strongly expressed in the heart endothelium. All of the above chemokine receptors could play a role in endothelial migration and repair.  相似文献   

13.
Human immunodeficiency virus type 1 (HIV-1) entry into CD4(+) cells requires the chemokine receptors CCR5 or CXCR4 as co-fusion receptors. We have previously demonstrated that chemokine receptors are capable of cross-regulating the functions of each other and, thus, affecting cellular responsiveness at the site of infection. To investigate the effects of chemokine receptor cross-regulation in HIV-1 infection, monocytes and MAGIC5 and rat basophilic leukemia (RBL-2H3) cell lines co-expressing the interleukin-8 (IL-8 or CXCL8) receptor CXCR1 and either CCR5 (ACCR5) or CXCR4 (ACXCR4) were generated. IL-8 activation of CXCR1, but not the IL-8 receptor CXCR2, cross-phosphorylated CCR5 and CXCR4 and cross-desensitized their responsiveness to RANTES (regulated on activation normal T cell expressed and secreted) (CCL5) and stromal derived factor (SDF-1 or CXCL12), respectively. CXCR1 activation internalized CCR5 but not CXCR4 despite cross-phosphorylation of both. IL-8 pretreatment also inhibited CCR5- but not CXCR4-mediated virus entry into MAGIC5 cells. A tail-deleted mutant of CXCR1, DeltaCXCR1, produced greater signals upon activation (Ca(2+) mobilization and phosphoinositide hydrolysis) and cross-internalized CXCR4, inhibiting HIV-1 entry. The protein kinase C inhibitor staurosporine prevented phosphorylation and internalization of the receptors by CXCR1 activation. Taken together, these results indicate that chemokine receptor-mediated HIV-1 cell infection is blocked by receptor internalization but not desensitization alone. Thus, activation of chemokine receptors unrelated to CCR5 and CXCR4 may play a cross-regulatory role in the infection and propagation of HIV-1. Since DeltaCXCR1, but not CXCR1, cross-internalized and cross-inhibited HIV-1 infection to CXCR4, the data indicate the importance of the signal strength of a receptor and, as a consequence, protein kinase C activation in the suppression of HIV-1 infection by cross-receptor-mediated internalization.  相似文献   

14.
T cells undergo chemokine receptor switches during activation and differentiation in secondary lymphoid tissues. Here we present evidence that dendritic cells can induce changes in T cell expression of chemokine receptors in two continuous steps. In the first switch over a 4-5 day period, dendritic cells up-regulate T cell expression of CXCR3 and CXCR5. Additional stimulation leads to the second switch: down-regulation of lymphoid tissue homing related CCR7 and CXCR5, and up-regulation of Th1/2 effector tissue-targeting chemoattractant receptors such as CCR4, CCR5, CXCR6, and CRTH2. We show that IL-4 and IL-12 can determine the fate of the secondary chemokine receptor switch. IL-4 enhances the generation of CCR4(+) and CRTH2(+) T cells, and suppresses the generation of CXCR3(+) T cells and CCR7(-) T cells, while IL-12 suppresses the level of CCR4 in responding T cells. Furthermore, IL-4 has positive effects on generation of CXCR5(+) and CCR7(+) T cells during the second switch. Our study suggests that the sequential switches in chemokine receptor expression occur during naive T cell interaction with dendritic cells. The first switch of T cell chemokine receptor expression is consistent with the fact that activated T cells migrate within lymphoid tissues for interaction with B and dendritic cells, while the second switch predicts the trafficking behavior of effector T cells away from lymphoid tissues to effector tissue sites.  相似文献   

15.
The focus of this study was to determine which chemokine receptors are present on oral fibroblasts and whether these receptors influence proliferation, migration, and/or the release of wound healing mediators. This information may provide insight into the superior wound healing characteristics of the oral mucosa. The gingiva fibroblasts expressed 12 different chemokine receptors (CCR3, CCR4, CCR6, CCR9, CCR10, CXCR1, CXCR2, CXCR4, CXCR5, CXCR7, CX3CR1, and XCR1), as analyzed by flow cytometry. Fourteen corresponding chemokines (CCL5, CCL15, CCL20, CCL22, CCL25, CCL27, CCL28, CXCL1, CXCL8, CXCL11, CXCL12, CXCL13, CX3CL1, and XCL1) were used to study the activation of these receptors on gingiva fibroblasts. Twelve of these fourteen chemokines stimulated gingiva fibroblast migration (all except for CXCL8 and CXCL12). Five of the chemokines stimulated proliferation (CCL5/CCR3, CCL15/CCR3, CCL22/CCR4, CCL28/CCR3/CCR10, and XCL1/XCR1). Furthermore, CCL28/CCR3/CCR10 and CCL22/CCR4 stimulation increased IL‐6 secretion and CCL28/CCR3/CCR10 together with CCL27/CCR10 upregulated HGF secretion. Moreover, TIMP‐1 secretion was reduced by CCL15/CCR3. In conclusion, this in‐vitro study identifies chemokine receptor‐ligand pairs which may be used in future targeted wound healing strategies. In particular, we identified the chemokine receptors CCR3 and CCR4, and the mucosa specific chemokine CCL28, as having an predominant role in oral wound healing by increasing human gingiva fibroblast proliferation, migration, and the secretion of IL‐6 and HGF and reducing the secretion of TIMP‐1.  相似文献   

16.
The aim of this study was to learn more on the role of chemokines in the regulation of human megakryopoiesis. Normal human megakaryoblasts were expanded in serum-free liquid cultures and subsequently (1) phenotyped for expression of various chemokine receptors, (2) evaluated if chemokine receptors which they express are functional after stimulation by chemokines (calcium flux assay, chemotaxis, phosphorylation of MAPK-p42/44 and AKT proteins), and (3) investigated for expression and secretion of selected chemokines by employing RT-PCR and ELISA assays, respectively. In addition we also phenotyped peripheral blood platelets for expression of chemokine receptors and chemokines. We found that while human megakaryoblasts express several chemokine receptors (CXCR4, CCR6, CCR8, CCR5, CCR2 and CXCR3), CXCR4 was the only receptor detectable by FACS on human platelets. Moreover, among various chemokines tested, only SDF-1 (CXCR4 ligand) stimulated calcium flux and chemotaxis in normal human megakaryoblasts and phosphorylated MAPK-p42/44 and AKT in these cells. Although mRNAs for several chemokines were detectable by RT-PCR in normal human megakaryoblasts, only RANTES, IL-8, MCP-1 and PF-4 were found to be secreted by these cells. Finally we noticed that no chemokine tested in this study affected CFU-Meg colony formation by human CD34+ cells in serum-free cultures. We conclude that from all the chemokine receptor-chemokine axes tested, only SDF-1-CXCR4 axis was functional in assays employed in our studies, which further support the view that this axis plays a privileged role in regulating normal human megakaryopoiesis.  相似文献   

17.
Thymic stromal lymphopoietin (TSLP) is said to increase expression of chemokines attracting Th2 T cells. We hypothesized that asthma is characterized by elevated bronchial mucosal expression of TSLP and Th2-attracting, but not Th1-attracting, chemokines as compared with controls, with selective accumulation of cells bearing receptors for these chemokines. We used in situ hybridization and immunohistochemistry to examine the expression and cellular provenance of TSLP, Th2-attracting (thymus and activation-regulated chemokine (TARC)/CCL17, macrophage-derived chemokine (MDC)/CCL22, I-309/CCL1) and Th1-attracting (IFN-gamma-inducible protein 10 (IP-10)/CXCL10, IFN-inducible T cell alpha-chemoattractant (I-TAC)/CXCL11) chemokines and expression of their receptors CCR4, CCR8, and CXCR3 in bronchial biopsies from 20 asthmatics and 15 normal controls. The numbers of cells within the bronchial epithelium and submucosa expressing mRNA for TSLP, TARC/CCL17, MDC/CCL22, and IP-10/CXCL10, but not I-TAC/CXCL11 and I-309/CCL1, were significantly increased in asthmatics as compared with controls (p 相似文献   

18.
Chemokines are believed to play a role in the neuropathogenesis of AIDS through their recruitment of neurotoxin-secreting, virally infected leukocytes into the CNS. Levels of chemokines are elevated in brains of patients and macaques with HIV/SIV-induced encephalitis. The chemokine receptors CCR3, CCR5, and CXCR4 are found on subpopulations of neurons in the cortex of human and macaque brain. We have developed an in vitro system using both macaque and human fetal neurons and astrocytes to further investigate the roles of these receptors in neuronal response to inflammation. Here we report the presence of functional HIV/SIV coreceptors CCR3, CCR5, and CXCR4 on fetal human and macaque neurons and CCR5 and CXCR4 on astrocytes immediately ex vivo and after several weeks in culture. Confocal imaging of immunostained neurons demonstrated different patterns of distribution for these receptors, which may have functional implications. Chemokine receptors were shown to respond to their appropriate chemokine ligands with increases in intracellular calcium that, in the case of neurons, required predepolarization with KCl. These responses were blocked by neutralizing chemokine receptor in mAbs. Pretreatment of neural cells with pertussis toxin abolished responses to stromal-derived factor-1alpha, macrophage inflammatory protein-1beta, and RANTES, indicating coupling of CCR5 and CXCR4 to a Gialpha protein, as in leukocytes. Cultured macaque neurons demonstrated calcium flux response to treatment with recombinant SIVmac239 envelope protein, suggesting a mechanism by which viral envelope could affect neuronal function in SIV infection. The presence of functional chemokine receptors on neurons and astrocytes suggests that chemokines could serve to link inflammatory and neuronal responses.  相似文献   

19.
20.
Chemokine receptors CCR5 and CXCR4 are the major coreceptors of HIV-1 infection and also play fundamental roles in leukocyte trafficking, metastasis, angiogenesis, and embyogenesis. Here, we show that transfection of CCR5 into CXCR4 and CD4 expressing 3T3 cells enhances the cell surface level of CXCR4. In CCR5 high expressing cells, cell surface level of CXCR4 was incompletely modulated in the presence of the CXCR4 ligand CXCL12/SDF-1alpha. CCR5 was resistant to ligand-dependent modulation with the CCR5 ligand CCL5/RANTES. Confocal laser microscopy revealed that CCR5 was colocalized with CXCR4 on the cell surface. In CD4 expressing CCR5 and CXCR4 double positive NIH 3T3 cells, immunoprecipitation followed by Western blot analysis revealed that CCR5 was associated with CXCR4 and CD4. CXCR4 and CCR5 were not co-immunoprecipitated in cells expressing CCR5 and CXCR4 but without CD4 expression. Compared to NIH 3T3CD4 cells expressing CXCR4, the entry of an HIV-1 X4 isolate (HCF) into NIH 3T3CD4 expressing both CXCR4 and CCR5 was reduced. Our data indicate that chemokine receptors interact with each other, which may modulate chemokine-chemokine receptor interactions and HIV-1 coreceptor functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号