首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Immature thymocytes, which coexpress CD4 and CD8, give rise to mature CD4+CD8- and CD4-CD8+ T cells. Only those T cells that recognize self-MHC are selected to mature, a process known as positive selection. The specificity of the T cell antigen receptor (TCR) for class I or class II MHC influences the commitment to a CD4 or CD8 lineage. This may occur by a directed mechanism or by stochastic commitment followed by a selection step that allows only CD8+, class I-specific and CD4+, class II-specific cells to survive. We have generated a mouse line expressing a CD8 transgene under the control of the T cell-specific CD2 regulatory sequences. Although constitutive CD8 expression does not affect thymic selection of CD4+ cells, selection of a class I-specific TCR in the CD8 subset is substantially improved. This outcome is consistent with a model for positive selection in which selection occurs at a developmental stage in which both CD4 and CD8 are expressed, and positive selection by class I MHC generates an instructive signal that directs differentiation to a CD8 lineage.  相似文献   

2.
J Kaye  D L Ellenberger 《Cell》1992,71(3):423-435
Thymocyte differentiation is dependent upon recognition of major histocompatibility complex (MHC) molecules on thymic stroma, a process called positive selection. Here we describe an immature CD4+8+ T cell line derived from a TCR transgenic mouse that differentiates into CD4+8- cells in response to antigen and nonthymic antigen-presenting cells. When injected intrathymically, these cells differentiate in the absence of antigen. The ability of immature T cells to recognize MHC molecules in the absence of foreign antigen in the thymus can thus be attributed to a unique property of thymic antigen-presenting cells. These studies also demonstrate the phenotypic and functional changes associated with TCR-mediated T cell maturation and establish an in vitro model system of positive selection.  相似文献   

3.
The CD8 co-receptor is important in the differentiation and selection of class I MHC-restricted T cells during thymic development, and in the activation of mature T lymphocytes in response to antigen. Here we show that soluble CD8alphaalpha receptor, despite an extremely low affinity for MHC, inhibits activation of cytotoxic lymphocytes by obstructing CD3 zeta-chain phosphorylation. We propose a model for this effect that involves interference of productive receptor multimerization at the T-cell surface. These results provide new insights into the mechanism of T-cell activation and evidence that CD8 function is exquisitely sensitive to disruption, an effect that might be exploited by molecular therapeutics.  相似文献   

4.
It is generally accepted that as the result of positive thymic selection, CD8-expressing T cells recognize peptide antigens presented in the context of MHC class I molecules and CD4-expressing T cells interact with peptide antigens presented by MHC class II molecules. Here we report the generation of TCRalpha/beta(+), CD3(+), CD4(+), CD8(-), MHC class I-restricted alloreactive T-cell clones which were induced using peripheral blood mononuclear cells from healthy individuals following in vitro stimulation with transporter associated with antigen processing (TAP)-deficient cell lines T2. The CD4(+) T-cell clones showed an HLA-A2.1-specific proliferative response against T2 cells which was inhibited by anti-CD3 and anti-CD4 monoclonal antibodies. These results suggest that interaction of the TCR with peptide-bound HLA class I molecules contributes to antigen-specific activation of these co-receptor-mismatched T-cell clones. Antigen recognition by alloreactive MHC class I-restricted CD4(+) T cells was inhibited by removing peptides bound to HLA molecules on T2 cells suggesting that the alloreactive CD4(+) T cells recognize peptides that bind in a TAP-independent manner to HLA-A2 molecules. The existence of such MHC class I-restricted CD4(+) T cells which can recognize HLA-A2 molecules in the absence of TAP function may provide a basis for the development of immunotherapy against TAP-deficient tumor variants which would be tolerant to immunosurveillance by conventional MHC class I-restricted cytotoxic lymphocytes.  相似文献   

5.
Following positive and negative selection in the thymus, mature CD4+ T-cells emigrate into peripheral lymphoid organs. Whether resting T-cells require periodic stimulation to remain viable in the absence of antigen is important for understanding peripheral T-cell homeostasis. A prerequisite for T-cell receptor (TCR)-mediated signals in maintaining peripheral CD4+ T-cell longevity has been demonstrated. Here, we show in mice expressing a mutant I-Abeta transgene on an I-Abeta knockout background that na?ve CD4+ T-cells also require engagement of their CD4 coreceptors by peripheral, class II MHC-bearing cells for their survival. The transgene's product combines with endogenous Aalpha, but this mutant AalphaAbeta heterodimer cannot interact with CD4 molecules, although it efficiently presents antigens to TCRs. Resting CD4+ T-lymphocytes from mutant Abeta transgenic mice die by apoptosis at a much higher rate than do CD4+ T-cells from normal mice. Apoptosis of CD4+ T-cells in mutant Abeta transgenic mice is partially mediated by Fas. Adoptive transfer experiments revealed that the increase in apoptosis is due to a lack of interactions with mutant MHC class II rather than to an intrinsic defect in the CD4+ T-cells selected on mutant Abeta-expressing thymic epithelial cells. Thus, interactions between CD4 and MHC class II molecules contribute to the regulation of homeostasis in the peripheral immune system. Our results further suggest that thymic emigrant cells are continuously retested in the periphery for appropriate coreceptor interactions. Peripheral selection may be important in eliminating potentially autoreactive T-cells.  相似文献   

6.
Changes observed in mice with congenital damage of some part of the CNS-neuroendocrine-immune regulatory system are described. nu/nu mice with congenital absence of thymus and Lurcher mice with spontaneous olivopontocerebellar degeneration displayed changes in the histoarchitecture of adrenal gland, immune organs (thymus, spleen, axillar lymph nodes) and intestine. Changes were also observed in IgM+, IgG+, CD4+ and CD8+ lymphoid cell subpopulations in the main lymphoid organs--the spleen and axillar lymph nodes and in the proliferative ability of whole lymphoid cell populations. The extreme decrease of lymphoid T-cell subpopulations in athymic nu/nu mice is the consequence of the absence of thymus, the organ of their maturation. On the other hand, a relative increase of B-cell subpopulations was found in this mouse strain. A relative decrease of CD4+ lymphocytes and a different influence of immunization on B-cell subpopulations were found in the spleen in neurodeficient Lurcher mice. The high percentage of apoptotic cells, cells in the S-phase of cell cycle and increased proliferation index in nu/nu mice suggest that the turnover and renewal of lymphoid cells in the spleen in nu/nu mice is more rapid than in control immunocompetent BALB/c mice.  相似文献   

7.
The role of lymphostromal complexes in T-cell differentiation is far from elucidated, mainly because a clear association of a particular stromal cell type with a distinct thymocyte subset has never been identified. Using an in vitro system, detecting the adherence of thymocytes to a thymic medullary epithelial cell line (E-5), we showed that the phenotype of these thymocytes was that of cortical type: Thy-1hi, LFA-1+, PNAhi, CD4+CD8+, MEL-14-/lo, IL-2R-, CD3-/lo, and TcR V beta 8-/lo. They were enriched in cells in G2/M at the time of complex formation, showed a higher basal proliferation in culture, and did not respond to PHA, IL-2 and only marginally to Con A. These data show that complex formation with mouse thymic medullary epithelium selects for CD4+CD8+ thymocytes, as shown by the marked decrease in CD4+CD8-/CD4-CD8+ thymocytes, and the incapacity of CD4-CD8- thymocytes to adhere.  相似文献   

8.
CD8+ T cells can mediate eradication of established tumors, and strategies to amplify tumor-reactive T-cell numbers by immunization or ex vivo expansion followed by adoptive transfer are currently being explored in individuals with cancer. Generating effective CD8+ T cell-mediated responses to tumors is often impeded by T-cell tolerance to relevant tumor antigens, as most of these antigens are also expressed in normal tissues. We examined whether such tolerant T cells could be rescued and functionally restored for use in therapy of established tumors. We used a transgenic T-cell receptor (TCR) mouse model in which peripheral CD8+ T cells specific for a candidate tumor antigen also expressed in liver are tolerant, failing to proliferate or secrete interleukin (IL)-2 in response to antigen. Molecular and cellular analysis showed that these tolerant T cells expressed the IL-15 receptor alpha chain, and could be induced to proliferate in vitro in response to exogenous IL-15. Such proliferation abrogated tolerance and the rescued cells became effective in treating leukemia. Therefore, high-affinity CD8+ T cells are not necessarily deleted by encounter with self-antigen in the periphery, and can potentially be rescued and expanded for use in tumor immunotherapy.  相似文献   

9.
To establish new tools for studying human thymic stromal cells, we transfected adherent cells from a human postnatal thymus using a plasmid encoding SV40 large T antigen. Among the cell lines obtained, we characterized four epithelial cell lines (LT-TEC1 to LT-TEC4) and one thymic myoid cell line (MITC). Several morphological, functional and phenotypic differences were observed between these 2 cell types. Epithelial cells were heterogeneous and larger than myoid cells. Untreated LT-TEC lines expressed MHC class I, ICAM-1 and LFA-3 antigens and not MHC class II antigens, similarly to primary thymic epithelial cells (PTEC), while MITC line expressed only class I and LFA-3 antigens. After IFN-gamma treatment, MHC class II and ICAM-1 antigens were markedly upregulated in LT-TEC lines but not in MITC, indicating the absence or a dysfunction of regulatory factors in MITC line. Myoid cells expressed mRNA for all the subunits of the acetylcholine receptor (AChR) while epithelial cells expressed only the alpha, beta and epsilon subunits. Strikingly, LT-TEC produced much more C-C chemokines and IL-6 than MITC cells, while these latter produced higher levels of IL-8 and TNF-alpha. Altogether, these results reveal phenotypic and functional differences between these two stromal cell types, suggesting a potential involvement of myoid cells in the thymic function.  相似文献   

10.
This study has investigated the cross-reactivity upon thymic selection of thymocytes expressing transgenic TCR derived from a murine CD8+ CTL clone. The Idhigh+ cells in this transgenic mouse had been previously shown to mature through positive selection by class I MHC, Dq or Lq molecule. By investigating on various strains, we found that the transgenic TCR cross-reacts with three different MHCs, resulting in positive or negative selection. Interestingly, in the TCR-transgenic mice of H-2q background, mature Idhigh+ T cells appeared among both CD4+ and CD8+ subsets in periphery, even in the absence of RAG-2 gene. When examined on beta2-microglobulin-/- background, CD4+, but not CD8+, Idhigh+ T cells developed, suggesting that maturation of CD8+ and CD4+ Idhigh+ cells was MHC class I (Dq/Lq) and class II (I-Aq) dependent, respectively. These results indicated that this TCR-transgenic mouse of H-2q background contains both classes of selecting MHC ligands for the transgenic TCR simultaneously. Further genetic analyses altering the gene dosage and combinations of selecting MHCs suggested novel asymmetric effects of class I and class II MHC on the positive selection of thymocytes. Implications of these observations in CD4+/CD8+ lineage commitment are discussed.  相似文献   

11.
We have isolated cDNA clones encoding a mouse low affinity receptor for IgE (Fc epsilon RII) from a cDNA library of BALB/c splenic B cells activated with LPS and IL-4. The 2.2-kb cDNA clone encodes a 331 amino acid membrane glycoprotein that is homologous to human Fc epsilon RII (CD23) and a family of carbohydrate-binding proteins. COS7 cells transfected with the cDNA clones expressed a 45,000 m.w. protein that bound IgE and the anti-Fc epsilon RII mAb, B3B4. Fc epsilon RII mRNA was up-regulated in mouse B cells by culture with IL-4, but not in B cells cultured with IgE. Fc epsilon RII mRNA was detected in IgM+/IgD+ B cell lines, but not in pre-B cell lines or in B cell lines which have undergone differentiation to secrete Ig. The monocyte line P388D1, mast cell lines MC/9 and PT18, and peritoneal macrophages stimulated with IL-4 lacked detectable Fc epsilon RII mRNA, as did Thy-1.2+, CD4+, and CD8+ normal T cells and Thy-1.2+ T cells from Nippostrongylus brasiliensis-infected mice.  相似文献   

12.
The genetic factors that determine the size of lymphocyte populations are largely unknown. We studied the genetic control of variations in the size of the CD4 thymic compartment in unmanipulated mouse strains. A time-course experiment showed that the C57BL/6 mouse strain has a consistently reduced proportion of thymic CD4 cells compared to the BALB/c strain. This difference denotes a decrease in the efficiency of the transition from CD4(+)CD8(+) to CD4(+) thymocytes in the C57BL/6 mouse. Genome-wide genetic mapping identified a major quantitative trait locus in the MHC region that controlled the variations in the proportion of CD4 thymocytes in an F2 intercrossed progeny from C57BL/6 and BALB/c mice (LOD score=21.7). The linkage was maximal at the MHC class II molecule Ea locus, which explained 59% of the observed phenotypic variance. As the C57BL/6 mouse does not express Ea, we hypothesize that the decreased size of the CD4 compartment in the C57BL/6 thymus is due to a reduction in the number of functional MHC class II genes. This study suggests that, at the level of the thymus, the MHC molecules in addition to conferring functional restriction and self-tolerance on the T-cell repertoire, also play a role in determining the homeostasis of the thymic compartments.  相似文献   

13.
When the capping of membrane immunoglobulin on spleen B cells from normal C57Bl/6 mice (B6) is taken as reference, a faster capping rate is found for cells of age-matched B6 mice which are congenic at the lymphoproliferation (lpr) or nude (nu) loci. Though both congenic strains can be characterized by an abnormal T-lineage cell content, the nature of the abnormality itself is very different since B6 nudes lack thymus-processed/influenced lymphocytes whereas B6 mice with the lpr phenotype suffer from an invasion of all lymphoid organs with cells of a particular T-cell subset. Moreover, the more "normal" capping rate of B cells from the double congenic B6 mice (nu/nu, lpr/lpr) is intriguing. Since other mice homozygous at the lpr locus (MRL-1) or at the nu locus (BALB/c nude) also cap faster than their congenic controls (MRL-n and BALB/c, respectively), the observed effects do not appear to depend on a peculiarity of the B6 genetic background. If the faster capping of B cells of nu congenic and of lpr congenic mice had a common origin, it might be that T cells would control in some way the mobility of B-cell membrane immunoglobulins: both congenic mice have in their spleen a very low proportion of mature T cells together with a very high proportion of prethymic/thymic immature T-cell types, either of which might affect B-cell behavioral responses to membrane immunoglobulin clustering.  相似文献   

14.
The surface of dendritic cells from mouse spleen, thymus, and epidermis has been compared with a panel of monoclonal antibodies and the FACS. A method was first developed to isolate populations of large, adherent, thymic dendritic cells that were greater than 90% pure. These were released by collagenase digestion and separated from adherent macrophages after overnight culture. Enrichment was based on the facts that most macrophages remained plastic adherent and rosetted strongly with antibody-coated erythrocytes. As in spleen, thymic dendritic cells were stellate in shape, had abundant class I and II MHC products, lacked many standard macrophage and lymphocyte markers, and actively stimulated the mixed leukocyte reaction. Most spleen and thymic dendritic cells could be lysed by the 7D4 mAb, to the low-affinity IL-2 receptor, and complement but the levels of 7D4 by FACS were low and sometimes not above background. Differences among dendritic cells from different tissues were noted with other mAb. Adherent dendritic cells from thymus all expressed the J11d "B cell" antigen and the NL145 interdigitating cell marker, but lacked the 33D1 spleen dendritic cell antigen. Eighty to ninety percent of spleen dendritic cells were J11d-, NL145-, 33D1+ but the remainder expressed the J11d+, NL145+, 33D1- thymic phenotype. The latter phenotype also was identical to that of epidermal Langerhans' cells. We postulate that the major 33D1+ cell in spleen represents a migratory stage in which dendritic cells are moving from tissues to lymphoid organs.  相似文献   

15.
Remarkably normal cellular immune function, along with specific T-cell tolerance to highly disparate xenogeneic donors, can be achieved by grafting fetal pig thymus (FP THY) tissue to T and NK cell-depleted, thymectomized (ATX) mice. Porcine MHC can mediate positive selection of mouse CD4+ T-cells with a mouse MHC-restricted TCR in FP THY-grafted, T- and NK cell-depleted, ATX TCR-transgenic "AND" mice. However, functional studies were not performed on transgenic mouse T-cells selected in a FP THY graft. We have now performed further studies to confirm the ability of porcine MHC to mediate the positive selection of mouse T-cells with a mouse MHC-restricted TCR, and to exclude the possibility that the maturation of mouse T-cells with a mouse MHC-restricted TCR in FP THY grafts in ATX "AND" mice is a special case. For this purpose, TCR-transgenic mice with an unrelated transgenic TCR ["3A9", specific for hen egg lysozyme (HEL) peptide 46-61 presented by I-Ak] were employed. Similar to FP THY-grafted ATX "AND" mice, large numbers of mouse CD4 single positive thymocytes expressing the transgenic TCR (Vbeta8.2) and expressing a mature phenotype (Qa-2high and heat stable antigen, HSAlow) were detected in FP THY grafts. Porcine thymus grafting led to a high level of peripheral repopulation with mouse naive-type (CD44low CD45RBhigh CD62Lhigh) CD4+ cells expressing the transgenic TCR in T and NK cell-depleted ATX "3A9" mice, regardless of whether the recipients had a positive selecting or a non-selecting, class II deficient MHC background. The mouse CD4+ T-cells expressing the "3A9" TCR showed efficient primary proliferative responses to the protein antigen (HEL) when it was presented by mouse class II+ antigen presenting cells (APC) in vitro. These results, collectively, support the general conclusion that discordant xenogeneic porcine MHC can mediate positive selection of mouse T-cells with mouse MHC-restricted TCR. This study has implications for the potential clinical use of xenogeneic thymus transplantation to reconstitute cellular immunity in the setting of thymic insufficiency or thymectomy, and hence for its applicability to the induction of xenograft tolerance and in the treatment of immunodeficiency diseases.  相似文献   

16.
To elucidate the acquisition of self tolerance in the thymus, full-allogeneic thymic chimeras were constructed. Athymic C3H and BALB/c nude mice were reconstituted with the thymic lobes of BALB/c and B10.BR fetuses, respectively, that were organ cultured for 5 days in the presence of 2'-deoxyguanosine. T cells in these chimeras were tolerized to the host MHC in both MLR and CTL assays. In contrast, T cells in the chimeras exhibited split tolerance for the thymic MHC haplotype. CTL specific for class I MHC of the thymic haplotype were generated not only from the peripheral T cells of the chimeras but also from thymocytes re-populated in the engrafted thymic lobes. However, T cells in these chimeras responded poorly to the class II MHC of the thymic haplotype in a standard MLR assay. In a syngeneic MLR culture upon stimulation with enriched APC of the thymic haplotype, only 22 to 48% of the responses were mediated by CD4+ cells, and proliferations of CD4- cells were prominent. There were no haplotype-specific suppressor cells detected which would cause the unresponsiveness to the thymic class II MHC. These results indicated that the thymic lobes treated with 2'-deoxyguanosine were defective in the ability to induce the transplantation tolerance for the class I MHC expressed on the thymus, although the same thymic lobes were able to induce the transplantation tolerance for the thymic class II MHC.  相似文献   

17.
The ability of lymphoid cells from congenitally athymic (nu/nu) mice to produce interleukin 2 (IL 2) was investigated. Spleen or lymph node cells (superficial or mesenteric) from nude mice on an N:NIH(S)II or BALB/c genetic background were stimulated with concanavalin A (Con A) or with irradiated allogeneic (DBA/2) spleen cells that had been depleted of T cells by treatment with monoclonal anti-Thy-1.2 antibody plus complement. After 24 hr, supernatants were harvested and assayed for their ability to support the proliferation of a cloned IL 2-dependent cytolytic T cell line. With this quantitative microassay, IL 2 production was not detectable in spleen and lymph nodes of 6-wk-old N:NIH(S)II nude mice; however, by 12 mo of age, IL 2 production increased more than 100-fold to reach levels comparable to control (nu/+) animals. Con A was more potent than alloantigen in the induction of IL 2 in either nude or control (nu/+) animals. Furthermore, differences in the genetic background of nude mice resulted in corresponding differences in both numbers of T cells (defined by monoclonal anti-Thy-1 antibody) and IL 2 production. By using negative selection with monoclonal antibodies plus complement, IL 2 production in aged nude mice was shown to depend upon a subpopulation of cells that expressed Thy-1 but not Lyt-2. These data thus demonstrate that a subpopulation of IL 2-producing cells with a Thy-1+ Lyt-2- surface phenotype can develop in the apparent absence of thymic influence.  相似文献   

18.
The 4D1D4 hybridoma cells were derived from the fusion of spleen cells from BALB/c nude mice with NS-1 mouse myeloma cells. The surface phenotypes of 4D1D4 hybridoma cells were Thy-1.2+, L3T4 (CD4)-, Lyt-2 (CD8)-, Asialo GM1+ and p-55 interleukin-2 (IL-2) receptor (CD25)-. This phenotypic pattern was consistent with the surface phenotype of NK cells. The 4D1D4 cells showed the definite killer activity against a syngenic tumor cell line, RL male-1, but not against an allogenic YAC-1 line. The killer activity of the 4D1D4 cells was not affected by the addition of exogenous IL-2. It was, therefore, suggested that 4D1D4 cells might be representative of resting NK cells with expression of no functional IL-2 receptors. The hybridoma technology might be useful for establishment of the cloned NK cells.  相似文献   

19.
CD4(+)CD25(+) regulatory T cell selection is initiated by high-specificity interactions with self-peptides in the thymus, although how these cells respond to cytokine-derived signals and to re-exposure to self-peptide:MHC complexes in the periphery is not well understood. We have used a transgenic mouse system, in which the peptide that induces thymic selection of a clonal population of CD4(+)CD25(+) regulatory T cells is known, to show that CD4(+)CD25(+) T cells proliferate in response to their selecting self-peptide in vivo. Moreover, they do not proliferate in response to lymphopenia in the absence of the selecting self-peptide, reflecting a low level of expression of the high affinity receptor for IL-7 (CD127) relative to conventional CD4(+) T cells. That their selecting self-peptide is both required for and promotes the peripheral expansion of CD4(+)CD25(+) regulatory T cells may direct their accumulation in sites where the self-peptide is expressed.  相似文献   

20.
CD4 repopulation can be achieved in T cell-depleted, thymectomized mice grafted with xenogeneic porcine thymus tissue. These CD4 T cells are specifically tolerant of the xenogeneic porcine thymus donor and the recipient, but are positively selected only by porcine MHC. Recent studies suggest that optimal peripheral survival of naive CD4 T cells requires the presence of the same class II MHC in the periphery as that of the thymus in which they were selected. These observations would suggest that T cells selected on porcine thymic MHC would die rapidly in the periphery, where porcine MHC is absent. Persistent CD4 reconstitution achieved in mice grafted with fetal porcine thymus might be due to increased thymic output to compensate for rapid death of T cells in the periphery. Comparison of CD4 T cell decay after removal of porcine or murine thymic grafts ruled out this possibility. No measurable role for peripheral murine class II MHC in maintaining the naive CD4 pool originating in thymic grafts was demonstrable. However, mouse class II MHC supported the conversion to, survival, and/or proliferation of memory-type CD4 cells selected in fetal porcine thymus. Thus, the same MHC as that mediating positive selection in the thymus is not critical for maintenance of the memory CD4 cell pool in the periphery. Our results support the interpretation that xenogeneic thymic transplantation is a feasible strategy to reconstitute CD4 T cells and render recipients tolerant of a xenogeneic donor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号