首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fruit bins infested with diapausing larvae of codling moth larvae, Cydia pomonella (L.), are a source of reinfestation of orchards and may jeopardize the success of mating disruption programs and other control strategies. Bins are not routinely treated for control of overwintering codling moth before placing them in orchards. Entomopathogenic nematodes provide a noninsecticidal alternative to methyl bromide that could be applied at the time bins are submerged in dump tanks at the packing house for flotation of fruit. Diapausing codling moth larvae in miniature fruit bins were highly susceptible to infective juveniles of Steinernema carpocapsae (Weiser). Immersion of bins in suspensions of S. carpocapsae ranging from 5 to 100 infective juveniles per milliliter of water resulted in 68-100% mortality. Immersion times of 1 or 5 min in suspensions with 5 infective juveniles of S. carpocapsae per milliliter of water, with and without Tween 80 (0.01%), yielded essentially the same mortality of codling moth larvae. Highest mortalities in codling moth larvae (88%) after treatment of bins in suspensions of 5 infective juveniles of S. carpocapsae per milliliter of water were observed after incubation for 24 h at 25 degrees C and 70% RH. Lowest mortalities (37%) were observed after incubation at 15 degrees C and 35% RH. Comparative tests conducted with Heterorhabditis marelatus Liu & Berry, Steinernema kraussei (Steiner), and S. carpocapsae with 5 infective juveniles per milliliter of water resulted in 21.7, 53.9, and 68.7% mortality, respectively. The use of miniature fruit bins as described in this article provides an effective means of assessing nematode efficacy without the cumbersome size of commercial bins.  相似文献   

2.
Two Hawaiian isolates of Steinernema feltiae MG-14 and Heterohabditis indica MG-13, a French isolate of S. feltiae SN, and a Texan isolate of S. riobrave TX were tested for their efficacy against the root-knot nematode, Meloidogyne javanica, in the laboratory and greenhouse. Experiments were conducted to investigate the effects of treatment application time and dose on M. javanica penetration in soybean, and egg production and plant development in tomato. Two experiments conducted to assess the effects of entomopathogenic nematode application time on M. javanica penetration demonstrated that a single application of 10⁴ S. feltiae MG-14 or SN infective juveniles per 100 cm³ of sterile soil, together with 500 (MG-14) or 1,500 (SN) second-stage juveniles of M. javanica, reduced root penetration 3 days after M. javanica inoculation compared to that of a water treatment. Entomopathogenic nematode infective juveniles applied to assess the effects on M. javanica egg production did not demonstrate a significant reduction compared to that of the water control treatment. There was no dose response effect by Steinernema spp. On M. javanica root penetration or egg production. Steinernema spp. did not affect the growth or development of M. javanica-infected plants, but H. indica MG-13-treated plants had lower biomass than untreated plants infected with M. javanica. Infective juveniles of S. riobrave TX, S. feltiae SN, and MG-14 but not those of H. indica MG-13 were found inside root cortical tissues of M. javanica-infected plants. Entomopathogenic nematode antagonism to M. javanica on soybean or tomato was insufficient in the present study to provide a consistent level of nematode suppression at the concentrations of infective juveniles applied.  相似文献   

3.
The susceptibility of codling moth diapausing larvae to three entomopathogenic nematode species was assessed in the laboratory using a bioassay system that employed cocooned larvae within cardboard strips. The LC50values forSteinernema carpocapsae, S. riobrave,andHeterorhabditis bacteriophorawere 4.7, 4.8, and 6.0 infective juveniles/cm2, respectively. When a discriminating concentration of 10 infective juveniles/cm2of each of the three nematode species was evaluated at 15, 20, 25, and 30°C,S. carpocapsaewas the most effective nematode with mortalities ranging from 66 to 90%. Mortalities produced byS. riobraveandH. bacteriophoraat the four temperatures were 2–94 and 25–69%, respectively. Studies were also conducted to test infectivity at 10, 35, and 40°C. No mortality was produced by any of the nematode species at 10°C.S. riobravewas the most infective nematode at 35°C producing 68% mortality which was more than twice that observed forS. carpocapsaeorH. bacteriophora.Codling moth larvae treated with 10 infective juveniles/cm2ofS. carpocapsaeand kept in 95+% RH at 25°C for 0–24 h followed by incubation at 25–35% RH indicated that more than 3 h in high humidity was needed to attain 50% mortality. Trials ofS. carpocapsae, S. riobrave,andH. bacteriophoraat 50 infective juveniles/cm2against cocooned larvae on pear and apple logs resulted in reductions of codling moth adult emergence of 83, 31, and 43%, respectively, relative to control emergence. Trials of the three entomopathogenic nematodes at 50 infective juveniles/cm2against cocooned larvae in leaf litter resulted in 99 (S. carpocapsae), 80 (S. riobrave), and 83% (H. bacteriophora) mortality, respectively. Our results indicate good potential of entomopathogenic nematodes, especiallyS. carpocapsae,for codling moth control under a variety of environmental conditions.  相似文献   

4.
The vertical migration of infective juveniles of Neoaplectana glaseri applied to the soil surface or introduced 16 cm below the soil surface was studied in pure silica sand, coarse sandy loam, silty clay loam, and clay. The number of juveniles that migrated and infected wax moth pupae placed in the soil decreased as the proportion of clay and silt increased. The majority of nematodes moved downwards 2-6 cm from the surface, but some penetrated to a depth of 14 cm in pure silica sand and coarse sandy loam. In pure silica sand and coarse sandy loam, nematodes introduced 16 cm below the soil surface were able to infect wax moth pupae located at depths of 0-4 cm and 28-32 cm. Nematodes showed a greater tendency to disperse downwards from the point of application. Movement of the nematode was least in clay soil and limited in silty clay loam soil. The number of migrating nematodes was greatest when wax moth pupae were present.  相似文献   

5.
Hua A  Yang D  Wu S  Xue F 《Journal of insect physiology》2005,51(11):1261-1267
In the zygaenid moth, Pseudopidorus fasciata, both larval diapause induction and termination are under photoperiodic control. In this study, we investigated whether photoperiodic time measurement (with a 24-h light-dark cycle) in this moth is qualitative or quantitative. Photoperiodic response curves, at 22, 25, and 28 degrees C indicated that the incidence of diapause depended on whether the scotophases exceeded the critical night length (CNL) or not. All scotophases longer than the CNL-induced diapause; all scotophases shorter than the CNL-inhibited diapause. The CNL was 10.5h at 25 and 28 degrees C, and 10h at 22 degrees C. By transferring from various short photoperiods (LD 8:16, LD 9:15, LD 10:14, LD 11:13, LD 12:12, and LD 13:11) to a long photoperiod (LD 16:8) at different times, the number of light-dark cycles required for 50% diapause induction at 25 degrees C was 7.14 at LD 8:16, 7.2 at LD 9:15, 7.19 at LD 10:14, 7.16 at LD 11:13, and 7.13 at LD 12:12, without showing a significant difference between the treatments. Only at LD 13:11 (near the CNL), the number of light-dark cycles was significantly increased to 7.64. The intensity of diapause induced under different short photoperiods (LD 8:16, LD 9:15, LD 10:14, LD 11:13, and LD 12:12) at 25 degrees C was not significantly different with an average diapause duration of 36 days. The duration of diapause induced under LD 13:11 was significantly reduced to 32 days. All results indicate that the night-lengths are measured as either "long" or "short" compared with some critical value and suggest that photoperiodic time measurement for diapause induction in this moth is based on a qualitative principle.  相似文献   

6.
Biofilms from drains in food processing facilities with a recent history of no detectable Listeria monocytogenes in floor drains were cultured for microorganisms producing antilisterial metabolites. A total of 413 microbial isolates were obtained from 12 drain biofilm samples and were assayed at 15 and 37 degrees C for activities that were bactericidal or inhibitory to L. monocytogenes, by two agar plate assays. Twenty-one of 257 bacterial isolates and 3 of 156 yeast isolates had antilisterial activity. All 24 isolates which produced metabolites inhibitory to L. monocytogenes were assayed for antilisterial activity in coinoculated broth cultures containing tryptic soy broth with yeast extract (TSB-YE). A five-strain mixture of 10(3) CFU of L. monocytogenes/ml and 10(5) CFU of the candidate competitive-exclusion microorganism/ml was combined in TSB-YE and incubated at 37 degrees C for 24 h, 15 degrees C for 14 days, 8 degrees C for 21 days, and 4 degrees C for 28 days. Substantial inhibition of L. monocytogenes growth (4 to 5 log CFU/ml) was observed for nine bacterial isolates at 37 degrees C, two at 15 and 8 degrees C, and three at 4 degrees C. The inhibitory isolates were identified as Enterococcus durans (six isolates), Lactococcus lactis subsp. lactis (two isolates), and Lactobacillus plantarum (one isolate). The anti-L. monocytogenes activity of these isolates was evaluated in biofilms of L. monocytogenes on stainless steel coupons at 37, 15, 8, and 4 degrees C. Results revealed that two isolates (E. durans strain 152 and L. lactis subsp. lactis strain C-1-92) were highly inhibitory to L. monocytogenes (growth inhibition of >5 log(10) CFU of L. monocytogenes/cm(2)). These two bacterial isolates appear to be excellent competitive-exclusion candidates to control L. monocytogenes in biofilms at environmental temperatures of 4 to 37 degrees C.  相似文献   

7.
The vertical migration of N. carpocapsae infective juveniles applied to the soil surface or introduced 14 cm below the soil surface was studied in four different soil types (pure silica sand, coarse sandy loam, silty clay loam, and clay). The percentage of juveniles able to migrate and infect wax moth pupae placed in the soil decreased as the percentage of clay and silt increased. Most nematodes placed on the soil surface remained within 2 cm of the surface, but some penetrated to a depth of 10 cm in pure silica sand and coarse sandy loam to infect pupae. Some pupae at the same depth were also infected with nematodes in silty clay loam soil. In pure silica sand and coarse sandy loam, nematodes introduced 14 cm below the soil surface were able to infect wax moth pupae located between 4 and 24 cm. Movement was least in clay soil and limited in silty clay loam. Nematodes showed a tendency to disperse upwards from the point of application. In all cases the number of migrating nematodes was greatest when wax moth pupae were present.  相似文献   

8.
Ecological aspects of Steinernema diaprepesi isolate SRC were studied to evaluate the species potential as biological control agent of insect pests. Under laboratory conditions, the following aspects were determined: the nematode life cycle, pathogenicity to several arthropods, reproductive capacity, tolerance to desiccation, effect of temperature on survival and infectivity of infective juveniles (IJs), and influence of soil texture and soil water potential on the isolate. The parasitic cycle on last-instar larvae of Galleria mellonella at 25°C was completed 8 days after infection. The nematode showed high virulence to lepidopteran larvae, being limited or nil in the remaining orders of arthropods evaluated. An acceptable offspring production of S. diaprepesi was confirmed in the species G. mellonella and S. frugiperda, suggesting that the isolate would have potential for control of lepidopteran larvae. Optimum temperature for reproduction was 20–25°C. IJs survived exposure to a range of temperatures between 10 and 40°C, with a significant reduction in the number of live IJs at 40°C. The nematodes remained infective at 20–40°C. IJ mortality was 100% on day 6 of exposure to 85% RH. The movement of IJs observed in the soil column experiments revealed that the isolate uses a cruiser-type search strategy. Soil texture and water potential significantly influenced IJ movement, search and penetration of G. mellonella larvae. The efficacy of this isolate was found to be favoured in sandy soils, regardless of the soil water potential.  相似文献   

9.
Hydrocarbon and wax ester components of cuticular lipids of the braconid parasitoid Habrobracon hebetor Say reared at 25 degrees C on larvae of a pyralid moth have been identified by GC-MS and analyzed with respect to adult age, mating status, and diet. The hydrocarbons range in carbon number from C(21) to C(45) and consist of a homologous series of n-alkanes, 11-, 13-, and 15-methyl alkanes, 13,17-dimethyl alkanes, and Z-5, Z-7, and Z-9-alkenes. The wax esters found in the cuticular lipid fraction are a series of homologous compounds with the acid portion being short chain, unbranched, even carbon number acids from C(8) to C(20) (predominately C(8) to C(16)). The alcohol portions of the esters are secondary alcohols with carbon number from C(22) to C(25) (predominately C(23) and C(25)) with the hydroxyl function located at C(6), C(7), C(8), and C(9). Gender, age, and nutritional states were significant factors for variation in several of the individual esters, but mating status did not affect wax ester composition. Ontogenetic examinations indicated that prepupal, and early pupal cuticular lipids contain only hydrocarbons. Low levels of wax esters are detectable in late stage pupae, and somewhat greater quantities of wax esters are present on newly eclosed adults. When pharate adults emerge from the cocoon, however, their cuticular lipids consist of approximately equal amounts of hydrocarbons and wax esters, and 6d post emergence from the cocoon, wax esters are the predominant lipid component.  相似文献   

10.
Infectivity to larvae of the diamondback moth, Plutella xylostella, was compared among eight Paecilomyces fumosoroseus isolates. Isolate infectivity was assessed for correlation with spore length and germination speed. Four isolates applied to P. xylostella cuticle were also compared for number of spores remaining on the cuticle after washing and for percentage germination after 36 h. Infection of larvae inoculated with the different isolates at an average dosage of 4000 conidia/cm2 ranged from 2 to 47%. The correlation of infectivity with spore length and germination speed in broth was highly significant. Fewer spores of the least infective isolate, ARSEF 1576, attached to larval cuticle compared to spores of the more infective isolates ARSEF 3682, 4461, and 4482 (P < 0.05). After 36 h on larval cuticle, the percentage of spores germinated for isolates 1576 and 3682 was 3 and 95%, respectively. Spores of isolate 1576 were smaller, germinated more slowly, and attached to cuticle in smaller numbers than spores of the more infective isolates. Further research will expand our understanding of the mechanisms of virulence among isolates of P. fumosoroseus.  相似文献   

11.
An experimental microsporidiosis of the wax moth caterpillars from laboratory population had been caused by oral infecting of early stages larvae and by intracavity injections of the spores of the microsporidian species Vairimorpha ephestiae. Peculiarities of microsporidiosis proceeding, manifestations of host defence reactions, and also an effect of the temperature of caterpillars cultivation and conditions of spores keeping on liability of the insects to the infection were studied. The effect of the microsporidia on the host organism was the early death or the delay of larvae development, but in several cases external manifestations of the effect of the parasite on the host were absent. The development of the parasites from the moment of infecting to the appearing of the mature spores congestions in the host organism proceeded 6 days. Microsporidia invaded insect fat body and caused its hypertrophy and disappearance of lipid granules. In the intestine and salivary glands microsporidia were not observed in the period from 6 to 16 day of the development. On the final stage of microsporidiosis the all contents of fatty tissue cells were replaced by spores of microsporidia. Under microscope only diplocaryotic spores of the Nozema type had been found in infected and died specimens, but not octospores. The spores threw out polar tubes under the change of pH in incubating solution from neutral to alkaline. The effects of microsporidiosis on the wax moth haemolymph were the increased rate of prohaemocytes, appearing of multinuclear free-circulating cells at 6 day after infection, and suppression of the reaction of haemolymph melanization with the mass sporogenesis of the parasite. The characteristic symptom of the wax moth microsporidiosis had been revealed, accumulation of black points and small spots of irregular form under cuticle ("reaction of attretization"). Increase of the temperature of insect cultivation up to 32 degrees C during 3 days after infection contributed to the full deliverance of the insects from the infection in first and second generations. It can be considered as a method of treatment of wax moth laboratory colonies from microsporidiosis. Oral infection of III and IV stage caterpillars by the spores being kept during 3-6 months under 4 degrees C in form of water suspension caused the death of 63.0-61.5 and 91% of caterpillars being cultivated under 25 and 21 degrees C respectively. Under the temperature of cultivation equal 30 degrees C the mortality did not differ from the control sample (8-10%). The spores extracted from dried bodies of caterpillars lost their vitality. It was demonstrated by the test on infectious ability in vivo and by acridine orange staining. This host-parasite system appears to be perspective in investigations of resistance mechanisms in insects and immunosuppressive features of entomopathogen microsporidia.  相似文献   

12.
The infectivity, time to first emergence of infective juveniles (IJs), total number of IJs per insect and IJs body length of the entomopathogenic nematode Heterorhabditis megidis (strain NLH-E87.3) after development in larvae of two insect hosts, Galleria mellonella (greater wax moth) and Otiorhynchus sulcatus (vine weevil) was studied. At a dose of 30 IJs, larvae of G. mellonella show to be significantly more susceptible than O. sulcatus larvae. At a dose of one IJ, vine weevil larvae were more susceptible. The number of invading infective juveniles (IJs) increased with host size while the host mortality at a dose of one IJ decreased with the increase of host size. Time to first emergence was longer at a dose of one IJ per larva and increased with the increase of host size in both insect species. Reproduction of IJs differed between host species, host sizes and doses of nematodes. Generally, the IJs body size increased with an increasing host size. The longest infective juveniles were produced at the lowest IJ doses. Results are discussed in relation to the influence of different host species and their different sizes on the performance of H. megidis (strain NLH-E87.3) as a biological control agent.  相似文献   

13.
The June beetle, Hoplia philanthus Füessly (Coleoptera: Scarabaeidae), has become a widespread and destructive insect pest of lawns, sport turf, pastures, and horticultural crops in Belgium. The virulence of 34 entomopathogenic fungal isolates from the genera Metarhizium, Beauveria, and Paecilomyces to third-instar H. philanthus was tested in bioassays by dipping larvae in 10(7)conidia/ml suspensions. Two isolates of Metarhizium anisopliae (CLO 53 and CLO 54) caused maximally 90% mortality 10 weeks post-inoculation while other isolates only caused mortalities between 10 and 62%. The virulence of M. anisopliae CLO 53 was further tested by exposing H. philanthus larvae to conidial serial concentrations of 10(4)-10(9)conidia/g sandy soil for up to 11 weeks at 15, 20 or 25 degrees C. Mortality was dependant on the fungal concentration, exposure time, and temperature. Eleven weeks after inoculation, the LC50 values for this isolate ranged from 1.3 to 4.0 x 10(6), 1.0 to 3.2 x 10(5), and 2.5 x 10(4) to 10(5)conidia/g soil at 15, 20, and 25 degrees C, respectively. The LT50 values for this isolate ranged from 3.5 to 21.7, 2.4 to 18.7, and 2.9 to 16.1 weeks at concentrations of 10(9) and 10(4)conidia/g soil at 15, 20, and 25 degrees C, respectively. In glasshouse pot experiment with perennial ryegrass (Lolium perenne L.), the isolate CLO 53 caused mortalities of 50 and 88% of H. philanthus larvae 10 weeks after application of 10(4) and 10(6)conidia/cm(2) soil surface, respectively. The present results suggest that the Belgian isolate CLO 53 has excellent potential for biological control of H. philanthus.  相似文献   

14.
Toxins of molds from decaying tomato fruit.   总被引:4,自引:4,他引:0       下载免费PDF全文
Among 27 mold isolates from decaying tomatoes, culture filtrates or ethyl acetate extracts of 8 isolates grown in yeast extract-sucrose medium were markedly toxic (mortality, greater than 50%) to brine shrimp larvae. The toxicity of six of these isolates could be attributed to the presence of citrinin, tenuazonic acid, or T-2 toxin. Ethyl acetate extracts of five Alternaria isolates and one Fusarium isolate were mutagenic for Salmonella typhimurium strains. In ripe tomatoes inoculated with toxin-producing isolates and incubated at 25 degrees C, one Alternaria alternata isolate produced tenuazonic acid in seven of seven tomatoes at levels of up to 106 micrograms/g and alternariol methyl ether in one of the seven tomatoes at 0.8 microgram/g. Another A. alternata isolate produced tenuazonic acid or alternariol methyl ether at much lower levels in only three of seven tomatoes. Patulin and citrinin were produced by a Penicillium expansum isolate at levels of up to 8.4 and 0.76 microgram/g, respectively. In tomatoes incubated at 15 degrees C, a Fusarium sulphureum isolate produced T-2 toxin, HT-2 toxin, and neosolaniol at levels of up to 37.5, 37.8 and 5.6 micrograms/g, respectively. If these mycotoxins are thermostable, they may occur at detectable levels in tomato products whenever partially moldy tomatoes are used as raw material.  相似文献   

15.
Among 27 mold isolates from decaying tomatoes, culture filtrates or ethyl acetate extracts of 8 isolates grown in yeast extract-sucrose medium were markedly toxic (mortality, greater than 50%) to brine shrimp larvae. The toxicity of six of these isolates could be attributed to the presence of citrinin, tenuazonic acid, or T-2 toxin. Ethyl acetate extracts of five Alternaria isolates and one Fusarium isolate were mutagenic for Salmonella typhimurium strains. In ripe tomatoes inoculated with toxin-producing isolates and incubated at 25 degrees C, one Alternaria alternata isolate produced tenuazonic acid in seven of seven tomatoes at levels of up to 106 micrograms/g and alternariol methyl ether in one of the seven tomatoes at 0.8 microgram/g. Another A. alternata isolate produced tenuazonic acid or alternariol methyl ether at much lower levels in only three of seven tomatoes. Patulin and citrinin were produced by a Penicillium expansum isolate at levels of up to 8.4 and 0.76 microgram/g, respectively. In tomatoes incubated at 15 degrees C, a Fusarium sulphureum isolate produced T-2 toxin, HT-2 toxin, and neosolaniol at levels of up to 37.5, 37.8 and 5.6 micrograms/g, respectively. If these mycotoxins are thermostable, they may occur at detectable levels in tomato products whenever partially moldy tomatoes are used as raw material.  相似文献   

16.
Dalgliesh R. J. and Stewart N. P. 1979. Observations on the morphology and infectivity for cattle of Babesia bovis parasites in unfed Boophilus microplus larvae after incubation at various temperatures. International Journal for Parasitology9: 115–120. The temperature of incubation of unfed Boophilus microplus larvae infected with Babesia bovis influenced the morphology and infectivity of the Babesia within the tick. Incubation at 37°C for 1–3 days stimulated the development of parasites morphologically similar to those usually observed in fed larvae harvested from cattle; similar forms appeared more slowly in larvae incubated at 31°C or 25°C. Extracts prepared from larvae after incubation at 37°C for 3–5 days or 30°C for 8 days were consistently infective for cattle. Prior storage of larvae at 14°C for up to 28 days enhanced the development of infectivity at 37°C; infectivity could still be produced after 65 days storage at 14°C but not after 76 days. Larvae released on a host transmitted B. bovis sooner if they had been incubated at 37°C for 4 days. It was concluded that the development of B. bovis to an infective stage in B. microplus is temperature dependent and does not require the stimulus of feeding by the host.  相似文献   

17.
Paecilomyces fumosoroseus isolate 1576 was isolated from an insect, but is avirulent against larvae of diamondback moth, Plutella xylostella, and several other species. Isolate 1576 grew faster and produced more conidia than isolate 4461 on potato dextrose agar. Pregermination of conidia failed to increase the infectivity of isolate 1576, but the procedure did increase the infectivity of isolates 3682, 4461, and 4482. Isolates 1576 and 4461 were both more infective when moisture was high during incubation of inoculated larvae. Starved Pl. xylostella larvae were more susceptible than fed larvae to isolate 1576 (40 and 10% mortality, respectively), but starved and fed larvae were similar in susceptibility to isolate 4461. These results show that isolate 1576 grows vigorously in aerial culture and is capable of infecting stressed Pl. xylostella larvae. Further tests are needed to characterize its pathogenicity toward its original host or closely related species.  相似文献   

18.
The combined effects of temperature (8, 12, 14, 17, 20, 22 and 25°C) and a salinity decrease from 36 to 12‰ on the development of the sea urchin Echinocardium cordatum (Pennant) were studied. Embryonic development proved to be the process most vulnerable to a salinity decrease. It was completed successfully at 8–20°C within a narrow salinity range of 36–28‰ Larvae at the most resistant stage, the blastula, survived at 12–22°C and a salinity of 36–18‰. Larvae at the most sensitive stage, pluteus I with the first pair of arms, died even in a favorable environment, a temperature of 17–20°C and a salinity of 34–28‰. That may be related to qualitative alterations during skeleton formation and to transition to phytoplankton feeding. The resistance of larvae to variations in environmental factors gradually increased in the pluteus II and III stages; however, it significantly decreased before the settling of the larvae. Larvae that were 37 days old survived at a temperature of 14–20°C within a salinity range of 36–22‰ and at 22 and 25°C, they survived at a salinity of 36–24‰; however, all the larvae became abnormal at 25°C. The larvae settled earlier on sand inhabited by adult individuals of E. cordatum than on sand from other locations, and they settled faster at 20–25°C, than at 14 and 17°C. The juveniles, if lacking an opportunity to burrow in the sand, died within 14 days after settling.  相似文献   

19.
In laboratory studies, we demonstrated that five native entomopathogenic nematode species/isolates caused 100% mortality of Spodoptera cilium larvae, a soil surface-feeding pest of turfgrass. At 25 infective juveniles/cm2 applied to sod, two selected Turkish species, Steinernema carpocapsae and Heterorhabditis bacteriophora (Sarigerme isolate), averaged 77% and 29% larval mortality, respectively.  相似文献   

20.
In this study we examined the effect of various initial sensitizing doses of infective Toxocara canis eggs and the effect of murine host genotype on the level of trapping of larvae in the liver after larval challenge. In the initial experiments, C57BL/6J mice were infected with a sensitization dose of 5, 25, 75, 125, or 250 infective T. canis eggs on day 0 postinfection (PI). On day 28 PI all mice were challenged with 500 infective eggs. On days 7, 14, and 21 postchallenge (PC) larval numbers within individual livers were determined. Trapping of larvae was observed in mice receiving a sensitization dose of 25 or more eggs. At 7 and 14 days PC the level of trapping increased with sensitization egg dose up to a dose of 125 eggs. At 21 days PC the level of trapping reached a plateau at a sensitization dose of 75 eggs. The peak level of larval trapping was observed on day 7 and day 14 PC following sensitization doses of 125 and 250 eggs, respectively. In the subsequent experiments, mice of various strains and H-2 haplotypes were inoculated with an initial sensitization dose of 125 eggs and a challenge dose of 500 eggs on day 0 and day 28 PI, respectively. Larval trapping within the liver was determined on day 14 PC. C57BL/6J mice trapped significantly more larvae than DBA/2J mice (P less than 0.01); all other strains trapped larvae at a lower, but statistically similar, level to the C57BL6/J mice.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号