首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Double-strand gap repair in a mammalian gene targeting reaction.   总被引:16,自引:9,他引:16       下载免费PDF全文
To better understand the mechanism of homologous recombination in mammalian cells that facilitates gene targeting, we have analyzed the recombination reaction that inserts a plasmid into a homologous chromosomal locus in mouse embryonic stem cells. A partially deleted HPRT gene was targeted with various plasmids capable of correcting the mutation at this locus, and HPRT+ recombinants were directly selected in HAT medium. The structures of the recombinant loci were then determined by genomic Southern blot hybridizations. We demonstrate that plasmid gaps of 200, 600, and 2,500 bp are efficiently repaired during the integrative recombination reaction. Targeting plasmids that carry a double-strand break or gap in the region of DNA homologous to the target locus produce 33- to 140-fold more hypoxanthine-aminopterin-thymidine-resistant recombinants than did these same plasmids introduced in their uncut (supercoiled) forms. Our data suggest that double-strand gaps and breaks may be enlarged prior to the repair reaction since sequence heterologies carried by the incoming plasmids located close to them are often lost. These results extend the known similarities between mammalian and yeast recombination mechanisms and suggest several features of the insertional (O-type) gene targeting reaction that should be considered when one is designing mammalian gene targeting experiments.  相似文献   

2.
We used ends-in gene targeting to generate knockout mutations of the nucleosome assembly protein 1 (Nap1) gene in Drosophila melanogaster. Three independent targeted null-knockout mutations were produced. No wild-type NAP1 protein could be detected in protein extracts. Homozygous Nap1(KO) knockout flies were either embryonic lethal or poorly viable adult escapers. Three additional targeted recombination products were viable. To gain insight into the underlying molecular processes we examined conversion tracts in the recombination products. In nearly all cases the I-SceI endonuclease site of the donor vector was replaced by the wild-type Nap1 sequence. This indicated exonuclease processing at the site of the double-strand break (DSB), followed by replicative repair at donor-target junctions. The targeting products are best interpreted either by the classical DSB repair model or by the break-induced recombination (BIR) model. Synthesis-dependent strand annealing (SDSA), which is another important recombinational repair pathway in the germline, does not explain ends-in targeting products. We conclude that this example of gene targeting at the Nap1 locus provides added support for the efficiency of this method and its usefulness in targeting any arbitrary locus in the Drosophila genome.  相似文献   

3.
The ERCC1-XPF structure-specific endonuclease is necessary for correct processing of homologous recombination intermediates requiring the removal of end-blocking nonhomologies. We previously showed that targeting the endogenous CHO APRT locus with plasmids designed to generate such intermediates revealed defective recombination phenotypes in ERCC1 deficient cells, including suppression of targeted insertion and vector correction recombinants and the generation of a novel class of aberrant recombinants through a deletogenic mechanism. In the present study, we examined some of the mechanistic features of ERCC1-XPF in processing recombination intermediates by varying gene targeting parameters. These included altering the distance between the double-strand break (DSB) in the targeting vector and the inactivating mutation in the APRT target gene, and changing the position of the target gene mutation relative to the DSB to result in target mutations that were either upstream or downstream from the DSB. Increasing the distance from the DSB in the targeting vector to the chromosomal target gene mutation resulted in an ERCC1 dependent decrease in the efficiency of gene targeting from intermediates presenting lengthy end-blocking nonhomologies. This decrease was accompanied by a shift in the distribution of recombinant classes away from target gene conversions to targeted insertions in both wild-type and ERCC1 deficient cells, and a dramatic increase in the proportion of aberrant recombinants in ERCC1 deficient cells. Changing the position of the target gene mutation relative to the DSB in the plasmid also altered the distribution of targeted insertion subclasses recovered in wild-type cells, consistent with two-ended strand invasion followed by resolution into crossover-type products and vector integration. Our results confirm expectations from studies of Rad10-Rad1 in budding yeast that ERCC1-XPF activity affects conversion tract length, and provide evidence for the mechanism of generation of the novel, aberrant recombinant class first described in our previous study.  相似文献   

4.
Sequence homology is expected to influence recombination. To further understand mechanisms of recombination and the impact of reduced homology, we examined recombination during transformation between plasmid-borne DNA flanking a double-strand break (DSB) or gap and its chromosomal homolog. Previous reports have concentrated on spontaneous recombination or initiation by undefined lesions. Sequence divergence of approximately 16% reduced transformation frequencies by at least 10-fold. Gene conversion patterns associated with double-strand gap repair of episomal plasmids or with plasmid integration were analyzed by restriction endonuclease mapping and DNA sequencing. For episomal plasmids carrying homeologous DNA, at least one input end was always preserved beyond 10 bp, whereas for plasmids carrying homologous DNA, both input ends were converted beyond 80 bp in 60% of the transformants. The system allowed the recovery of transformants carrying mixtures of recombinant molecules that might arise if heteroduplex DNA--a presumed recombination intermediate--escapes mismatch repair. Gene conversion involving homologous DNAs frequently involved DNA mismatch repair, directed to a broken strand. A mutation in the PMS1 mismatch repair gene significantly increased the fraction of transformants carrying a mixture of plasmids for homologous DNAs, indicating that PMS1 can participate in DSB-initiated recombination. Since nearly all transformants involving homeologous DNAs carried a single recombinant plasmid in both Pms+ and Pms- strains, stable heteroduplex DNA appears less likely than for homologous DNAs. Regardless of homology, gene conversion does not appear to occur by nucleolytic expansion of a DSB to a gap prior to recombination. The results with homeologous DNAs are consistent with a recombinational repair model that we propose does not require the formation of stable heteroduplex DNA but instead involves other homology-dependent interactions that allow recombination-dependent DNA synthesis.  相似文献   

5.
McCulloch RD  Read LR  Baker MD 《Genetics》2003,163(4):1439-1447
Analysis of the crossover products recovered following transformation of mammalian cells with a sequence insertion ("ends-in") gene-targeting vector revealed a novel class of recombinant. In this class of recombinants, a single vector copy has integrated into an ectopic genomic position, leaving the structure of the cognate chromosomal locus unaltered. Thus, in this respect, the recombinants resemble simple cases of random vector integration. However, the important difference is that the two paired 3' vector ends have acquired endogenous, chromosomal sequences flanking both sides of the vector-borne double-strand break (DSB). In some cases, copying was extensive, extending >16 kb into nonhomologous flanking DNA. The results suggest that mammalian homologous recombination events can involve strand invasion and DNA synthesis by both 3' ends of the DSB. These DNA interactions are a central, predicted feature of the DSBR model of recombination.  相似文献   

6.
设计表达了四个锌指核酸酶,用于切断人基因组中的rRNA基因家族的内部转录间隔序列,造成双链断裂,以此提高针对多位点基因打靶的效率,为后续基因打靶应用于基因治疗研究奠定基础。首先,在人rRNA基因家族ITS1序列中找到两个合适的9 bp长的序列(中间间隔6 bp)为锌指蛋白识别位点,根据识别位点序列每个位点分别设计两个三锌指蛋白。通过设计引物进行重叠延伸PCR得到全长编码锌指蛋白的DNA,分别克隆到表达载体pET-28a(+),构建重组质粒pET28a-ZFP,转化大肠杆菌RossettaTM(DE3),实现带组氨酸标签的锌指融合蛋白的表达与纯化。同时,将限制性内切酶Fok I的切割结构域分别与四个锌指蛋白序列采用PCR拼接后克隆到表达载体pET-28a(+),构建重组质粒pET28a-ZFN,转化到大肠杆菌RossettaTM(DE3),实现带组氨酸标签的锌指核酸酶融合蛋白的表达并纯化。  相似文献   

7.
Ends-in Vs. Ends-Out Recombination in Yeast   总被引:10,自引:0,他引:10       下载免费PDF全文
Integration of linearized plasmids into yeast chromosomes has been used as a model system for the study of recombination initiated by double-strand breaks. The linearized plasmid DNA recombines efficiently into sequences homologous to the ends of the DNA. This efficient recombination occurs both for the configuration in which the break is in a contiguous region of homology (herein called the ends-in configuration) and for ``omega' insertions in which plasmid sequences interrupt a linear region of homology (herein called the ends-out configuration). The requirements for integration of these two configurations are expected to be different. We compared these two processes in a yeast strain containing an ends-in target and an ends-out target for the same cut plasmid. Recovery of ends-in events exceeds ends-out events by two- to threefold. Possible causes for the origin of this small bias are discussed. The lack of an extreme difference in frequency implies that cooperativity between the two ends does not contribute to the efficiency with which cut circular plasmids are integrated. This may also be true for the repair of chromosomal double-strand breaks.  相似文献   

8.
We established a mouse Ltk- cell line that contains within its genome a herpes simplex virus thymidine kinase gene (tk) that had been disrupted by the insertion of the recognition sequence for yeast endonuclease I-SceI. The artificially introduced 18 bp I-SceI recognition sequence was likely a unique sequence in the genome of the mouse cell line. To assess whether an induced double-strand break (DSB) in the genomic tk gene would be repaired preferentially by gene targeting or non-homologous recombination, we electroporated the mouse cell line with endonuclease I-SceI alone, one of two different gene targeting constructs alone, or with I-SceI in conjunction with each of the two targeting constructs. Each targeting construct was, in principle, capable of correcting the defective genomic tk sequence via homologous recombination. tk+ colonies were recovered following electroporation of cells with I-SceI in the presence or absence of a targeting construct. Through the detection of small deletions at the I-SceI recognition sequence in the mouse genome, we present evidence that a specific DSB can be introduced into the genome of a living mammalian cell by yeast endonuclease I-SceI. We further report that a DSB in the genome of a mouse Ltk- cell is repaired preferentially by non-homologous end-joining rather than by targeted homologous recombination with an exogenous donor sequence. The potential utility of this system is discussed.  相似文献   

9.
Gene targeting is extremely efficient in the yeast Saccharomyces cerevisiae. It is performed by transformation with a linear, non-replicative DNA fragment carrying a selectable marker and containing ends homologous to the particular locus in a genome. However, even in S. cerevisiae, transformation can result in unwanted (aberrant) integration events, the frequency and spectra of which are quite different for ends-out and ends-in transformation assays. It has been observed that gene replacement (ends-out gene targeting) can result in illegitimate integration, integration of the transforming DNA fragment next to the target sequence and duplication of a targeted chromosome. By contrast, plasmid integration (ends-in gene targeting) is often associated with multiple targeted integration events but illegitimate integration is extremely rare and a targeted chromosome duplication has not been reported. Here we systematically investigated the influence of design of the ends-out assay on the success of targeted genetic modification. We have determined transformation efficiency, fidelity of gene targeting and spectra of all aberrant events in several ends-out gene targeting assays designed to insert, delete or replace a particular sequence in the targeted region of the yeast genome. Furthermore, we have demonstrated for the first time that targeted chromosome duplications occur even during ends-in gene targeting. Most importantly, the whole chromosome duplication is POL32 dependent pointing to break-induced replication (BIR) as the underlying mechanism. Moreover, the occurrence of duplication of the targeted chromosome was strikingly increased in the exo1Δ sgs1Δ double mutant but not in the respective single mutants demonstrating that the Exo1 and Sgs1 proteins independently suppress whole chromosome duplication during gene targeting.  相似文献   

10.
11.
Ng P  Baker MD 《Genetics》1999,151(3):1127-1141
In the present study, the mechanism of double-strand-break (DSB) repair during gene targeting at the chromosomal immunoglobulin mu-locus in a murine hybridoma was examined. The gene-targeting assay utilized specially designed insertion vectors genetically marked in the region of homology to the chromosomal mu-locus by six diagnostic restriction enzyme site markers. The restriction enzyme markers permitted the contribution of vector-borne and chromosomal mu-sequences in the recombinant product to be determined. The use of the insertion vectors in conjunction with a plating procedure in which individual integrative homologous recombination events were retained for analysis revealed several important features about the mammalian DSB repair process:The presence of the markers within the region of shared homology did not affect the efficiency of gene targeting.In the majority of recombinants, the vector-borne marker proximal to the DSB was absent, being replaced with the corresponding chromosomal restriction enzyme site. This result is consistent with either formation and repair of a vector-borne gap or an "end" bias in mismatch repair of heteroduplex DNA (hDNA) that favored the chromosomal sequence. Formation of hDNA was frequently associated with gene targeting and, in most cases, began approximately 645 bp from the DSB and could encompass a distance of at least 1469 bp.The hDNA was efficiently repaired prior to DNA replication.The repair of adjacent mismatches in hDNA occurred predominantly on the same strand, suggesting the involvement of a long-patch repair mechanism.  相似文献   

12.
[目的]为了实现对大肠杆菌靶基因的点突变,本研究将同源重组系统与CRISPR-Cas9技术相结合,探索一种高效、简捷的两步法策略.[方法]将靶基因的上下游同源臂和标记基因(amp)与pKOV质粒连接,获得pKOV-HR重组质粒.将pKOV-HR转化至大肠杆菌,借助其自身RecA重组系统,介导DNA发生同源重组,获得靶基...  相似文献   

13.
Targeted induction of double-strand breaks (DSBs) at natural endogenous loci was shown to increase the rate of gene replacement by homologous recombination in mouse embryonic stem cells. The gene encoding dopachrome tautomerase (Dct) is specifically expressed in melanocytes and their precursors. To construct a genetic tool allowing the replacement of Dct gene by any gene of interest, we generated an embryonic stem cell line carrying the recognition site for the yeast I-SceI meganuclease embedded in the Dct genomic segment. The embryonic stem cell line was electroporated with an I-SceI expression plasmid, and a template for the DSB-repair process that carried sequence homologies to the Dct target. The I-SceI meganuclease was indeed able to introduce a DSB at the Dct locus in live embryonic stem cells. However, the level of gene targeting was not improved by the DSB induction, indicating a limited capacity of I-SceI to mediate homologous recombination at the Dct locus. These data suggest that homologous recombination by meganuclease-induced DSB may be locus dependent in mammalian cells.  相似文献   

14.
A triplex-forming oligonucleotide (TFO) complementary to the polypurine-polypyrimidine region of the nef gene of the Human Immunodeficiency Virus (HIV) was labeled with 125I at the C5 position of a single deoxycytosine residue. Labeled TFO was incubated with a plasmid containing a fragment of the nef gene. Decay of 125I was found to cause double-strand breaks (DSB) within the nef gene upon triplex formation in a sequence specific manner. No DSB were detected after incubation at ionic conditions preventing triplex formation or when TFO was labeled with 32P instead of 125I. Mapping DSB sites with single base resolution showed that they are distributed within 10 bp of a maximum located exactly opposite the position of the [125I] IdC in the TFO. We estimate that on average the amount of DSB produced per decay is close to one.  相似文献   

15.
Gene targeting in human somatic cells is of importance because it can be used to either delineate the loss-of-function phenotype of a gene or correct a mutated gene back to wild-type. Both of these outcomes require a form of DNA double-strand break (DSB) repair known as homologous recombination (HR). The mechanism of HR leading to gene targeting, however, is not well understood in human cells. Here, we demonstrate that a two-end, ends-out HR intermediate is valid for human gene targeting. Furthermore, the resolution step of this intermediate occurs via the classic DSB repair model of HR while synthesis-dependent strand annealing and Holliday Junction dissolution are, at best, minor pathways. Moreover, and in contrast to other systems, the positions of Holliday Junction resolution are evenly distributed along the homology arms of the targeting vector. Most unexpectedly, we demonstrate that when a meganuclease is used to introduce a chromosomal DSB to augment gene targeting, the mechanism of gene targeting is inverted to an ends-in process. Finally, we demonstrate that the anti-recombination activity of mismatch repair is a significant impediment to gene targeting. These observations significantly advance our understanding of HR and gene targeting in human cells.  相似文献   

16.
Psoralen photoreacts with DNA to form interstrand cross-links, which can be repaired by both nonmutagenic nucleotide excision repair and recombinational repair pathways and by mutagenic pathways. In the yeast Saccharomyces cerevisiae, psoralen cross-links are processed by nucleotide excision repair to form double-strand breaks (DSBs). In yeast, DSBs are repaired primarily by homologous recombination, predicting that cross-link and DSB repair should induce similar recombination end points. We compared psoralen cross-link, psoralen monoadduct, and DSB repair using plasmid substrates with site-specific lesions and measured the patterns of gene conversion, crossing over, and targeted mutation. Psoralen cross-links induced both recombination and mutations, whereas DSBs induced only recombination, and monoadducts were neither recombinogenic nor mutagenic. Although the cross-link- and DSB-induced patterns of plasmid integration and gene conversion were similar in most respects, they showed opposite asymmetries in their unidirectional conversion tracts: primarily upstream from the damage site for cross-links but downstream for DSBs. Cross-links induced targeted mutations in 5% of the repaired plasmids; all were base substitutions, primarily T --> C transitions. The major pathway of psoralen cross-link repair in yeast is error-free and involves the formation of DSB intermediates followed by homologous recombination. A fraction of the cross-links enter an error-prone pathway, resulting in mutations at the damage site.  相似文献   

17.
The basic replication unit of many plasmids and second chromosomes in the alpha-proteobacteria consists of a repABC locus that encodes the trans- and cis-acting components required for both semiautonomous replication and replicon maintenance in a cell population. In terms of physical genetic organization and at the nucleotide sequence level, repABC loci are well conserved across various genera. As with all repABC-type replicons that have been genetically characterized, the 1.4 Mb pSymA and 1.7 Mb pSymB megaplasmids from the plant endosymbiont Sinorhizobium meliloti encode strong incompatibility (inc) determinants. We have identified a novel inc sequence upstream of the repA2 gene in pSymA that is not present on pSymB and not reported in other repABC plasmids that have been characterized. This region, in concert with the repA and repB genes, stabilizes a test plasmid indicating that it constitutes a partitioning (par) system for the megaplasmid. Purified RepB binds to this sequence and binding may be enhanced by RepA. We have isolated 19 point mutations that eliminate incompatibility, reduce RepB binding or the stabilization phenotype associated with this sequence and all of these map to a 16-nucleotide palindromic sequence centred 330 bp upstream of the repA2 gene. An additional five near-perfect repeats of this palindrome are located further upstream of the repA2 gene and we show that they share some conservation with known RepB binding sites in different locations on other repABC plasmids and to two sequences found on the tumour inducing plasmid of Agrobacterium tumefaciens. These additional palindromes also bind RepB but one of them does not display obvious incompatibility effects. A heterogenic distribution of par sequences demonstrates unexpected diversity in the structural genetic organization of repABC loci, despite their obvious levels of similarity.  相似文献   

18.
Five acetic acid-sensitive mutants of Acetobacter aceti subsp. aceti no. 1023 were isolated by mutagenesis with N-methyl-N'-nitro-N-nitrosoguanidine. Three recombinant plasmids that complemented the mutations were isolated from a gene bank of the chromosome DNA of the parental strain constructed in Escherichia coli by using cosmid vector pMVC1. One of these plasmids (pAR1611), carrying about a 30-kilobase-pair (kb) fragment that conferred acetic acid resistance to all five mutants, was further analyzed. Subcloning experiments indicated that a 8.3-kb fragment was sufficient to complement all five mutations. To identify the mutation loci and genes involved in acetic acid resistance, insertional inactivation was performed by insertion of the kanamycin resistance gene derived from E. coli plasmid pACYC177 into the cloned 8.3-kb fragment and successive integration into the chromosome of the parental strain. The results suggested that three genes, designated aarA, aarB, and aarC, were responsible for expression of acetic acid resistance. Gene products of these genes were detected by means of overproduction in E. coli by use of the lac promoter. The amino acid sequence of the aarA gene product deduced from the nucleotide sequence was significantly similar to those of the citrate synthases (CSs) of E. coli and other bacteria. The A. aceti mutants defective in the aarA gene were found to lack CS activity, which was restored by introduction of a plasmid containing the aarA gene. A mutation in the CS gene of E. coli was also complemented by the aarA gene. These results indicate that aarA is the CS gene.  相似文献   

19.
Processes of DNA end joining are assumed to play a major role in the elimination of DNA double-strand breaks (DSB) in higher eucaryotic cells. Linear plasmid molecules terminated by nonhomologous restriction ends are the typical substrates used in the analysis of joining mechanisms. However, due to their limited structural variability, DSB ends generated by restriction cleavage cover probably only part of the total spectrum of naturally occurring DSB termini. We therefore devised novel DNA substrates consisting of synthetic hairpin-shaped oligonucleotides which permit the construction of blunt ends and 5'- or 3'-protruding single-strands (PSS) of arbitrary sequence and length. These substrates were tested in extracts of Xenopus laevis eggs known to efficiently join linear plasmids bearing nonhomologous restriction termini (Pfeiffer and Vielmetter, 1988). Sequences of hairpin junctions indicate that the short hairpins are joined by the same mechanisms as the plasmid substrates. However, the bimolecular DNA end joining reaction was only detectable when both hairpin partners had a minimal duplex stem length of 27bp and their PSS-tails did not exceed 10nt.  相似文献   

20.
Gene targeting was used to introduce nonselectable genetic changes into chromosomal loci in mouse embryo-derived stem cells. The nonselectable markers were linked to a selectable marker in both insertion- and replacement-type vectors, and the transfer of the two elements to the Hprt locus was assayed. When insertion vectors were used as substrates, the frequency of transfer was highly dependent upon the distance between the nonselectable marker and the double-strand break in the vector. A marker located close to the vector ends was frequently lost, suggesting that a double-strand gap repair activity is involved in vector integration. When replacement vectors were used, cotransfer of a selectable marker and a nonselectable marker 3 kb apart was over 50%, suggesting that recombination between vector and target often occurs near the ends of the vector. To illustrate the use of replacement vectors to transfer specific mutations to the genome, we describe targeting of the delta F508 mutation to the CFTR gene in mouse embryo-derived stem cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号