首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary Plasmid pMR5 (pRP1ts) failed to replicate in Pseudomonas cepacia at 47° C. Selection at this temperature for maintenance of tetracycline resistance associated with this plasmid allowed isolation of cointegrate plasmids formed by fusion of pMR5 with pTGL6, a 170 kb plasmid harbored by P. cepacia 249. In the cointegrate plasmids pTGL100, pTGL101, and pTGL102, different regions of pTGL6 were involved in fusion with the same tra-2-containing region of pMR5. Formation of all three plasmids was promoted by insertion sequences on pTGL6, which were also represented in the chromosome.Two different copies of a 1.3 kb element, IS401, were involved in formation of pTGL100 and pTGL101. Another insertion sequence, IS402 (1 kb), promoted the fusion which formed pTGL102. Southern hybridization experiments indicated that each of the cointegrate plasmids contained an additional copy of the fusion mediating element. Plasmid pTGL100 was observed to resolve into two independent replicons: pTGL6 and pTGL105 (pMR5::IS401), a novel derivative of pMR5 containing a copy of IS401.The third cointegrate plasmid, pTGL102, evolved in two steps: fusion of pTGL6 and pMR5 mediated by IS402, and transposition of IS411 (1.9 kb) to a region of pMR5 distinct from that involved in the fusion. Plasmid pTGL6 contained one copy of IS402 and IS411 while pTGL102 contained two copies of each of these elements.  相似文献   

2.
Pseudomonas sp isolated from the Bay of Bengal (Madras coast) contained a single large plasmid (pMR1) of 146 kb. Plasmid curing was not successful with mitomycin C, sodium dodecyl sulfate, acridine orange, nalidixic acid or heat. Transfer of mercury resistance from marinePseudomonas toEscherichia coli occurred during mixed culture incubation in liquid broth at 10–4 to 10–5 ml–1. However, transconjugants lacked the plasmid pMR1 and lost their ability to resist mercury. Transformation of pMR1 intoE. coli competent cells was successful; however, the efficiency of transformation (1.49×102 Hgr transformants g–1 pMR1 DNA) was low.E. coli transformants containing the plasmid pMR1 conferred inducible resistance to mercury, arsenic and cadmium compounds similar to the parental strain, but with increased expression. The mercury resistant transformants exhibited mercury volatilization activity. A correlation existed between metal and antibiotic resistance in the plasmid pMR1.  相似文献   

3.
Using hygromycin B resistance as a marker for selection, we have established the conditions required for the transformation of Chlorella vulgaris. The exponentially grown C. vulgaris cells were transformed by electroporation with plasmid pIG121-Hm, and transformants were selected with hygromycin B at a concentration of 50 μg/ml. Cell extracts prepared from the late-log cultures of the transformants exhibited glucuronidase activities as conferred by the gus gene on pIG121-Hm. The maintenance of plasmid in the algal cells seemed to be transient as many cultures derived from the hygromycin B-resistant colonies gradually lost the hygromycin resistance upon prolonged growth. The result of Southern blotting of the genomic DNAs prepared from transformant cultures exhibiting persistent hygromycin resistance showed that integration of part of the plasmid DNA into the host chromosome had taken place. Received: 19 December 1997 / Revision received: 5 October 1998 / Accepted: 27 October 1998  相似文献   

4.
Phytophthora capsici and P.parasitica were transformed to hygromycin B resistance using plasmids pCM54 and pHL1, which contain the bacterial hygromycin B phosphotransferase gene (hph) fused to promoter elements of the Ustilago maydis heat shock hsp70 gene. Enzymes Driselase and Novozyme 234 were used to generate protoplasts which were then transformed following exposure to plasmid DNA and polyethylene glycol 6000. Transformation frequencies of over 500 transformants per micrograms of DNA per 1 x 10(6) protoplasts were obtained. Plasmid pCM54 appears to be transmitted in Phytophthora spp. as an extra-chromosomal element through replication, as shown by Southern blot hybridization and by the loss of plasmid methylation. In addition, transformed strains retained their capacity of infecting Serrano pepper seedlings and Mc. Intosh apple fruits, the host plants for P.capsici and P.parasitica, respectively.  相似文献   

5.
Summary Hybrid plasmids containing the bacterial resistance-transfer factor pBR322 and the yeast leu2 +gene have been used to isolate DNA fragments of Physarum that are capable of initiating DNA replication in a yeast host. Five of forty hybrid plasmids containing Physarum sequences transform leu2 -yeast to Leu+ at high frequency. The resulting Leu+ transformants are characterized by phenotypic instability. Supercoiled plasmid molecules containing pBR322 sequences can be detected in the transformed yeast, indicating that the transforming DNA replicates autonomously. Plasmid DNA isolated from Leu+ yeast can transform leuB bacteria. The hybrid plasmid recovered from the Leu+ bacterial transformants is identical to the original plasmid, indicating structural integrity is maintained during passage through the yeast host. These hybrid plasmids containing Physarum sequences have the same characteristics as those containing autonomously replicating yeast chromosomal sequences. As the temporal sequence of DNA replication is particularly accessible to study in Physarum plasmodia, the functional significance of these segments should be amenable to study.  相似文献   

6.
Plasmid YEp(ADE1)1a, containing a 2.7-kb Sau3A fragment of Saccharomyces cerevisiae DNA inserted at the BamHI site of the yeast shuttle vector pBTI-1 (Morris et al., 1981), results in high frequency, unstable transformation of ade1 yeast strains. A second plasmid, YRp(ADE1)2, containing adjacent 0.5-kb and 3.0-kb BamHI fragments in pBR322 gave three types of yeast transformants: (1) transformants carrying extrachromosomal copies of the plasmid which indicate the presence of a functional ars sequence, (2) transformants indistinguishable from ade1 strains by hybridization analyis, and (3) a transformant carrying a multimeric form of YRp(ADE1)2. Cells transformed with either of the plasmids are free of the red pigment characteristic of ade1 mutants and indicate potential for direct colour-based selection of yeast transformants using ADE1 plasmids.  相似文献   

7.
Transfer of bacteria/yeast shuttle plasmids from Escherichia coli into the yeast species Kluyveromyces lactis, Pichia angusta (Hansenula polymorpha), and Pachysolen tannophilus has been accomplished, presumably through inter-kingdom conjugal transfer. Plasmid pEK2 was transferred into a K. lactis mutant to complement trp auxotrophy, while plasmid YEp13 was mobilized into and complemented P. angusta and P. tannophilus Leu- auxotrophs. Plasmid DNA in the recipient strains was detected by transformation of E. coli with crude yeast cell extracts. Freely replicating plasmids without detectable alterations as well as plasmids with rearrangements were recovered from yeast transconjugants.  相似文献   

8.
A multiply resistant Staphylococcus aureus isolate, WBG7410, harbours plasmids of 38, 26, 2.8, 2.4 and 1.9 kb and transfers trimethoprim and kanamycin resistance at high frequencies by conjugation. The transconjugants contained the 38-kb plasmid, pWBG707, and the 2.8-kb plasmid. Plasmid pWBG707 was shown to encode trimethoprim resistance, was conjugative and mobilised at high frequencies the 2.8-kb plasmid which presumably encodes kanamycin resistance. Plasmid pWBG707 was isolated mostly in the open circular form and analysis with EcoRI restriction endonuclease suggests that pWBG707 is a new conjugative plasmid distinct from the other conjugative plasmids reported in S. aureus.  相似文献   

9.
Because of many advantages, the yeast Saccharomyces cerevisiae is increasingly being employed for expression of recombinant proteins. Usually, hybrid plasmids (shuttle vectors) are employed as carriers to introduce the foreign DNA into the yeast host. Unfortunately, the transformed host often suffers from some kind of instability, tending to lose or alter the foreign plasmid. Construction of stable plasmids, and maintenance of stable expression during extended culture, are some of the major challenges facing commercial production of recombinant proteins. This review examines the factors that affect plasmid stability at the gene, cell, and engineering levels. Strategies for overcoming plasmid loss, and the models for predicting plasmid instability, are discussed. The focus is on S. cerevisiae, but where relevant, examples from the better studied Escherichia coli system are discussed. Compared to free suspension culture, immobilization of cells is particularly effective in improving plasmid retention, hence, immobilized systems are examined in some detail. Immobilized cell systems combine high cell concentrations with enhanced productivity of the recombinant product, thereby offering a potentially attractive production method, particularly when nonselective media are used. Understanding of the stabilizing mechanisms is a prerequisite to any substantial commercial exploitation and improvement of immobilized cell systems.  相似文献   

10.
An industrial polyploid strain of Saccharomyces cerevisiae containing Saprolegnia ferax -amylase gene was developed by using two yeast integrating plasmids. One plasmid was constructed that contains the geneticin resistance gene (Gtr) as the selection marker and the ribosomal DNA (rDNA) portion that comprises the 18S rDNA as the recombination site. The other plasmid contains the aureobasidin A resistance gene (AUR1-C) as the selection marker and the chromosomal Ty sequence as the recombination site. The -amylase activity of one clone of Saccharomyces cerevisiae transformed sequentially with these two plasmids was approx. 9 times higher than that of Saprolegnia ferax. This type of integration was mitotically stable even after 100 generations of cell multiplication under non-selective conditions.  相似文献   

11.
Summary The 8 kbp plasmid pAT4 transformed Haemophilus influenzae Rd cells at low frequencies. Transformation was increased up to 100 times, however, when the recipient cells carried a DNA segment in either their chromosome or in a resident plasmid that was homologous to at least part of plasmid pAT4. Linearized plasmid DNA molecules did not transform cells without DNA homology; they efficiently transformed homology recipients, but only when the cuts had been made in the region of shared homology. In most cases examined the circular donor plasmid had been reconstituted from the transforming DNA; in some cases the reconstituted plasmid carried a mutation initially present in the recipient chromosome, provided the transforming plasmid had been linearized in the region of shared homology. Plasmid reconstitution was not observed in recA1 cells. We conclude that homology-facilitated plasmid transformation (transfer) is similar to that reported for Bacillus subtilis and Streptococcus pneumoniae.  相似文献   

12.
Fifty environmental isolates of Vibrio species were isolated from water samples of Mai Po Nature Reserve and the Cape d’Aguilar Marine Reserve in Hong Kong and screened for the presence of plasmid. Mai Po is a wastewater-impacted area while the Cape d’Aguilar Marine Reserve is pristine natural marine water. Plasmid was found in Vibrio isolates from both sites at similar frequencies and each site showed distinctive plasmid profiles. These plasmid-bearing Vibrio isolates were identified as different species of the Vibrio genus by both biochemical test and subsequently full-length 16S rRNA sequences. Antibiotic resistance test showed that all these plasmid-bearing Vibrio isolates showed multiple resistance to 21 antibiotics tested. In addition, selective isolates also showed tolerance to 10 M Hg2+ in culture medium and they generally harbored large plasmid(s) (>‰30 kb). Our results show that the high frequency of plasmid in Vibrio species of both polluted and pristine environments may be ecologically important to the survival of these bacteria in the environment. The specific functioning of the cryptic plasmids remains the focus of current investigations.  相似文献   

13.
Over 60 Greenland glacial isolates were screened for plasmids and antibiotic resistance/sensitivity as the first step in establishing a genetic system. Sequence analysis of a small, cryptic, 1,950 bp plasmid, p54, from isolate GIC54, related to Arthrobacter agilis, showed a region similar to that found in theta replicating Rhodococcus plasmids. A 6,002 bp shuttle vector, pSVJ21, was constructed by ligating p54 and pUC18 and inserting a chloramphenicol acetyl transferase (CAT) cassette conferring chloramphenicol resistance. Candidate Gram-positive recipients were chosen among glacial isolates based on phylogenetic relatedness, relatively short doubling times at low temperatures, sensitivity to antibiotics, and absence of indigenous plasmids. We developed an electroporation protocol and transformed seven isolates related to members of the Arthrobacter, Microbacterium, Curtobacterium, and Rhodoglobus genera with pSVJ21. Plasmid stability was demonstrated by successive transformation into Escherichia coli and four Gram-positive isolates, growth without antibiotic, and plasmid re-isolation. This shuttle vector and our transformation protocol provide the basis for genetic experiments with different high G+C Gram-positive hosts to study cold adaptation and expression of cold-active enzymes at low temperatures.  相似文献   

14.
Irradiation of protoplasts with X-rays or ultraviolet light does not seem to influence the level of transient expression of foreign DNA inPetunia protoplasts, whereas the number of stably transformed colonies is significantly raised. This may indicate that irradiation influences integration and/or the expression of marker genes and does not result in enhanced uptake rates of plasmids into protoplasts and cell nuclei. Co-transformation with plasmids carrying a gene for kanamycin resistance (neomycin phosphotransferase II) and a gene for hygromycin resistance (hygromycin phosphotransferase) revealed that the cotransformation rates were not stimulated by irradiation when measuring expression. Twenty-five kanamycin resistant but hygromycin sensitive colonies were examined with Southern or slot blotting and all were found to contain the coding sequence for the hygromycinphosphotransferase gene in their genomes. No obvious differences regarding copy number of integrated genes were observed when comparing transformed colonies derived from irradiated and non-irradiated protoplasts.  相似文献   

15.
Summary The small plasmid pAT4 transformed at characteristically low frequencies those competent Haemophilus influenzae Rd strains that had no DNA homology with this plasmid. Transformation was increased up to 100 times, however, when the recipient cells were exposed to 30% glycerol before plating for transformants. Expression of plasmid resistance markers was then immediate. Ultraviolet irradiation experiments indicated that this large increase was due to release by the glycerol of double-stranded plasmid molecules, presumably from transformasomes. Several other plasmids exhibited the same phenomenon. Dimethylsulfoxide also stimulated plasmid transformation but lysolecithin and high concentrations of NaCl or glucose were ineffective. Glycerol did not increase the efficiency of transformation by either chromosomal DNA or linearized plasmid DNA.  相似文献   

16.
Summary Phycomyces protoplasts transformed with a plasmid containing the bacterial gene for kanamycin resistance grow in the presence of G418, a kanamycin analogue. The plasmid also contains a Phycomyces DNA sequence that supports autonomous replication in yeast. We obtained about 250 transformants per microgram DNA or one per 5000 viable protoplasts. The transformant phenotype is retained under selective conditions and lost in the majority of the vegetative spores. Recovered plasmids and Southern analysis indicate that the plasmid probably replicates autonomously in Phycomyces.  相似文献   

17.
Summary Fragments produced by partial digestion of Saccharomyces cerevisiae ribosomal DNA (rDNA) with the restriction endonuclease EcoRI were ligated in vitro to the bacterial plasmid RSF2124. The resulting hybrid plasmids were cloned in Escherichia coli. Three hybrid plasmids which contain at least one intact repetitive unit of the multiple, tandem sequences of the yeast rDNA genes have been further characterized. These plasmids have been used to construct a map of the EcoRI, SmaI, HindII and HindIII restriction sites in the individual repetitive units of yeast rDNA.  相似文献   

18.
Summary In the TL-DNA region of the octopine type Ti plasmids, an ars region was assigned as the DNA segment conferring the replicational ability to YIp5 in Saccharomyces cerevisiae. T-DNA:YIp5 hybrid plasmids containing a particular T-DNA region could transform yeast cells at a frequency of 103–104 transformants per g plasmid DNA and they were rescued in Escherichia coli, although the transformed phenotype was mitotically unstable. The instability was inferred to be caused by segregation of the plasmids due to their low efficiency of replication. The ars region was mapped on the noncoding region between the coding regions corresponding to no. 5 and no. 7 mRNA, and its minimal length determined in this experiment was about 150 bp.Abbreviations Ti plasmid tumor inducing plasmid - T-DNA transferred DNA or tumor DNA - TL-DNA left T-DNA - ars autonomously replicating sequences  相似文献   

19.
 We studied illegitimate recombination by transforming yeast with a single-stranded (ss) non-replicative plasmid. Plasmid pCW12, containing the ARG4gene, was used for transformation of yeast strains deleted for the ARG4, either in native (circular) form or after linearization within the vector sequence by the restriction enzyme ScaI. Both circular and linearized ss plasmids were shown to be much more efficient in illegitimate integration than their double-stranded (ds) counterparts and more than two-thirds of the transformants analysed contained multiple tandem integrations of the plasmid. Pulsed-field gel electrophoresis of genomic DNA revealed significant changes in the karyotype of some transformants. Plasmid DNA was frequently detected on more than one chromosome and on mitotically unstable, autonomously replicating elements. Our results show that the introduction of nonhomologous ss DNA into yeast cells can lead to different types of alterations in the yeast genome. Received: 9 February 1996/Accepted: 7 July 1996  相似文献   

20.
Yeast (Saccharomyces cerevisiae) transposons (Ty elements) are excised from up to 20% of supercoiled plasmids during transformation of yeast cells. The excision occurs by homologous recombination across the direct terminal repeats (deltas) of the Ty element, leaving behind a single delta in the transforming plasmid. Only the initial transforming plasmid is susceptible to excision, and no high frequency excision is observed in plasmids that have become established in transformed cells or in plasmids that are resident in cells undergoing transformation. High frequency excision from plasmids during yeast transformation is not specific for Ty elements and can be observed with other segments of plasmid DNA bounded by direct repeats. The frequency of Ty excision from supercoiled plasmids is greatly reduced when the host yeast cells contain the rad52 mutation, a defect in double-strand DNA repair. When linear or ligated-linear plasmid DNAs containing a Ty element are used for transformation, few or no excision plasmids are found among the transformant colonies. These results suggest that when a yeast cell is transformed with a supercoiled plasmid, the plasmid DNA is highly susceptible to homologous recombination for a short period of time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号