首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this study was to highlight, in sitting posture, the value of distinguishing between the movements of the vertical projection of the centre of gravity (CG(v)) and its difference from the centre of pressure (CP-CG(v)). A protocol for healthy, young, trained adults, consisting in tilting their trunk backward or keeping it vertical was used. A frequency analysis shows that statistically significant effects were only seen on CP-CG(v) movements: the RMS increased by 37% (p = 0.004), while the MPF decreased by 5% (p = 0.016), suggesting an increased muscular activity in these tilting postures. In contrast, no statistically significant effects on CP and CG(v) were reported. These data highlight the advantage, in sitting posture, of splitting overall CP displacements into basic components (i.e. CG(v) and CP-CG(v)), each of them having a biomechanical significance.  相似文献   

2.
The resultant centre of pressure (CP(Res)) trajectories are aimed at controlling body movements in upright stance. When standing on two legs, these trajectories are generated by exerting reaction forces under each foot and by loading-unloading mechanisms intervening at the hip level. To assess the respective contribution of each of these factors in stance maintenance, a group of healthy individuals were tested in several conditions including standing quietly and voluntarily producing under each foot larger CP displacements in phase and in opposite phase along medio-lateral (ML) and antero-posterior (AP) axes. The results, based on the computation of coefficients of correlation between CP(Res) trajectories and various time series including the relative body weight applied to one leg and plantar CP trajectories, highlight some differences according to the axes along which the displacements take place and the amplitudes of the movements. Furthermore, the comparison of the CP(Res) trajectories resulting from each one of these two factors reveals the predominant role played by the loading-unloading mechanisms intervening at the hip level for the movements along the ML axis and those of the plantar CP displacements along the AP axis. Increasing the plantar CP displacements in phase or in opposite phase substantially modifies these contributions although without inferring a shift to the benefit of the other mechanism. The specific morphology of the ankle and hip joints implicated in this postural task plainly explains this postural control organisation. In particular, the link between the segmental configuration of the lower limbs and these mechanisms are discussed.  相似文献   

3.
Both center-of-pressure (CP) displacements under each foot and relative body-weight distribution intervene in the production of resultant CP movements. To better understand their respective involvement, a protocol was set up for young healthy individuals consisting in standing on a double seesaw, favoring pitch motions and laying on a dual-force platform. The postural control effects induced by two types of asymmetry, weight-bearing and the CP movement patterns, were investigated. These asymmetries were achieved by associating two seesaws with two different lengths for the radii of the ridges and by requiring specific body-weight distributions. The results indicate that the postural strategies, aimed at controlling anteroposterior sway, are related to the subjects’ capacity to minimize the CP displacements under the less stable support, whatever load is applied. In contrast, the degree of involvement of the more stable support must be viewed as a complement used to secure the appropriate motor output, i.e., the resultant CP movements. Within this objective, both the applied load and the CP amplitudes under the more stable support are taken into account. These data provide additional insights into the compensatory mechanisms between the interactions between the two feet, which are used to produce the adequate resultant CP movements and therefore upright stance control. The specificity of the double seesaw that can induce asymmetric CP patterns and/or asymmetric body-weight distribution makes it a legitimate contender to be used as a rehabilitation device for patients with neurological and/or traumatic diseases.  相似文献   

4.
Wearing sport shoes inducing ankle dorsiflexion has been shown to alter the biomechanical specificities of the stretched muscles. The possible effect over the short and long term upon the sensorial capacities induced by such stretching has not been addressed yet. Fourteen healthy individuals were involved to assess the proprioceptive repercussion and their effects upon postural control strategies. Postural control and proprioceptive assessment were measured twice: when receiving sport shoes inducing ankle dorsiflexion and 18 days later. Proprioceptive effects were assessed using an ad-hoc device through which the seated and blindfolded subjects were required to reposition their feet in a starting position after the ankles were passively displaced to dorsiflexed and plantarflexed positions. Center-of-gravity horizontal displacements (CGv), estimated from center-of-pressure (CP) displacements, and CP–CGv displacements were measured through a force platform during upright quiet stance maintenance. The initial session was recorded with the subjects barefoot and wearing the shoes with a set of chocks with 0° (horizontal) and −5° (dorsiflexion) tilting angles. The second session included only barefoot performance in horizontal and dorsiflexion conditions. Dorsiflexion had no immediate effect on the postural control strategies along the anteroposterior axis. In contrast, barefoot or wearing shoes, stability was increased along the mediolateral axis during the dorsiflexion conditions. No ankle proprioceptive or postural change was observed after wearing the shoes for 18 days. Wearing dorsiflexion sport shoes induces short-term effects probably by inducing a backward tilt of the pelvis. A muscular adaptation likely prevents this effect from being prolonged.  相似文献   

5.
To assess if multiple sclerosis patients with proprioceptive impairment are specifically affected during quiet standing with eyes open and how they can develop motor compensatory processes, 56 patients, classified from sensory clinical tests as ataxo-spastic (MS-AS) or only having spasticity (MS-S), were compared to 23 healthy adults matched for age. The postural strategies were assessed from the centre-of-pressure trajectories (CP), measured from a force platform in the eyes open standing condition for a single trial lasting 51.2 s. The vertical projection of the centre of gravity (CGv) and its vertical difference from the CP (CP-CGv) were then estimated through a biomechanical relationship. These two movements permit the characterization of the postural performance and the horizontal acceleration communicated to the CG and from that, the global energy expenditure, respectively. Both MS-AS and MS-S groups demonstrate larger CGv and CP-CGv movements than healthy individuals of the same age. Whilst similar CGv values are noticed in both MS subgroups, suggesting similar postural performances, statistically significant differences are observed for the CP-CGv component. Biomechanically, this feature expresses the necessity for the MS-AS group to develop augmented neuro-muscular means to control their body movements, as compared to the MS-S group. By demonstrating for both groups of patients similar postural performance accompanied by a varying degree of energy expenditure to maintain undisturbed upright stance, this study reveals that MS-AS patients which are affected by proprioceptive loss can compensate for this deficit with more efficient control strategies, when standing still with their eyes open.  相似文献   

6.
To assess if multiple sclerosis patients with proprioceptive impairment are specifically affected during quiet standing with eyes open and how they can develop motor compensatory processes, 56 patients, classified from sensory clinical tests as ataxo-spastic (MS-AS) or only having spasticity (MS-S), were compared to 23 healthy adults matched for age. The postural strategies were assessed from the centre-of-pressure trajectories (CP), measured from a force platform in the eyes open standing condition for a single trial lasting 51.2?s. The vertical projection of the centre of gravity (CGv) and its vertical difference from the CP (CP-CGv) were then estimated through a biomechanical relationship. These two movements permit the characterization of the postural performance and the horizontal acceleration communicated to the CG and from that, the global energy expenditure, respectively. Both MS-AS and MS-S groups demonstrate larger CGv and CP-CGv movements than healthy individuals of the same age. Whilst similar CGv values are noticed in both MS subgroups, suggesting similar postural performances, statistically significant differences are observed for the CP-CGv component. Biomechanically, this feature expresses the necessity for the MS-AS group to develop augmented neuro-muscular means to control their body movements, as compared to the MS-S group. By demonstrating for both groups of patients similar postural performance accompanied by a varying degree of energy expenditure to maintain undisturbed upright stance, this study reveals that MS-AS patients which are affected by proprioceptive loss can compensate for this deficit with more efficient control strategies, when standing still with their eyes open.  相似文献   

7.
Postural control on single and double seesaws was investigated in young healthy adults required to stand as still as possible on two side-by-side seesaws favoring pitch motion and lying on two separate force platforms. The device offers the possibility to get associated or dissociated seesaws and, if dissociated, to induce asymmetric patterns for the centers-of-pressure (CP) under both left and right feet by using different radii for the two seesaws. Substituting a parallelepiped volume to one seesaw offering a firm contact to one foot is also possible. The results indicated that dissociating the two seesaws led to increased resultant CP (CPRes) and vertically projected center-of-gravity movements (CGv) only along the mediolateral axis, whereas a slight decreasing tendency characterized these movements along the antero-posterior axis. When standing on two independent seesaws with different radii, significantly larger CP displacements were seen along the antero-posterior axis under the foot lying on the more stable support, i.e., the seesaw with the longer radius or the parallelepiped volume. In these two asymmetrical conditions, the CPRes output results from a compensatory mechanism, i.e. larger movements under one foot to compensate for the decreased movements occurring under the opposite foot. This postural control strategy is aimed at allowing sufficient CPRes displacements in order to appropriately secure balance. Because of the complex sensorimotor coordination induced, involving differentially in certain cases both legs, the double seesaw device can be viewed as a possible tool for challenging postural control by inducing asymmetrical patterns between left and right feet CP movements.  相似文献   

8.
We checked on the supposition that the magnitude of postural reactions to an unexpected postural disturbance in upright stance in humans can be determined to a considerable extent by the level of background stiffness in the ankle joints. For this purpose, we estimated changes in the joint stiffness under different conditions of visual control; these values were estimated within the period of background body oscillations (i.e., before the beginning of a compensatory motor reaction) and compared with those in the course of postural reactions evoked by vibrational stimulation of the ankle (shin) muscles. Experiments were carried where the subjects stood with open and closed eyes (OE and CE, respectively) and while standing wearing spectacles with frosted glass passing only diffuse light (DL). In the course of the tests, the subjects stood in the usual comfortable vertical position (hereafter, standard stance) or in the same position but with the possibility to lightly touch an immobile object by a finger (stance with additional support). Such technique was used to weaken the effects of CE and DL on background sways of the body and to lead these sways close to the level typical of OE conditions. The joint stiffness was estimated using an approach based on frequency filtration of oscillations of the center of pressure of the feet (CPF) that allowed us to select signals proportional to displacements of the total center of gravity (CG) of the body and to calculate the difference between oscillations of the CPF and CG (a CPF-CG variable). The CPF-CG variable is proportional to the horizontal acceleration of the CG and, therefore, can be used for estimation of the changes in stiffness in the ankle joints. Under conditions of standard stance, the usual conditions rather similarly influenced both variables (CG and CPF-CG) in the course of both background body oscillations and a postural response. The examined variables were the greatest under CE conditions, decreased under conditions of perception of DL, and became smallest with OE. At standing with additional support, the dependence of the examined variables on visual conditions disappeared within the period of background body oscillations (before the beginning of postural reactions). In this case, the magnitude of oscillations of the CPF-CG variable under CE and DL conditions decreased to the level observed at standing under OE conditions. The magnitude of CG displacements induced by vibrational stimulations of the muscles remained, nevertheless, clearly dependent on visual conditions (the same regularities were observed as in the case of standing with no additional support). Thus, our findings demonstrate that the correlation between the characteristics of postural reactions in the upright stance and the level of ankle joint stiffness is not single-valued. Neirofiziologiya/Neurophysiology, Vol. 39, No. 2, pp. 146–153, March–April, 2007.  相似文献   

9.
Although the identification and characterization of limb load asymmetries during quiet standing has not received much research attention, they may greatly extend our understanding of the upright stance stability control. It seems that the limb load asymmetry factor may serve as a veridical measure of postural stability and thus it can be used for early diagnostic of the age-related decline in balance control. The effects of ageing and of vision on limb load asymmetry (LLA) during quiet stance were studied in 43 healthy subjects (22 elderly, mean age 72.3+/-4.0 yr, and 21 young, mean age 23.9+/-4.8 yr). Postural sway and body weight distribution were recorded while the subject was standing on two adjacent force platforms during two 120 s trials: one trial was performed with the eyes open (EO), while the other trial was with the eyes closed (EC). The results indicate that LLA was greater in the old adults when compared with the young control subjects. The LLA values were correlated with the postural sway magnitudes especially in the anteroposterior direction. Eyes closure which destabilized posture resulted in a significant increase of body weight distribution asymmetry in the elderly but not in the young persons. The limb load difference between EO and EC conditions showed a significantly greater effect of vision on LLA in the elderly compared to the young subjects. The observed differences in the LLA may be attributed to the decline of postural stability control in the elderly. Ageing results in the progressive decline of postural control and usually the nervous system requires more time to complete a balance recovery action. To compensate for such a deficiency, different compensatory strategies are developed. One of them, as evidenced in our study, is preparatory limb unload strategy (a stance asymmetry strategy) which could significantly shorten reaction time in balance recovery.  相似文献   

10.
Cerebral palsy (CP) considerably impairs the ability to maintain upright stance. The effects of locomotor training and functional electrical stimulation (FES) on postural control were determined in 27 children aged 6–12 years with severe CP. The severity level of the clinical manifestations of CP was classified as 3 according to the Gross Motor Function Classification System (GMFCS). All patients participated in 15 30-min mechanical therapy sessions using robot-assisted passive stepping. In 12 out of 27 children, the locomotion therapy was accompanied by FES. Stabilometry and plantography tests were performed in 23 healthy age-matched children. Postural control in children with CP differed from the stabilograms of healthy children in a forward shift of the center of pressure (COP) projection; higher values of the COP trajectory area and length, the mean amplitude of the COP oscillations, and the absence of COP response to the eyes closed condition. After treatment, the posturographic characteristics tended to normalize in relation to the values obtained in neurologically intact children. The improvement was observed in 43% of children without FES and in 75% of children in the group with FES. Analysis of plantograms revealed normalization of footprints in children who received FES. Thus, it was demonstrated that FES combined with locomotor training resulted in the improvement in vertical posture control in children with severe CP.  相似文献   

11.
We recorded in 16 healthy subjects the sagittal and frontal components of the stabilogram when standing on a rigid motionless or movable (oscillating) platform under four conditions of visual control: (i) open eyes, OE; (ii) closed eyes, CE; (iii) central vision, CV, and (iv) virtual visual environment, VVE. Under the latter condition, subjects observed the 3D image of a room, which was generated by the computer; the image was adhered to head movements in such a manner that a peculiar connection for normal visual conditions between movements of the head and displacements of the visible visual environment was reproduced. Through a low-pass filtration of a trajectory of the center of pressure of feet (CPF), two elementary variables were received, horizontal motions of the center of gravity (CG) and the difference between the CPF and the CG (CPF-CG). Changes in these variables (CG and CPF-CG) were estimated using spectral analysis and subsequent calculation of the median frequency (MF) and root mean square value (RMS) of the spectra. The MFs of the spectra of the investigated variables were approximately identical under conditions of standing on oscillating and motionless supports and showed no clear dependence on various visual conditions. Unlike MFs, the RMSs of the spectra of body sways appeared more dependent on changes of conditions of standing and the mode of visual control (differing from each other in the higher sensitivity to modifications of conditions of standing and visual control). With standing on the motionless support, the RMSs of the spectra of both variables were the greatest under VVE and CE conditions and the smallest under OE condition. The body oscillations were considerably amplified under conditions of standing on a movable support, and a different pattern of visual influences on the RMS of both investigated variables was revealed. The RMSs had the greatest value under CE condition and were much smaller (50–40%) under other visual conditions, including the VVE condition. Therefore, our findings show that, under VVE conditions, visual sensory afferentation is ignored by cerebral structures controlling postural adjustments if standing occurs on a motionless support but is effectively used at the maintenance of upright stance on an oscillating support. Neirofiziologiya/Neurophysiology, Vol. 39, No. 6, pp. 476–485, November–December, 2007.  相似文献   

12.
Preserving upright stance requires central integration of the sensory systems and appropriate motor output from the neuromuscular system to keep the centre of pressure (COP) within the base of support. Unilateral peripheral vestibular disorder (UPVD) causes diminished stance stability. The aim of this study was to determine the limits of stability and to examine the contribution of multiple sensory systems to upright standing in UPVD patients and healthy subjects. We hypothesized that closure of the eyes and Achilles tendon vibration during upright stance will augment the postural sway in UPVD patients more than in healthy subjects. Seventeen UPVD patients and 17 healthy subjects performed six tasks on a force plate: forwards and backwards leaning, to determine limits of stability, and upright standing with and without Achilles tendon vibration, each with eyes open and closed (with blackout glasses). The COP displacement of the patients was significantly greater in the vibration tasks than the controls and came closer to the posterior base of support boundary than the controls in all tasks. Achilles tendon vibration led to a distinctly more backward sway in both subject groups. Five of the patients could not complete the eyes closed with vibration task. Due to the greater reduction in stance stability when the proprioceptive, compared with the visual, sensory system was disturbed, we suggest that proprioception may be more important for maintaining upright stance than vision. UPVD patients, in particular, showed more difficulty in controlling postural stability in the posterior direction with visual and proprioceptive sensory disturbance.  相似文献   

13.
The shift of the common center of pressure (CCP) and the center of pressure (CP) of one leg was studied during the Achilles tendon vibration of one or both legs while the subject was standing with symmetrical load on the legs or with the load transferred to one leg. The CP shift of the standing subject during unilateral Achilles tendon vibration depended on both the side of application of vibration and on the distribution of the leg load. During standing with a asymmetrical load on the legs, the shift of the CCP was larger than when the vibration was applied to the loaded leg. The CP shift of one leg was greater if both vibration and the load were applied to it. Vibration of the unloaded leg caused a CP shift in the loaded contralateral leg. In this case, vibration of the left unloaded leg did not cause any noticeable CP shift of the left leg, while vibration of the unloaded right leg caused a CP shift of the right leg. Under the similar conditions of loading and vibration, the displacement of the CP of the right leg was larger than the displacement of the CP of the left leg. It may be suggested that postural asymmetry and unilateral vibration of the leg muscles change the internal representation of the position of the body axis in relation to the vertical, which affects the displacement of the CP of one leg in response to afferent stimulation of the leg muscles.  相似文献   

14.
The vertical posture was studied during standing with fееt on the support surfaces of different structures. The movements of the center of pressure (CP) of each leg and the common CP (CCP) were recorded while the subject stood with a support on a smooth floor and with the support of one foot on a spike mat (SM) with different load distributions between the legs. When the body weight was transferred to one leg during standing under ordinary conditions on a smooth floor, the CP of the loaded leg moved more than the CP of the unloaded leg; i.e., the posture sway was compensated mainly due to the activity of the loaded leg, which created a larger torque. When the subject stood with one foot on the SM, the CP movement of this leg did not depend on the leg load and was about 60% of the CP movement of the leg on the smooth floor. Apparently, the CP displacement of the unloaded leg on smooth support was larger than the CP displacement of the loaded leg creating the torque necessary for compensating the body sway. Thus, maintaining the vertical posture was carried out mainly by the leg standing on the smooth support. It is assumed that additional stimulation of different surface and deep receptors of the foot caused by foot support on the SM hampered the perception of its CP position, and the vertical posture was maintained mainly by the leg afferent signals from which more precisely reflected the CP position.  相似文献   

15.
We investigated the relationships between the ability to maintain balance in an upright stance and center-of-pressure (COP) dynamic properties in young adults. Included in this study were 10 healthy male subjects in each of two groups with respect to balance ability. Balance ability was evaluated according to the length of time a subject stood on one leg with his eyes closed. The means and ranges of this one-leg balancing time were 17.9 s (3-43 s) and 118.3 s (103-120 s) for the off-balance and balance groups, respectively. The time-varying displacements of the COP under a subject's feet during quiet two-leg (normal) standing were measured by an instrumented force platform. Each subject was tested in both the eyes-open and eyes-closed conditions. The COP trajectories were analyzed as fractional Brownian motions according to the procedure of 'stabilogram-diffusion analysis', proposed by Collins and De Luca (1993). The extracted parameters were the effective diffusion coefficients (D) for the short-term (less than about 1.0 s) and long-term intervals, respectively, as well as the Hurst exponents (H) for the short-term and long-term intervals, and some critical-point coordinates (i.e., critical mean square displacements and critical time intervals). The off-balance group showed significantly higher values for short-term D, short-term H, and critical mean square displacements than the balance group. No significant differences between the groups were found in the long-term D and H or in the critical time intervals. That is, for the off-balance subjects, an increase in the stochastic activity and positively correlated (persistent) behavior of the postural sway during shorter timescales may cause postural instability. These results suggest that the difference in balance ability for young adults is related to the open-loop (i.e., short-term) control mechanisms but not to the corrective feedback (i.e., long-term) mechanisms used to maintain balance in an upright stance.  相似文献   

16.
Changes in the vertical posture maintenance were studied when the legs were placed on supports of different degrees of mobility and part of the body weight was voluntarily transferred to one leg. The aim of these experiments was to explore how the mobility of support under the feet affects the balance and how this effect depends on the load distribution between the legs during standing. When both legs were on rigid immovable supports, the vertical posture was maintained by control of the center of pressure (CP) on both legs. When the subject transferred the weight to one foot, the posture was maintained mainly due to the control of CP of the loaded leg. When the legs were on supports of different degrees of mobility, the balance was maintained by the leg on the immovable support. This result was observed both when the subject stood with symmetrical load on the legs and when the load was transferred to one leg. Even when the leg was unloaded but placed on the immovable support, its CP moved more compared to the CP of the loaded leg on a movable support. The results obtained show that the support mobility is a factor that determines the mechanisms of posture maintenance, and this factor is more significant than load distribution between the legs. Thus, the upright posture is maintained with the physical properties of support under the feet taken into account.  相似文献   

17.
The proprioceptive cues in the control of movement is recognized as playing a major role in postural control. However, little is known about its possible increased contribution to postural control consecutive to repetitive muscular activations. To test this, the short-term effects induced by a 1-legged exercise on 2-legged postural control with the eyes closed were assessed in healthy subjects. The center-of-pressure (CP) displacements obtained using a force platform were split into 2 elementary movements: center-of-gravity vertical projection (CGv) and the difference (CP - CGv). These movements assessed the net postural performance and the level of neuromuscular activity, respectively, and were processed afterward (a) through variances, mean velocity, and the average surface covered by the trajectories and (b) a fractional Brownian motion (fBm) modeling. The latter provides further information about how much the subject controls the movements and the spatiotemporal relation between the successive control mechanisms. No difference was found using the classical parameters. In contrast, fBm parameters showed statistically significant changes in postural control after 1-legged exercises: The spatial and temporal coordinates of the transition points for the CG movements along the anteroposterior axis are decreased. Because the body movement control does not rely on visual or vestibular cues, this ability to trigger the corrective process of the CG movements more quickly in the postexercise condition and once a more reduced distance has been covered emphasizes how prior muscular activation improves body movement detection. As a general rule, these data show that the motor systems control body motions better after repetitive stimulation of the sensory cues. These insights should be of interest in physical activities based on a precise muscular length control.  相似文献   

18.
This paper investigated the organization of the postural control system in human upright stance. To this aim the shared variance between joint and 3D total body center of mass (COM) motions was analyzed using multivariate canonical correlation analysis (CCA). The CCA was performed as a function of established models of postural control that varied in their joint degrees of freedom (DOF), namely, an inverted pendulum ankle model (2DOF), ankle-hip model (4DOF), ankle-knee-hip model (5DOF), and ankle-knee-hip-neck model (7DOF). Healthy young adults performed various postural tasks (two-leg and one-leg quiet stances, voluntary AP and ML sway) on a foam and rigid surface of support. Based on CCA model selection procedures, the amount of shared variance between joint and 3D COM motions and the cross-loading patterns we provide direct evidence of the contribution of multi-DOF postural control mechanisms to human balance. The direct model fitting of CCA showed that incrementing the DOFs in the model through to 7DOF was associated with progressively enhanced shared variance with COM motion. In the 7DOF model, the first canonical function revealed more active involvement of all joints during more challenging one leg stances and dynamic posture tasks. Furthermore, the shared variance was enhanced during the dynamic posture conditions, consistent with a reduction of dimension. This set of outcomes shows directly the degeneracy of multivariate joint regulation in postural control that is influenced by stance and surface of support conditions.  相似文献   

19.
Postural stability has traditionally been examined through spatial measures of the center of mass (CoM) or center of pressure (CoP), where larger amounts of CoM or CoP movements are considered signs of postural instability. However, for stabilization, the postural control system may utilize additional information about the CoM or CoP such as velocity, acceleration, and the temporal margin to a stability boundary. Postural time-to-contact (TtC) is a variable that can take into account this additional information about the CoM or CoP. Postural TtC is the time it would take the CoM or CoP, given its instantaneous trajectory, to contact a stability boundary. This is essentially the time the system has to reverse any perturbation before stance is threatened. Although this measure shows promise in assessing postural stability, the TtC values derived between studies are highly ambiguous due to major differences in how they are calculated. In this study, various methodologies used to assess postural TtC were compared during quiet stance and induced-sway conditions. The effects of the different methodologies on TtC values will be assessed, and issues regarding the interpretation of TtC data will also be discussed.  相似文献   

20.
While occupational back-support exoskeletons (BSEs) are considered as potential workplace interventions, BSE use may compromise postural control. Thus, we investigated the effects of passive BSEs on postural balance during quiet upright stance and functional limits of stability. Twenty healthy adults completed trials of quiet upright stance with differing levels of difficulty (bipedal and unipedal stance; each with eyes open and closed), and executed maximal voluntary leans. Trials were done while wearing two different BSEs (SuitX™, Laevo™) and in a control (no-BSE) condition. BSE use significantly increased center-of-pressure (COP) median frequency and mean velocity during bipedal stance. In unipedal stance, using the Laevo™ was associated with a significant improvement in postural balance, especially among males, as indicated by smaller COP displacement and sway area, and a longer time to contact the stability boundary. BSE use may affect postural balance, through translation of the human + BSE center-of-mass, restricted motion, and added supportive torques. Furthermore, larger effects of BSEs on postural balance were evident among males. Future work should further investigate the gender-specificity of BSE effects on postural balance and consider the effects of BSEs on dynamic stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号