首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Intensive cropping of Italian ryegrass (Lolium multiforum L.) in pots was used to assess the contribution of non-exchangeable K to plant uptake. The soils used were: two soils high in mica (illite) developed on recent alluvium plus two smectitic (beidellitic) soils and a soil of mixed mineralogy rich in mica. Four K treatments were used (0, 28.6, 143, and 286 mg kg-1 soil) with 8 successive monthly cuttings. A response of plant K uptake to added K was observed in all soils. Both 1.0 M NH40Ac and 0.2 M CaCl2 extractable K were depleted to a minimum level specific for each soil. The minima were lower in the old upland soils compared to the young alluvial soils. Uptake of K by Italian ryegrass induced K release from the non-exchangeable K to replenish the plant available pool of K ions. The release of mica interlayer K in the alluvial and in the high K smectitic soil supplied sufficient K to plants even under intensive cropping. The rate of mobilization of interlayer K was low in the smectitic soil with lower K. The lowest release rate was in the old high mica soil. Iron coatings may have inhibited mobilization of interlayer K. The rates of mobilization cannot be predicted from mineralogical and K-extraction data only. The rates of K uptake and the rates of K release by ryegrass under intensive cropping are potential values which can be used for modelling K availability to plants in the soils studied.  相似文献   

2.
Summary The nitrogen supplying capacity of 39 wetland rice soils evaluated by two anaerobic incubation methods and six chemical methods was compared with N uptake of IR 26 rice grown on these soils under flooded conditions in a greenhouse pot study. The uptake of N by rice correlated highly with the N supplying capacity determined by anaerobic incubation methods involving incubation of soils at 30°C for 2 weeks (r=0.84**) or at 40°C for 1 week (r=0.82**) as well as with the organic carbon (r=0.82**) and total N (r=0.84**) contents of soils. Among the chemical indexes, available N determined by the oxidative release of soil N by alkaline permanganate, acid permanganate, acid dichromate and hydrogen peroxide also provided good index of soil N availability to rice. According to these results soil organic carbon and total N contents seem to be good indexes of available nitrogen in tropical wetland rice soils.  相似文献   

3.
Summary Representative soils of Tamil Nadu could be grouped into three categories based on the cumulative EUF desorption K curves which were exponential and displayed marked differences in the magnitude of K release by the soils employed. The cumulative K desorption values and the cumulative K uptake values of rice were found to be closely correlated. When compared with any other method, the cumulative EUF desorption K was found to be a better measure of K availability index.  相似文献   

4.
Summary Twenty-one representative soils from Northern Greece could be grouped into three categories based on the EUF-K curves which displayed marked differences in the magnitude of K release by the soils employed. The cumulative K desorption by EUF within 35 min and the cumulative K-uptake values of ryegrass (10 cuts) were found to be correlated (r=0.87***). Although this correlation is rather close, the K dynamics of a soil can be better characterized by the course of the K-desorption curves. Because the quotient EUF-K-80°C/EUF-K-20°C can give information on the course of K desorption it is therefore sufficient in routine investigations to know the EUF-K-20°C contents and the numerical values of the quotients EUF-K-80°C/EUF-K-20°C.The EUF procedure does not only indicate the close relationship between K extracted and K uptake by plants, but it can also provide information on other nutrients in the same soil sample. With this extra information it was possible to explain why in some of the analysed soils K uptake was low despite high K availability, the reason being that P availability was not optimal in one of the experimental soils and that the Mn concentration of the soil solution was too high in another. At equal K availability the K uptake was also dependent on the amount of EUF-extractable N.  相似文献   

5.
The electro-ultrafiltration (EUF) method has been used to evaluate the short-term and long-term supplying power of soils for many essential plant nutrients. The objective of this study was to compare the capacity of EUF with other extraction techniques to predict the plant availability of soil K and K fertilizer responsiveness by 10 cuts of alfalfa (Medicago sativa L.) growing over a 366-day period. Increasingly higher average concentrations of soil K were extracted by EUF at 50 V and 20°C (29 mg kg-1), EUF at 200 V and 20°C (48 mg kg-1), 0.002 M SrCl2 (55 mg kg-1), EUF at 200 V and 80°C (85 mg kg-1), 0.1 M HCl (105 mg kg-1), Mehlich 3 (119 mg kg-1), 1 M NH4OAc (120 mg kg-1) and boiling 1 M HNO3 (601 mg kg-1). The large content of vermiculitic minerals in the silt and clay fractions is responsible for EUF desorbing more K in 55 minutes than NH4OAc in 29 out of 30 soils. The total amount of K desorbed by EUF at 80°C was as effective as Mehlich 3-extractable K in predicting K uptake for the first three cuts and was best among the extracting procedures after boiling 1 M HNO3 in predicting the long-term K supply, the uptake of K from non-exchangeable sources and the relative yield of alfalfa over 10 cuts. The desorption of soil K with EUF provides a better evaluation of the K-supplying power of Quebec soils than the extractants currently used, especially on a long-term basis.Contribution no. 396.  相似文献   

6.
植物钾营养高效分子遗传机制   总被引:2,自引:0,他引:2  
钾是植物生长发育所必需的矿质营养元素之一。不同种类植物的钾营养效率存在差异,已有证据表明这种差异是受遗传基因控制的。植物细胞依靠细胞膜上的各种钾转运体和通道蛋白吸收和转运钾离子,这些膜蛋白的活性调控是植物钾营养效率调控的关键和基础。本文对植物钾营养高效性状分子遗传机制以及相关基因的分子功能和调控机制的研究进展进行了简要评述,并讨论了改善作物钾营养高效性状的可能途径。  相似文献   

7.
The influence of potassium sulfate, abscisic acid (ABA) and indole-3-acetic acid (IAA) solutions on xylem exudation rate and potassium efflux from the apical cut end of root tips of intact maize (Zea mays L. cv. Dnepropetrovskaya) seedlings was studied. Foliar application of 5 mM K2SO4 considerably stimulated the exudation rate. The application of ABA and IAA (1 mM) also induced a high rate of xylem exudation, K+ efflux being simultaneously increased. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
Summary The nitrogen-supplying power of eight Philippine rice soils was measured by consecutively growing six crops of IR 32 rice under flooded conditions in a greenhouse pot experiment. The dry matter yields or nitrogen uptake of rice were found to be highly positively correlated with the organic carbon and the total nitrogen contents of the soils, as well as with the amounts of ammonium released during an anaerobic incubation test at 30°C for 2 weeks.The results of the study bring out the usefulness of simple tests like organic carbon content and total nitrogen content of soils for predicting the nitrogen-supplying power to lowland rice.  相似文献   

9.
Campbell  Linda S.  Davies  B.E. 《Plant and Soil》1997,189(1):65-74
Radioactive caesium (137Cs), from the Chernobyl accident of 1986, has unexpectedly remained in a bioavailable form in upland, sheep-grazing soils of Great Britain. As a potential remedial measure, clinoptilolite was tested in a greenhouse pot experiment for its effectiveness in selectively taking up Cs from two British soils; a lowland loam (Denbigh 1 brown earth) and an upland peat (Crowdy 2 series)Rye-grass, (Lolium perenne, Arno variety) that was grown on 10% (by weight) clinoptilolite-treated soils containing up to 40 mg kg-1 added Cs, resulted in grass leaf tissue Cs concentrations below 30 mg Cs kg-1 grass in all cases. Where no clinoptilolite had been added Cs in grass leaf-tissue reached 1860 mg kg-1 (grown on peat) and 150 mg kg-1 (grown on loam) at added Cs levels of 40 mg kg-1 soil. The addition of calcium carbonate (as ground limestone) to the Cs-treated, clinoptilolite-free peat soil enhanced the grass concentration of Cs by approximately 5 times, but this effect was not observed with the concentration of Cs in grass grown from loam soils with the same treatments. Compositions of clinoptilolite grains subsequently separated from the experimental soils ranged from 7.5 to 9.0 mg Cs kg-1 for the control soils (no added Cs). Soils treated with 40 mg Cs kg-1 gave Cs concentrations in clinoptilolite of 155-170 mg kg-1 (separated from loam) and 347-354 mg kg-1 (separated from peat).  相似文献   

10.
Summary Experiments on cucumber plants grown in nutrient solution were conducted in order to study long and short time effects of ammonia on growth, nutrient element uptake and respiration of roots.Shoot yield and potassium concentration in tissue of plants treated 18 days with varied ammonia concentration were decreased. However, it was not assumed that K deficiency caused the yield reduction. The ammonia effect on K content was more pronounced in roots than in shoots.The decreased K concentration of plant tissue was linked to a diminished ability of plant roots to absorb potassium. The maximum rate of potassium uptake was lowered by ammonia during both, long- and short-time treatment. The results indicated that the NH3 influence on potassium uptake was due to effects on metabolism and permeability of roots because changes of K uptake rate occurred immediately after starting the NH3 treatment. Furthermore, it is shown that ammonia inhibited respiration of roots.During the short-time treatment net potassium efflux of roots was observed at higher NH3 concentrations. The extent of K efflux depended on K concentration of both, root tissue and nutrient solution.Pretreating the plants for 12 hours with ammonia also resulted a decline in K uptake rate. However, plant roots subjected to ammonia concentrations up to 0.09 mM completely recovered during 24 hours after removing the NH3 treatment whereas at higher NH3 concentrations only a partial recovery occurred.Furthermore, it was shown that ammonia also influenced P uptake by plant roots.  相似文献   

11.
Summary The concentration of K in the soil solution at zero change of non-exchangeable K (Co) was determined at 20°C and 50°C for six topsoils of widely different clay mineralogy. This was done with and without prior removal of the K that was exchangeable to dilute salt solutions in a two to three hour leach. Except for one case Co was greater for leached than for not leached samples, particularly at the higher temperature. This is attributed to rapid edge-weathering during leaching caused by interlayer penetration at the clay edges by calcium, sodium or hydronium ions. It is assumed that K newly exposed in this manner is not immediately exchangeable but that it exerts an influence on the equilibrium concentration of K in solution.Among soils Co was not related to the K available to ryegrass nor to the non-exchangeable K fraction of the uptake by ryegrass. However, much reduced values of Co were obtained after depletion by ryegrass in the new two soils examined.  相似文献   

12.
Summary In field experiments with varying K fertilization (1981 and 1982) changes in EUF-K contents were studied in deep loess soils of Southern Lower Saxony under sugar beet. A significant positive linear relationship was found between EUF-K contents at 20°C and 200 V (15 mA) of the topsoils and quantities of K absorbed by sugar beet in both years. The corresponding regression lines for 1981 and 1982 are almost parallel, the only difference being the yield level which was higher in 1982.The relationship between EUF-K contents at 20°C of topsoils and sugar yields showed the same parallelism for the two years. Not much increase in sugar yield was found at EUF-K contents over 12 mg/100 g soil at EUF-K 80°C/EUF-K 20°C ratios between 0.5 and 0.7. To attain a sugar yield of 10 t/ha an EUF-K 20°C value of at least 12 mg/100 g soil is required for these deep soils at the beginning of the K uptake period. This finding confirms experiences gained over an 8-year period at the Tulln Sugar Factory (Austria) with fertilizer recommendations based on EUF.  相似文献   

13.
14.
Plant uptake of radiocaesium from soil is an important pathway for the entry of this pollutant into the human food chain and so contributes to any assessment of the radiation dose following contamination. Large differences in soil–plant transfer factors have been reported for plant species grown on the same soils. Few studies have attempted to distinguish between differences in root uptake and root-to-shoot translocation. We have investigated the root uptake of radiocaesium from artificially contaminated soils and the subsequent translocation to shoots for various plant species grown on three agricultural soils. The effects of short contact times and potassium starvation or enrichment have been studied. The Cs adsorption properties of rhizosphere soils have been compared with those of the initial soils. The proportion of activity removed from soil is largely soil dependent. Root uptake properties have less effect, but appear to be species determined, and not influenced by soil properties. Differences in soil-to-shoot transfer factor arise from species-dependent differences in root-to-shoot translocation. Root-to-shoot activity ratios are not soil dependent. There was little effect of soil potassium status. Root action slightly enhanced Cs adsorption on one soil, probably due to mineral weathering associated with the release of nonexchangeable potassium.  相似文献   

15.
The release of nonexchangeable potassium by the different particle size fractions of two soils was studied with a culture device designed to confine soil samples in the rhizosphere of rape (Brassica napus cv Drakkar). After 8 days of cropping, the contribution of nonexchangeable K to K uptake ranged from 50% in the fine clay to 80–100% in the coarser fractions. Due to their high supplying power and their relative abundance, the silt fractions provided a major part of the supply of K by these soils.  相似文献   

16.
The effects of extracellular K+ concentration ([K+]o) on the pH of cell sap, “bulk cytoplasm” and vacuole have been investigated in Elodea densa leaves under conditions of either low or high activity of the plasmalemma electrogenic H+ pump. Cell sap pH was evaluated directly in the cell sap expressed after freezing and thawing. Cytoplasmic and vacuolar pH were calculated by the weak base and weak acid distribution method, DMO and benzylamine appearing to be a suitable acid and base, respectively, for this purpose in this material. When added to the basal medium (no rapidly permeating ions present), 5 mM K+ induced an increase in intracellular pH, larger for the cell sap and the vacuole (about 0.2 units), and smaller but still significant for the cytoplasm (0.07 units). This alkalinizing effect of K+ was thus associated with a significant decrease in the pH difference across the tonoplast. The alkalinizing effect of K+ was markedly and synergistically enhanced by the presence of fusicoccin, a condition inducing a marked activation of H+ extrusion and of K+ uptake. The correlation between these effects of [K+]o on intracellular pH and those on H+ extrusion indicates that changes in extracellular K+ concentration, and thus in K+ influx, can influence cytoplasmic and vacuolar pH by modulating the rate of H+ extrusion by the plasmalemma H+ pump.  相似文献   

17.
D. Meyer  A. Jungk 《Plant and Soil》1993,149(2):235-243
To predict the contribution of soil K fractions of different mobility to K supply of plants, the kinetics of K release from soil was related to the kinetics of K uptake of young sugar beet and wheat plants. For this purpose K release rates from soil were measured by continuously percolating samples of a luvisol with 0.01 M CaCl2 solution and effective diffusion coefficients, De, were determined. Two soil K fractions of different mobility were obtained. De values of the more mobile exchangeable K and the less mobile non-exchangeable K fraction were found to be 58.9 × 10–9 and 8.2 × 10–9 cm2 s–1, respectively. In a pot experiment, sugar beet and wheat plants were grown, for 15 days and both root growth and K uptake were measured. K uptake kinetics of both crops was determined in a separate experiment using flowing solution culture. To integrate these data quantitatively, the simulation model of Claassen et al. (1986) was applied. Results show that calculated total K uptake agreed closely with real K uptake of the plants. On this basis, 64 and 79% of the K taken up by wheat and sugar beet plants was derived from the rapidly released exchangeable and 21–36% from the less mobile non-exchangeable soil K fraction.  相似文献   

18.
高等植物根细胞高亲和性吸收钾的机制   总被引:2,自引:0,他引:2  
赵淑清  郭剑波 《生命科学》2001,13(3):132-134,125
K^ 是高等植物所必需的大量元素,它在植物的膨压调节、电荷平衡、叶片运动和蛋白质合成中都具有重要的作用。高等植物根细胞吸收K^ 通过高亲和性K^ 吸收系统和低亲和性K^ 吸收系统和低亲和性K^ 吸收系统两条途径。高新和性K^ 吸收系统,是在微摩尔浓度的外界K^ 水平时起作用,K^ 的吸收必须消耗能量。近年来,随着分子生物学技术和电生理技术的飞速发展,植物根细胞吸收K^ 的机制取得了较大进展。本文对高等植物根细胞高亲和性吸收K^ 的机制的研究进展进行了综述。  相似文献   

19.
Drobner  Ute  Tyler  Germund 《Plant and Soil》1998,201(2):285-293
Earlier studies have demonstrated close inverse relationships between Rb+ concentrations in plants and pH or base (including K+) saturation of soils. This study aims at elucidating conditions in soils influencing plant uptake of Rb+. Growth experiments with Carex pilulifera L. were performed, modifying the acidity and K+ supply of acid soils and solutions. We were unable to assess any reduction in Rb+ uptake by adding precipitated CaCO3 to acid soil unless pH was raised to near neutrality. Though not fully compensating the loss of soil solution K+and exchangeable K+ from uptake by the growing plants, soil treated with 0.5 mM K+ (as KCl) reduced the Rb+ concentration in the shoots by 40% without measurably changing soil pH. Experiments varying the pH and K+ concentration of a nutrient solution (20% Hoagland), spiked with 6 uM Rb+, clearly demonstrated that plant uptake of Rb+ and K+ was unaffected by acidity in the pH range 3.6–5.0 tested, whereas Rb+ uptake was reduced by ca. 50%, when K+ concentration was increased from 1.2 to 3.6 mM. The sensitivity of this reaction indicates that shortage or low availability of K+ controls Rb+ uptake from acid soils, being probably more important than soil acidity per se. Secondary effects of high soil acidity, such as leaching losses of K+, might also be of importance in accounting for the high uptake of Rb+ from such soils. It is suggested that leaf analysis of Rb+ may be used as a method to assess early stages of K+ deficiency in plants on acid soils.  相似文献   

20.
The potassium forms and dominant clay mineralogy were studied in naturally well-drained (Hapludalfs, Eutropept) and poorly-drained soils (Fragiudalfs, Fragiaquept), both composed of the same parent materials (silty-clay or silt loam or clayey-loam). The well-drained soils (i.e. aerated) were cultivated and received larger amounts of K fertilizer; the poorly-drained types (i.e. anoxic) were grasslands and received low amount of K fertilizer. The different aspects investigated-exchangeable and nonexchangeable K, potassium fixation capacity and clay X-ray diffraction diagrams-indicated that the potassium status and the behavior of K-containing clays significantly differed between naturally well-drained aerated soils and anoxic poorly-drained soils. The aerated soils were high in both exchangeable and nonexchangeable K; the K saturation rate was high whereas fixation capacity was moderate. However, the anoxic soils showed a large K depletion and high fixation capacity. The silty-clayey soils studied were more affected by moisture regimes than the silt loam or clayey-loam.The differing K status between aerated and anoxic soils can be explained by several processes and factors, including soil weathering and management and K fertilizer history.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号