共查询到20条相似文献,搜索用时 15 毫秒
1.
Rsp5p is a conserved HECT-domain ubiquitin ligase with diverse roles in cellular physiology. Here we report a previously unknown role of Rsp5p in facilitating the stability of the cytoplasmic ribosome pool in budding yeast. Yeast strains carrying temperature-sensitive mutations in RSP5 showed a progressive decline in levels of 18S and 25S rRNAs and accumulation of rRNA decay fragments when cells grown in rich medium were shifted to restrictive temperature. This was accompanied by a decreased number of translating ribosomes and the appearance of ribosomal subunits with an abnormally low sedimentation rate in polysome analysis. Abrogating Rsp5p function affected stability of other tested noncoding RNA species (tRNA and snoRNA), but to a lower extent than that of rRNA, and also inhibited processing of rRNA and tRNA precursors, in agreement with previous studies. The breakdown of cellular ribosomes was not affected by deletion of key genes involved in autophagy, previously implicated in ribosome turnover upon starvation. Our results suggest that functional Rsp5p is required to maintain the integrity of cytoplasmic ribosomes under rich nutrient conditions. 相似文献
2.
3.
Rsp5 ubiquitin ligase modulates translation accuracy in yeast Saccharomyces cerevisiae 总被引:2,自引:0,他引:2 下载免费PDF全文
Rsp5p is an essential yeast ubiquitin protein ligase that ubiquitinates multiple proteins involved in various processes. Recent studies indicate that ubiquitination also affects translation. Here, we show that the strain with the rsp5-13 mutation exhibits altered sensitivity to antibiotics and a slower rate of translation. Using a sensitive dual-gene reporter system, we demonstrate that stop codon readthrough efficiency is decreased in the rsp5-13 mutant, while both +1 and -1 frameshifting were unaffected. The effect of the rsp5-13 mutation on readthrough could be reversed by increased expression of ubiquitin and partially suppressed by overproduction of the elongation factor eEF1A. As assessed by fluorescence in situ hybridization, the rsp5-13 mutant cells accumulate tRNA nuclear pools, perhaps depleting tRNA from the cytoplasm. Nuclear accumulation of tRNA is observed only when rsp5-13 cells are grown in media with high amino acid content. This defect, also reversed by overproduction of the elongation factor eEF1A, may be the primary reason for altered translational decoding accuracy. 相似文献
4.
Retrograde trafficking from the Golgi to the endoplasmic reticulum (ER) depends on the formation of vesicles coated with the multiprotein complex COPI. In Saccharomyces cerevisiae ubiquitinated derivatives of several COPI subunits have been identified. The importance of this modification of COPI proteins is unknown. With the exception of the Sec27 protein (β'COP) neither the ubiquitin ligase responsible for ubiquitination of COPI subunits nor the importance of this modification are known. Here we find that the ubiquitin ligase mutation, rsp5-1, has a negative effect that is additive with ret1-1 and sec28Δ mutations, in genes encoding α- and ε-COP, respectively. The double ret1-1 rsp5-1 mutant is also more severely defective in the Golgi-to-ER trafficking compared to the single ret1-1, secreting more of the ER chaperone Kar2p, localizing Rer1p mostly to the vacuole, and increasing sensitivity to neomycin. Overexpression of ubiquitin in ret1-1 rsp5-1 mutant suppresses vacuolar accumulation of Rer1p. We found that the effect of rsp5 mutation on the Golgi-to-ER trafficking is similar to that of sla1Δ mutation in a gene encoding actin cytoskeleton proteins, an Rsp5p substrate. Additionally, Rsp5 and Sla1 proteins were found by co-immunoprecipitation in a complex containing COPI subunits. Together, our results show that Rsp5 ligase plays a role in regulating retrograde Golgi-to-ER trafficking. 相似文献
5.
6.
Rodriguez MS Gwizdek C Haguenauer-Tsapis R Dargemont C 《Traffic (Copenhagen, Denmark)》2003,4(8):566-575
The nuclear transport of both proteins and RNAs has attracted considerable interest in recent years. However, regulation pathways of the nuclear transport machineries are still not well characterized. Previous studies indicated that ubiquitination is involved in poly(A)+ RNA nuclear export. For this reason, we systematically investigated ubiquitin-protein ligasess from the homologous to E6-AP carboxy terminus (HECT) family for potential individual roles in nuclear transport in Saccharomyces cerevisiae . Here we report that Rsp5, an essential yeast ubiquitin ligase involved in many cellular functions, when deleted or mutated in ligase activity, blocks the nuclear export of mRNAs. Affected messenger RNAs include both total poly(A)+ mRNA and heat-shock mRNAs. Mutation of Rsp5 does not affect nuclear protein import or export. Deletion of RSP5 blocks mRNA export, even under conditions where its essential role in unsaturated fatty acids biosynthesis is bypassed. Using domain mapping, we find that the ligase activity is required for proper mRNA export, indicating that ubiquitination by Rsp5 acts directly or indirectly to affect RNA export. The finding that Rsp5p ligase mutations cause a more pronounced defect at high temperatures suggests that ubiquitination of transport factors by Rsp5p may also be essential during stress conditions. 相似文献
7.
Bul1, a new protein that binds to the Rsp5 ubiquitin ligase in Saccharomyces cerevisiae. 总被引:3,自引:0,他引:3 下载免费PDF全文
H Yashiroda T Oguchi Y Yasuda A Toh-E Y Kikuchi 《Molecular and cellular biology》1996,16(7):3255-3263
We characterized a temperature-sensitive mutant of Saccharomyces cerevisiae in which a mini-chromosome was unstable at a high temperature and cloned a new gene which encodes a basic and hydrophilic protein (110 kDa). The disruption of this gene caused the same temperature-sensitive growth as the original mutation. By using the two-hybrid system, we further isolated RSP5 (reverses Spt- phenotype), which encodes a hect (homologous to E6-AP C terminus) domain, as a gene encoding a ubiquitin ligase. Thus, we named our gene BUL1 (for a protein that binds to the ubiquitin ligase). BUL1 seems to be involved in the ubiquitination pathway, since a high dose of UBI1, encoding a ubiquitin, partially suppressed the temperature sensitivity of the bul1 disruptant as well as that of a rsp5 mutant. Coexpression of RSP5 and BUL1 on a multicopy plasmid was toxic for mitotic growth of the wild-type cells. Pulse-chase experiments revealed that Bul1 in the wild-type cells remained stable, while the bands of Bul1 in the rsp5 cells were hardly detected. Since the steady-state levels of the protein were the same in the two strains as determined by immunoblotting analysis, Bul1 might be easily degraded during immunoprecipitation in the absence of intact Rsp5. Furthermore, both Bul1 and Rsp5 appeared to be associated with large complexes which were separated through a sucrose gradient centrifugation, and Rsp5 was coimmunoprecipitated with Bul1. We discuss the possibility that Bul1 functions together with Rsp5 in protein ubiquitination. 相似文献
8.
The HECT E3 ubiquitin ligase Rsp5, a yeast member of the Nedd4 family, has been implicated in many different aspects of cell physiology. Here, we present evidence that Rsp5 function is important for ubiquitin homeostasis. Several observations suggest that ubiquitin is limiting in the rsp5-1 mutant. Reduced synthesis of ubiquitin appears to contribute to ubiquitin depletion. A transient inhibition of general protein synthesis is observed in a wildtype strain upon heat-shock. While the wildtype cells quickly recover from this transient arrest, the rsp5-1 cells remain arrested. This suggests that Rsp5 is important for recovery from heat-induced protein synthesis arrest. Our results suggest that rsp5 phenotypes should be interpreted with caution, since some of the phenotypes could be simply the result of ubiquitin limitation. 相似文献
9.
Yeast Saccharomyces cerevisiae cells overexpressing essential ubiquitin ligase Rsp5 or ubiquitin-conjugating enzymes (Ubc1-Ubc13) showed tolerance to various stresses. Co-overexpression of Rsp5 and Ubc1, Ubc2, Ubc3, Ubc5, Ubc6, Ubc9, Ubc10, Ubc11, Ubc12, or Ubc13 further enhanced stress tolerance. These results suggest that overexpression of ubiquitin-related enzymes might be a useful method for breeding novel stress-resistant strains. 相似文献
10.
11.
12.
Kaliszewski P Ferreira T Gajewska B Szkopinska A Berges T Zoładek T 《The Biochemical journal》2006,395(1):173-181
The Rsp5 ubiquitin ligase plays a role in many cellular processes including the biosynthesis of unsaturated fatty acids. The PIS1 (phosphatidylinositol synthase gene) encoding the enzyme Pis1p which catalyses the synthesis of phosphatidylinositol from CDP-diacyglycerol and inositol, was isolated in a screen for multicopy suppressors of the rsp5 temperature sensitivity phenotype. Suppression was allele non-specific. Interestingly, expression of PIS1 was 2-fold higher in the rsp5 mutant than in wild-type yeast, whereas the introduction of PIS1 in a multicopy plasmid increased the level of Pis1p 6-fold in both backgrounds. We demonstrate concomitantly that the expression of INO1 (inositol phosphate synthase gene) was also elevated approx. 2-fold in the rsp5 mutant as compared with the wild-type, and that inositol added to the medium improved growth of rsp5 mutants at a restrictive temperature. These results suggest that enhanced phosphatidylinositol synthesis may account for PIS1 suppression of rsp5 defects. Analysis of lipid extracts revealed the accumulation of saturated fatty acids in the rsp5 mutant, as a consequence of the prevention of unsaturated fatty acid synthesis. Overexpression of PIS1 did not correct the cellular fatty acid content; however, saturated fatty acids (C(16:0)) accumulated preferentially in phosphatidylinositol, and (wild-type)-like fatty acid composition in phosphatidylethanolamine was restored. 相似文献
13.
14.
15.
Rsp5, a ubiquitin-protein ligase, is involved in degradation of the single-stranded-DNA binding protein rfa1 in Saccharomyces cerevisiae 下载免费PDF全文
In Saccharomyces cerevisiae, RAD1 and RAD52 are required for alternate pathways of mitotic recombination. Double-mutant strains exhibit a synergistic interaction that decreases direct repeat recombination rates dramatically. A mutation in RFA1, the largest subunit of a single-stranded DNA-binding protein complex (RP-A), suppresses the recombination deficiency of rad1 rad52 strains (J. Smith and R. Rothstein, Mol. Cell. Biol. 15:1632-1641, 1995). Previously, we hypothesized that this mutation, rfa1-D228Y, causes an increase in recombinogenic lesions as well as the activation of a RAD52-independent recombination pathway. To identify gene(s) acting in this pathway, temperature-sensitive (ts) mutations were screened for those that decrease recombination levels in a rad1 rad52 rfa1-D228Y strain. Three mutants were isolated. Each segregates as a single recessive gene. Two are allelic to RSP5, which encodes an essential ubiquitin-protein ligase. One allele, rsp5-25, contains two mutations within its open reading frame. The first mutation does not alter the amino acid sequence of Rsp5, but it decreases the amount of full-length protein in vivo. The second mutation results in the substitution of a tryptophan with a leucine residue in the ubiquitination domain. In rsp5-25 mutants, the UV sensitivity of rfa1-D228Y is suppressed to the same level as in strains overexpressing Rfa1-D228Y. Measurement of the relative rate of protein turnover demonstrated that the half-life of Rfa1-D228Y in rsp5-25 mutants was extended to 65 min compared to a 35-min half-life in wild-type strains. We propose that Rsp5 is involved in the degradation of Rfa1 linking ubiquitination with the replication-recombination machinery. 相似文献
16.
The Rsp5 ubiquitin ligase is coupled to and antagonized by the Ubp2 deubiquitinating enzyme 下载免费PDF全文
Saccharomyces cerevisiae Rsp5 is an essential HECT ubiquitin ligase involved in several biological processes. To gain further insight into regulation of this enzyme, we identified proteins that copurified with epitope-tagged Rsp5. Ubp2, a deubiquitinating enzyme, was a prominent copurifying protein. Rup1, a previously uncharacterized UBA domain protein, was required for binding of Rsp5 to Ubp2 both in vitro and in vivo. Overexpression of Ubp2 or Rup1 in the rsp5-1 mutant elicited a strong growth defect, while overexpression of a catalytically inactive Ubp2 mutant or Rup1 deleted of the UBA domain did not, suggesting an antagonistic relationship between Rsp5 and the Ubp2/Rup1 complex. Consistent with this model, rsp5-1 temperature sensitivity was suppressed by either ubp2Delta or rup1Delta mutations. Ubp2 reversed Rsp5-catalyzed substrate ubiquitination in vitro, and Rsp5 and Ubp2 preferentially assembled and disassembled, respectively, K63-linked polyubiquitin chains. Together, these results indicate that Rsp5 activity is modulated by being physically coupled to the Rup1/Ubp2 deubiquitinating enzyme complex, representing a novel mode of regulation for an HECT ubiquitin ligase. 相似文献
17.
Kaminska J Spiess M Stawiecka-Mirota M Monkaityte R Haguenauer-Tsapis R Urban-Grimal D Winsor B Zoladek T 《European journal of cell biology》2011,90(12):1016-1028
Yeast Rsp5 ubiquitin ligase is involved in several cellular processes, including endocytosis. Actin patches are sites of endocytosis, a process involving actin assembly and disassembly. Here we show Rsp5 localization in cortical patches and demonstrate its involvement in actin cytoskeleton organization and dynamics. We found that the Rsp5-F1-GFP2 N-terminal fragment and full length GFP-Rsp5 were recruited to peripheral patches that temporarily co-localized with Abp1-mCherry, a marker of actin patches. Actin cytoskeleton organization was defective in a strain lacking RSP5 or overexpressing RSP5, and this phenotype was accompanied by morphological abnormalities. Overexpression of RSP5 caused hypersensitivity of cells to Latrunculin A, an actin-depolymerizing drug and was toxic to cells lacking Las17, an activator of actin nucleation. Moreover, Rsp5 was required for efficient actin polymerization in a whole cell extract based in vitro system. Rsp5 interacted with Las17 and Las17-binding proteins, Lsb1 and Lsb2, in a GST-Rsp5-WW2/3 pull down assay. Rsp5 ubiquitinated Lsb1-HA and Lsb2-HA without directing them for degradation. Overexpression of RSP5 increased the cellular level of HA-Las17 in wild type and in lsb1Δ lsb2Δ strains in which the basal level of Las17 was already elevated. This increase was prevented in a strain devoid of Las17-binding protein Sla1 which is also a target of Rsp5 ubiquitination. Thus, Rsp5 together with Lsb1, Lsb2 and Sla1 regulate the level of Las17, an important activator of actin polymerization. 相似文献
18.
Bsd2 binds the ubiquitin ligase Rsp5 and mediates the ubiquitination of transmembrane proteins 总被引:4,自引:0,他引:4 下载免费PDF全文
Membrane proteins destined for the vacuolar or lysosomal lumen are typically ubiquitinated, the ubiquitin serving as a targeting signal for the multivesicular body pathway. The RING-domain ubiquitin ligase Tul1 is an integral membrane protein that modifies the yeast vacuolar enzyme carboxypeptidase S (Cps1), the polyphosphatase Ppn1/Phm5 and other proteins containing exposed hydrophilic residues within their transmembrane domains (TMDs). Here we show that Bsd2 provides an alternative ubiquitination mechanism for Cps1, Phm5 and other proteins. Bsd2 is a three-TMD protein with a PPXY motif that binds the HECT domain ubiquitin ligase Rsp5. It can thus act as a specific adaptor linking Rsp5 to its substrates. Like Tul1, the Bsd2 system recognises polar TMDs. Bsd2 also controls the vacuolar targeting of a manganese transporter and a mutant plasma membrane ATPase, and together with the ER retrieval receptor Rer1, it protects cells from stress. We suggest that Bsd2 has a wide role in the quality control of membrane proteins. Bsd2 is the yeast homologue of human NEDD4 binding protein N4WBP5, which may therefore have similar functions. 相似文献
19.
F-box proteins represent the substrate-specificity determinants of the SCF ubiquitin ligase complex. We previously reported that the F-box protein Grr1p is one of the proteins involved in the transmission of glucose-generated signal for proteolysis of the galactose transporter Gal2p and fructose-1,6-bisphosphatase. In this study, we show that the other components of SCF(Grr1), including Skp1, Rbx1p, and the ubiquitin-conjugating enzyme Cdc34, are also necessary for glucose-induced Gal2p degradation. This suggests that transmission of the glucose signal involves an SCF(Grr1)-mediated ubiquitination step. However, almost superimposable ubiquitination patterns of Gal2p observed in wild-type and grr1Delta mutant cells imply that Gal2p is not the primary target of SCF(Grr1) ubiquitin ligase. In addition, we demonstrate here that glucose-induced Gal2p proteolysis is a cell-cycle-independent event. 相似文献