首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
A 3-yr project was initiated in 1993 to examine the effects of insecticides and sustained whitefly, Bemisia argentifolii Bellows & Perring [aka. B tabaci Gennadius (Strain B)], feeding on alfalfa plant growth and vigor in greenhouse cage studies, and to determine the impact of natural Bemisia whitefly populations on alfalfa forage yields and quality in a large-plot field experiment. Alfalfa plant growth and vigor after exposure to imidacloprid and a mixture of fenpropathrin and acephate insecticides did not differ from untreated plants in the greenhouse. Consequently, foliar and soil applied insecticides were used to manipulate whitefly densities on alfalfa plants to measure whitefly feeding effects on plant growth and forage yield. Heavy whitefly densities on untreated alfalfa plants in the greenhouse resulted in significant reductions in relative growth rates and net assimilation rates as compared with imidacloprid-treated plants that were maintained relatively whitefly-free. Reductions in alfalfa plant growth measured between infested and treated plants were proportional to whitefly densities. Field plot results derived from three crop seasons were relatively consistent with our greenhouse trials. Both experimental approaches clearly showed that alfalfa plants exposed to high densities of whitefly immatures and adults grew at a significantly slower rate and produced less foliage. As a result of reduced growth rates, alfalfa maturity in the naturally infested plots was estimated to be approximately 7-10 d behind managed plots. Delays in maturity resulted in significant reductions in forage yields of 13-18% during August-September harvests when whitefly populations reached peak abundance. Whitefly feeding stresses also effected hay quality through the reduction of crude protein content and contamination of foliage with honeydew and sooty mold. The status of the Bemisia whiteflies as an economic pest to alfalfa is clearly evident from these studies, but the damage potential of whiteflies in the southwestern United States appears to be restricted to one or two harvest periods during the summer coinciding with peak adult populations and their dispersal from alternate host crops.  相似文献   

2.
This study focuses on the regulation of synchronization between the life cycle of the oligophagous whitefly, Trialeurodes lauri (Signoret), and its evergreen host tree Arbutus andrachne in Mediterranean chaparral. Whitefly infestations vary considerably among trees. The adults of the univoltine (one generation per year) whitefly emerge en masse during April and May and oviposit on the new spring foliage. Following approximately one month of development to the early fourth instar, the nymphs enter nine-month diapauses, terminating in February. This diapause is induced and maintained by the plant and can be experimentally avoided (in the case of developing young nymphs) or terminated (in the case of diapausing fourth instars), if whitefly-bearing branches are severed from the tree and placed in water under laboratory conditions. This study is the first report of a whitefly diapausing through both summer and winter seasons. The role of the host plant in the process is discussed.  相似文献   

3.
The silverleaf whitefly (Bemisia argentifolii Bellows and Perring) is a widely distributed pest of cotton (Gossypium hirsutum L.) and the population levels may be affected by rates of nitrogen fertilization and planting date. Field experiments were conducted to investigate the impact of cotton planting date and nitrogen fertilization on silverleaf whitefly population dynamics. Cotton was planted on 26 April and 8 June, for the early and late plantings, respectively. Nitrogen treatments consisted of soil applications of 0, 112, 168 and 224 kg of nitrogen per hectare. The population levels of adult whiteflies were much higher on early-planted cotton than on late planting. Also, increased numbers of adult whiteflies on both early and late plantings occurred with increasing amounts of applied nitrogen.Applied nitrogen increased seed cotton yields of early plantings but had no effect on the yields of late plantings.  相似文献   

4.
We investigated the effect of different levels of infestation by whiteflies, Bemisia argentifolii Bellows & Perring, on the growth and pigment concentrations of seedlings of zucchini, Cucurbita pepo L., that differed in their tolerance to squash silverleaf disorder. Genetically similar sister lines that were either tolerant (ZUC76-SLR) or susceptible (ZUC61) to silverleaf disorder exhibited reduced plant height, internode length, plant dry weight, and petiole length in response to whitefly feeding. Similar plant growth responses to whitefly feeding were observed despite that the foliage of ZUC61 silvered severely, whereas the foliage of ZUC76-SLR showed no silvering in a greenhouse experiment conducted in the spring and showed only minimal silvering in a similar greenhouse experiment conducted in the fall. In plants of both sister lines infested with 50 pairs of whiteflies and their progeny, petioles, but not the leaf blades, of uninfested leaves had reduced chlorophyll content. In another experiment, two different genetic sources of tolerance to silverleaf disorder (ZUC33-SLR/PMR and ZUC76-SLR) and a commercial silverleaf-susceptible zucchini hybrid ('Zucchini Elite') responded similarly to whitefly feeding, except the tolerant genotypes did not exhibit leaf silvering. All genotypes, silverleaf tolerant or not, had reduced dry weight, plant height, and internode length that became more pronounced as whitefly infestation increased. All genotypes had reduced levels of chlorophylls and carotenoids in uninfested young leaf blades and petioles from infested plants. Petioles, however, were more affected by feeding than leaf blades, showing a 66% reduction in chlorophylls a+b and carotenoids at the lowest infestation level (30 pairs of whitefly and their progeny), whereas pigments in leaf blades declined more slowly in response to whitefly feeding density, averaging 14-15% less at the highest infestation level (90 pairs of whitefly and their progeny). We conclude that tolerance to silverleaf disorder does not prevent stunting in zucchini seedlings nor does it protect against the systemic loss of photosynthetic and protoprotectant pigments induced by feeding of B. argentifolii whiteflies.  相似文献   

5.
Entomopathogenic fungi of the genus Aschersonia are specific for whitefly and scale insects. They can be used as biological control agents against silverleaf whitefly, Bemisia argentifolii and greenhouse whitefly, Trialeurodes vaporariorum. Forty-four isolates of Aschersonia spp. were tested for their ability to sporulate and germinate on semi-artificial media and to infect insect hosts. Seven isolates sporulated poorly (less than 1x10(7) conidia/dry weight) and 10 were not able to infect either of the whitefly species. Several isolates were able to produce capilliconidia. Infection level was not correlated with germination on water agar. After a selection based on spore production and infection, virulence of 31 isolates was evaluated on third instar nymphs of both whitefly species on poinsettia (Euphorbia pulcherrima). Whitefly infection levels varied between 2 and 70%, and infection percentages of B. argentifolii correlated with that of T. vaporariorum. However, mortality was higher for T. vaporariorum than for B. argentifolii, as a result of a higher 'mortality due to unknown causes.' Several isolates, among which unidentified species of Aschersonia originating from Thailand and Malaysia, A. aleyrodis from Colombia, and A. placenta from India showed high spore production on semi-artificial medium and high infection levels of both whitefly species.  相似文献   

6.
The whitefly Bemisia argentifolii Bellows & Perring is an economically important pest of tomatoes, Lycopersicon esculentum Mill., inducing an irregular ripening disorder of fruit and transmitting plant pathogenic viruses. With the goal of investigating ginger oil as a protectant for tomato plants, we tested the effects of concentration of ginger oil and application methods on repellency to whitefly in a vertical still-air olfactometer. In choice and no-choice experiments conducted in a greenhouse, we evaluated whether ginger oil would protect tomato seedlings from whitefly settling and oviposition. Ginger oil repelled whitefly adults in the vertical olfactometer. The repellency of ginger oil was attributed to its odor, effective at the concentrations used over a distance of 1-2 mm. Tomato leaf disks dipped in ginger oil repelled whiteflies at concentrations of 0.5, 0.75, and 1%, but not at concentrations <0.5%, in a dose-response experiment conducted in the olfactometer. Repellency increased with increasing ginger oil concentration when leaf disks were dipped in ginger oil but not when ginger oil was sprayed onto the leaf disks. Higher quantities of monoterpenes and sesquiterpenes were deposited on leaf disks dipped in ginger oil than on sprayed leaf disks according to gas chromatographic quantification. In the greenhouse, both choice and no-choice tests were conducted with tomato seedlings dipped in 0.25% ginger oil solution or 2% Tween 20, as treatment and control, respectively. In the choice test, 35-42% fewer whitefly adults settled and 37% fewer eggs were laid during the 24-h exposure period on tomato plants dipped in ginger oil solution than on plants dipped in 2% Tween 20. In the no-choice test, 10.2-16.7% fewer whiteflies settled on treated plants compared with control plants but no significant differences were detected in the number of eggs laid. Higher concentrations of ginger oil could not be used without causing severe wilting of tomato leaves. Ginger oil has potential as a protectant of tomato seedlings against B. argentifolii, but issues of phytotoxicity and coverage need to be addressed.  相似文献   

7.
The presence of arbuscular mycorrhizal fungi (AMF) influences plant nutrient uptake, growth, and plant defensive chemistry, thereby directly influencing multi-trophic interactions. Different fungal isolates (genotypes of the same fungal species) have been shown to differ in nutrient uptake ability. Plants infected with different AMF genotypes may vary in foliar nutrient or defensive chemical levels, potentially influencing multi-trophic interactions. Using a completely randomized design, we compared the effect of two isolates of the mycorrhizal fungus Glomus etunicatum W. N. Becker & Gerdemann on silver leaf whitefly (Bemisia argentifolii Bellows & Perring) (Hemiptera: Aleyrodidae) and parasitic wasp (Eretmocerus eremicus Rose & Zolnerowich) (Hymenoptera: Aphelinidae) abundance. Whitefly populations were not influenced by AMF infection. Parasite populations were higher on plants infected with the isolate collected from Georgia, even after controlling for whitefly abundance and plant architecture. We propose that AMF indirectly influences parasite abundance and parasitism through a change in leaf surface chemicals that affect parasitic wasps. Because of the ubiquity of and genetic variation in AMF, multi-trophic interactions are likely to be strongly influenced by belowground processes.  相似文献   

8.
Adult whitefly Bemisia argentifolii Bellows & Perring trap (CC trap) catches were compared with suction type trap catches. CC trap catches were significantly correlated to the suction trap catches. Higher numbers of B. argentifolii adults were caught in CC traps oriented toward an untreated, B. argentifolii-infested, cotton field as compared with traps oriented toward Bermuda grass fields, farm roads, or fallow areas. CC trap catches at five heights above ground (from 0 to 120 cm) were significantly related to each other in choice and no-choice studies. CC trap catches were low in the Imperial and Palo Verde Valleys from late October to early June each of 1996, 1997, and 1998. Trap catches increased with increasing seasonal air temperatures and host availability. Trap catches were adversely affected by wind and rain. Abrupt trap catch increases of 40- to 50-fold for 1-2 d in late June to early July followed by abrupt decreases in adult catches suggest migrating activity of adults from other nearby crop sources.  相似文献   

9.
B型烟粉虱对23种寄主植物适应度的评估和聚类分析   总被引:2,自引:0,他引:2  
安新城  郭强  胡琼波 《生态学报》2011,31(11):3150-3155
本文利用前期开发的两个寄主植物适应度评估模型对B型烟粉虱能够完成发育的23种寄主进行了寄主适应度评估,并对评估结果进行了聚类分析,分析结果显示供试烟粉虱种群存在明显的寄主偏好性,黄瓜与甘蓝为嗜好寄主,繁殖力大,若虫成活率高,非常有利于烟粉虱的种群发育;而其它寄主在营养状况、物理性状及次生化合物的综合作用下,烟粉虱的寄主植物适应度变化较大且整体低于嗜好寄主,结果暗示烟粉虱的寄主生态位可能存在从核心到周缘的分层现象。比较了两个评估模型的分析结果,虽然在低层聚类中存在差异,但高层聚类的结果趋于一致。  相似文献   

10.
Ovary contents and insemination status were examined in overwintered queens of Vespa mandarinia that were collected using bait traps in Ibaraki Prefecture, eastern Japan. Catches in the traps occurred from late April to early July in 1999, though they were few or rather sporadic in and after June. Fertilization rates were 100% in 1999, and 93% in 1998 when a preliminary sampling was made. While the ovary index (number of eggs with size equal to or larger than adjacent nurse cells) of queens caught on the first few collection dates was small, it rapidly increased up to late May. Generalized linear model analyses showed that the ovary index depended both on collection date and the size (head width) of the queens. Mature eggs were almost absent in their ovaries before early May, whereas more than 70% of the queens had one or more mature eggs on and after May 10, suggesting the onset of nesting in early May.  相似文献   

11.
The broad mite Polyphagotarsonemus latus (Banks) and silverleaf whitefly Bemisia argentifolii Bellows & Perring (=B strain of Bemisia tabaci (Gennadius)) have many common host plants. It was found that broad mites can attach themselves to B. argentifolii adults and use them as a carrier for their dispersal. In a cage experiment, we observed that more than 80% of B. argentifolii adults had more than one broad mite attached within 4 h after B. argentifolii landed on broad mite-infested plants. Overall, 97.5% of the broad mites examined were attached to the legs, mostly on the tibiae and tarsi of B. argentifolii adults, and 99.5% of the broad mites attached to B. argentifolii were adult females. The successful dispersal of broad mite via B. argentifolii was also demonstrated with a cage experiment.  相似文献   

12.
Pyriproxyfen (Knack) was registered in Arizona cotton, as the crucial component of a resistance management plan, to control whitefly Bemisia argentifolii (Bellows & Perring) in 1996. A statewide monitoring program was implemented at the same time to detect and monitor whitefly resistance to this novel insecticide. Bioassays involving dipping of leaves infested with whitefly eggs showed that all Arizona whiteflies tested were highly susceptible to pyriproxyfen in 1996. The LC50 estimates were in the range of 0.0020-0.0067 microg (AI)/ml. Two diagnostic pyriproxyfen concentrations, 0.01 and 0.1 microg (AI)/ml, were established for efficient identification of resistant whiteflies. No resistance to pyriproxyfen was detected in whiteflies in statewide surveys conducted in 1997 and 1998. Mean mortality at 0.01 microg (AI)/ml dropped significantly, and survivors were detected for the first time at 0.1 microg (AI)/ml in 1999, the fourth year of use of pyriproxyfen in Arizona cotton. Among the five cotton locations monitored each year since 1996, four of them had whiteflies with significantly reduced susceptibility to pyriproxyfen in 1999. Similarly, reduced susceptibility to pyriproxyfen was detected in whiteflies collected from fall melons and greenhouses in 1999. Although there have been no reports of field failures of pyriproxyfen in Arizona cotton, the reduced susceptibility of whiteflies from statewide survey in 1999 was significant. The results may indicate the development of an early stage of resistance to pyriproxyfen, and the findings should serve as early warning and substantiation of the high resistance risk of pyriproxyfen.  相似文献   

13.
Tritrophic interactions involving cabbage Brassica oleracea var. capitata cultivars +/- fertilizer, Brevicoryne brassicae (Linnaeus) and Myzus persicae (Sulzer), and the parasitoids Diaeretiella rapae (M'cIntosh) and Aphidius sp. were conducted in 1998 and 1999. Brevicorne brassicae was the dominant aphid species on all cultivars +/- fertilizer, except for some treatments in late season 1998. Ruby Ball (red-leaved with antixenosis factors for B. brassicae alates) +/- fertilizer was consistently less colonized by aphids in early stages of plant growth, although only significantly so compared with Derby Day (green-leaved, susceptible to aphids) without fertilizer for B. brassicae and Minicole (green-leaved with antibiosis factors for B. brassicae) with fertilizer for M. persicae. In early 1999, only B. brassicae was present and no significant differences between cultivars were seen. In the mid to late season 1998, the highest aphid infestations were usually found on Derby Day, although only significantly so for B. brassicae, in some treatments. In 1999, higher aphid infestations were observed on Derby Day in mid to late season and some significant differences were found for M. persicae as well as for B. brassicae. In both years, Ruby Ball had the greatest mummy:aphid ratios early season, with no consistent difference between the other cultivars. Later in the season, mummy:aphid ratios were generally highest on Minicole. Parasitism differed in seasonal occurrence and relative abundance. Diaeretiella rapae mummies were found earlier than Aphidius sp. There was evidence of a beneficial interaction between the degree of plant resistance and biological control in early to mid season.  相似文献   

14.
The impacts of planting date and nitrogen fertilization on cotton (Gossypium hirsutum L.) photosynthesis and soluble carbohydrate contents in relation to silverleaf whitefly, Bemisia tabaci (Gennadius) biotype “B”, populations were examined in field experiments. Cotton planted in late April and early June was treated with 0, 112, 168 and 224 kg/N hectare in soil using urea fertilizer. The mean photosynthetic rate of April-planted cotton was 4%-20% higher than that of June-planted cotton early in the season, but 10%- 18% lower than that of June-planted cotton late in the season. The photosynthetic rates for both planting dates were positively correlated with levels of added nitrogen. While levels of glucose for both planting dates were positively correlated with nitrogen levels, fructose and sucrose levels were not. The mean levels of fructose were up to 40% lower, while that of sucrose were up to 59% higher, in April-planted cotton than in June-planted cotton. Levels of photosynthetic rate or stomatal conductance were not correlated with adult whitefly densities for either planting date. Levels of glucose and fructose were positively correlated with whitefly densities only for June-planted cotton late in the season.  相似文献   

15.
Temporal and spatial relationships between greenhouse whitefly and its parasitoid Encarsia formosa were analysed at different levels by using Rook's neighbourhood model, and for two types of greenhouses: a small greenhouse in China (15.1 m2) and a large greenhouse in the Netherlands (6480 m2). For whitefly eggs and larvae, there was no difference in their spatial relationship occurring within- and between-plot in the two types of greenhouses. Eggs and larvae occurrence aggregated with no special directional distributions. Whitefly adults exhibited nonlinear spatial density dependence within-plot, and moved randomly between-plot. Whitefly adults preferred to fly away in a N–S directions and to settle down at a NW–SE directions with an increase in the number of their neighbouring infected plants within-plot. The parasitoid E. formosa showed a strong relationship with the temporal and spatial distribution of the host, but influenced the spatial distribution of whitefly.  相似文献   

16.
The dynamics of resistance in the sweetpotato whitefly, Bemisia tabaci (Gennadius), to the neonicotinoids acetamiprid and thiamethoxam was studied extensively in cotton fields in Israel during the cotton-growing seasons 1999-2003. Whitefly strains were collected in early and late seasons mainly in three locations in northern, central, and southern Israel. The whiteflies were assayed under laboratory conditions for susceptibility to neonicotinoids, as part of the Israeli cotton insecticide resistance management strategy. Selections to both acetamiprid and thiamethoxam and cross-resistance between them also were conducted in the laboratory. Although no appreciable resistance to acetamiprid was observed up to 2001, a slight increase of approximately five-fold resistance was detected during 2002 and 2003. However, from 2001 to 2003 thiamethoxam resistance increased >100-fold in the Ayalon Valley and Carmel Coast cotton fields. In cross-resistance assays with both neonicotinoids, the strain that had been selected with thiamethoxam for 12 generations demonstrated almost no cross-resistance to acetamiprid, whereas the acetamiprid-selected strain exhibited high cross-resistance of >500-fold to thiamethoxam.  相似文献   

17.
Effects of host plants on resistance to bifenthrin in the silverleaf whitefly, Bemisia argentifolii Bellows & Perring, were determined by LC50 bioassay. In addition, inheritance of resistance to bifenthrin was investigated beginning with a single source of a bifenthrin-susceptible population. Overall, the resistance ratio between the bifenthrin-susceptible population and the selected bifenthrin-resistant population from the same source population was 915-fold after 1 yr in the greenhouse. Responses to bifenthrin among the susceptible and the resistant populations were changed when whiteflies were reared on three different host plants, i.e., cotton, cabbage, and squash. In the resistant populations, the LC50 value of whitefly fed on squash was increased as much as 7.5-fold, while the LC50 value of whitefly fed on cabbage was similar to cotton that served as the control plant. The host plant on which whiteflies feed appears to be an important factor in selection for resistance to bifenthrin, but these effects are crop specific. Based on an analysis using LC50 values of the reciprocal F1 cross on cotton, resistance of whitefly from a single-source whitefly population was inherited as an incompletely dominant factor. A model used to estimate loci numbers showed that resistance of whitefly to bifenthrin is probably controlled primarily by a few or a single locus. In addition, the difference in the ratio of LC50 values between males from unmated mother and males from mated mother was approximately fivefold, suggesting that insecticide resistance in whitefly males is in some way affected by mating.  相似文献   

18.
The sugar-beet fly, Pegomyia mixta Vill., is the most serious insect pest affecting sugar-beet plantations in Egypt. This study wase carried out in field in the El-Nubaria region ofEl-Behare Governorate. Peak numbers of flies were taken in sweep nets in December. Development of the fly appeared to be restricted to the months between November and May. In the hot months, adults were most active early in the morning and late in the afternoon, but in the cold months the peak of activity occurred at about midday. The flies were generally found on the upper surfaces of the leaves at temperatures below 16 °C and on the lower surfaces at temperatures above 24 °C. Females were generally more numerous than males. The eggs were observed from the first week of November to the end of April; the population was three blotches of eggs and 17 larvae/20 plants. The highest infestation of this insect in El-Nubaria was recorded at the end of March in both seasons (10 blotches of eggs, 20 larvae, and five pupae, and 12 blotches of eggs, 22 larvae, 13 pupae, respectively). The eggs are deposited in groups (3–8 eggs). The larvae bore its blotch in the leaf, about 3–7 larvae may be found in one blotch.  相似文献   

19.
Fungi are the only effective entomopathogens of members of the Aleyrodidae and other homopterans because of the piercing and sucking feeding strategy of these insects. The laboratory assessment of the entomopathogenic activity of fungi often requires a prolonged period of observation. Leaf quality can be the limiting factor in bioassays of fungi against whiteflies that require longer observation periods or those that require conditions that are as close to natural ones as possible. A bioassay system is described that utilizes rooted cabbage leaves infested with the highly polyphagous whitefly, Bemisia argentifolii . Using this method, discriminating dosages of aerial conidia and blastospores of two isolates of Paecilomyces fumosoroseus (Pfr) were bioassayed against eggs and nymphs of B. argentifolii . Low, but significant, mortality (10-20%) of eggs was observed 14 days after exposure to 3.8 104 blastospores/cm2 for the Pfr 97 and European Biological Control Laboratory (EBCL) Pfr 42 isolates. Additionally, the majority of crawlers that had hatched from treated eggs died on the surface of the leaves. Exposure of early second-instar nymphs of B. argentifolii to 3.8 103 conidia or blastospores/cm2 of Pfr 97 resulted in mortalities of 27 and 77% respectively. Identical dosages of conidia and blastospores of the Pfr 42 isolate resulted in mortalities of 59 and 68% respectively. The bioassay method described enables the comparative evaluation of entomopathogenic fungi against whiteflies under diverse biotic and abiotic conditions.  相似文献   

20.
Alkaline phosphatase activity in whitefly salivary glands and saliva   总被引:9,自引:0,他引:9  
Alkaline phosphatase activity was histochemically localized in adult whiteflies (Bemisia tabaci B biotype, syn. B. argentifolii) with a chromogenic substrate (5-bromo-4-chloro-3-indolylphosphate) and a fluorogenic substrate (ELF-97). The greatest amount of staining was in the basal regions of adult salivary glands with additional activity traced into the connecting salivary ducts. Other tissues that had alkaline phosphatase activity were the accessory salivary glands, the midgut, the portion of the ovariole surrounding the terminal oocyte, and the colleterial gland. Whitefly nymphs had activity in salivary ducts, whereas activity was not detected in two aphid species (Rhodobium porosum and Aphis gossypii). Whitefly diet (15% sucrose) was collected from whitefly feeding chambers and found to have alkaline phosphatase activity, indicating the enzyme was secreted in saliva. Further studies with salivary alkaline phosphatase collected from diet indicated that the enzyme had a pH optimum of 10.4 and was inhibited by 1 mM cysteine and to a lesser extent 1 mM histidine. Dithiothreitol, inorganic phosphate, and ethylenediaminetetraacetic acid (EDTA) also inhibited activity, whereas levamisole only partially inhibited salivary alkaline phosphatase. The enzyme was heat tolerant and retained approximately 50% activity after a 1-h treatment at 65 degrees C. The amount of alkaline phosphatase activity secreted by whiteflies increased under conditions that stimulate increased feeding. These observations indicate alkaline phosphatase may play a role during whitefly feeding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号