首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Disruption of the FATB gene in Arabidopsis results in a two-thirds reduction in saturated fatty acids, largely palmitate, in the leaf extra-plastidic phospholipids and a reduction in the growth rate of the mutant compared to wild type (Bonaventure G, Salas JJ, Pollard MR, Ohlrogge JB [2003] Plant Cell 15: 1020-1033). In this study, we report that although fatb-ko seedlings grow more slowly than wild type, the rate of fatty acid synthesis in leaves of the mutant increases by 40%. This results in approximately the same amount of palmitate exported from the plastid as in wild type but an increase in oleate export of about 55%. To maintain constant amounts of fatty acids in leaves, thereby counterbalancing their higher rate of production, the mutant also increases its rate of fatty acid degradation. Although fatb-ko leaves have higher rates of fatty acid synthesis and turnover, the relative proportions of membrane lipids are similar to wild type. Thus, homeostatic mechanisms to preserve membrane compositions compensate for substantial changes in rates of fatty acid and glycerolipid metabolism in the mutant. Pulse-chase labeling studies show that in fatb-ko leaves there is a net increase in the synthesis of both prokaryotic and eukaryotic lipids and consequently of their turnover. The net loss of palmitate from phosphatidylcholine plus phosphatidylethanolamine is similar for wild type and mutant, suggesting that mechanisms are not present that can preferentially preserve the saturated fatty acids. In summary, the leaf cell responds to the loss of saturated fatty acid production in the fatb-ko mutant by increasing both fatty acid synthesis and degradation, but in doing so the mechanisms for increased fatty acid turnover contribute to the lowering of the percentage of saturated fatty acids found in eukaryotic lipids.  相似文献   

2.
A putative fatty acyl-acyl carrier protein (acyl-ACP) thioesterase (thioesterase) full-length cDNA sequence named as ClFATB1 was obtained from the seed cDNA library of Cinnamomum longepaniculatum by the SMART-RACE method. The novel gene encodes a protein of 382 amino acid residues with close homology to fatty acid thioesterase type B (FATB) enzymes of other plants, with two essential residues (His285 and Cys320) for thioesterase catalytic activity. The gene was transcribed in all tissues of C. longepaniculatum, the highest being in seeds. Recombinant ClFATB1 in Escherichia coli had higher specific activities against saturated 16:0- and 18:0-ACPs than on unsaturated 18:1-ACP. Overexpression of ClFATB1 in transgenic tobaccos upregulated thioesterase activities of crude proteins against 16:0-ACP and 18:0-ACP by 20.3 and 5.7%, respectively, and resulted in an increase in the contents of palmitic and stearic acids by 15.4 and 10.5%, respectively. However, ectopic expression of this gene decreased the substrate specificities of crude proteins to unsaturated 18:1-ACP by 12.7% in transgenic tobacco and lowered the contents of oleic, linoleic, and linolenic acids in transgenic leaves. So ClFATB1 would potentially upregulate the synthesis of saturated fatty acids and downregulate unsaturated ones in the fatty acid synthesis pathway of plants.  相似文献   

3.
The substrate specificity of the acyl–acyl carrier protein (ACP) thioesterases significantly determines the type of fatty acids that are exported from plastids. Thus, designing acyl-ACP thioesterases with different substrate specificities or kinetic properties would be of interest for plant lipid biotechnology to produce oils enriched in specialty fatty acids. In the present work, the FatA thioesterase from Helianthus annuus was used to test the impact of changes in the amino acids present in the binding pocket on substrate specificity and catalytic efficiency. Amongst all the mutated enzymes studied, Q215W was especially interesting as it had higher specificity towards saturated acyl-ACP substrates and higher catalytic efficiency compared to wild-type H. annuus FatA. Null, wild type and high-efficiency alleles were transiently expressed in tobacco leaves to check their effect on lipid biosynthesis. Expression of active FatA thioesterases altered the composition of leaf triacylglycerols but did not alter total lipid content. However, the expression of the wild type and the high-efficiency alleles in Arabidopsis thaliana transgenic seeds resulted in a strong reduction in oil content and an increase in total saturated fatty acid content. The role and influence of acyl-ACP thioesterases in plant metabolism and their possible applications in lipid biotechnology are discussed.  相似文献   

4.
Arbuscular mycorrhiza (AM) fungi establish symbiotic interactions with plants, providing the host plant with minerals, i.e. phosphate, in exchange for organic carbon. Arbuscular mycorrhiza fungi of the order Glomerales produce vesicles which store lipids as an energy and carbon source. Acyl‐acyl carrier protein (ACP) thioesterases (Fat) are essential components of the plant plastid‐localized fatty acid synthase and determine the chain length of de novo synthesized fatty acids. In addition to the ubiquitous FatA and FatB thioesterases, AM‐competent plants contain an additional, AM‐specific, FatM gene. Here, we characterize FatM from Lotus japonicus by phenotypically analyzing fatm mutant lines and by studying the biochemical function of the recombinant FatM protein. Reduced shoot phosphate content in fatm indicates compromised symbiotic phosphate uptake due to reduced arbuscule branching, and the fungus shows reduced lipid accumulation accompanied by the occurrence of smaller and less frequent vesicles. Lipid profiling reveals a decrease in mycorrhiza‐specific phospholipid forms, AM fungal signature fatty acids (e.g. 16:1ω5, 18:1ω7 and 20:3) and storage lipids. Recombinant FatM shows preference for palmitoyl (16:0)‐ACP, indicating that large amounts of 16:0 fatty acid are exported from the plastids of arbuscule‐containing cells. Stable isotope labeling with [13C2]acetate showed reduced incorporation into mycorrhiza‐specific fatty acids in the fatm mutant. Therefore, colonized cells reprogram plastidial de novo fatty acid synthesis towards the production of extra amounts of 16:0, which is in agreement with previous results that fatty acid‐containing lipids are transported from the plant to the fungus.  相似文献   

5.
Acyl–acyl carrier protein (ACP) thioesterases are enzymes that control the termination of intraplastidial fatty acid synthesis by hydrolyzing the acyl–ACP complexes. Among the different thioesterase gene families found in plants, the FatA-type fulfills a fundamental role in the export of the C18 fatty acid moieties that will be used to synthesize most plant glycerolipids. A reverse genomic approach has been used to study the FatA thioesterase in seed oil accumulation by screening different mutant collections of Arabidopsis thaliana for FatA knockouts. Two mutants were identified with T-DNA insertions in the promoter region of each of the two copies of FatA present in the Arabidopsis genome, from which a double FatA Arabidopsis mutant was made. The expression of both forms of FatA thioesterases was reduced in this double mutant (fata1 fata2), as was FatA activity. This decrease did not cause any evident morphological changes in the mutant plants, although the partial reduction of this activity affected the oil content and fatty acid composition of the Arabidopsis seeds. Thus, dry mutant seeds had less triacylglycerol content, while other neutral lipids like diacylglycerols were not affected. Furthermore, the metabolic flow of the different glycerolipid species into seed oil in the developing seeds was reduced at different stages of seed formation in the fata1 fata2 line. This diminished metabolic flow induced increases in the proportion of linolenic and erucic fatty acids in the seed oil, in a similar way as previously reported for the wri1 Arabidopsis mutant that accumulates oil poorly. The similarities between these two mutants and the origin of their phenotype are discussed in function of the results.  相似文献   

6.
Deyoe DR 《Plant physiology》1979,64(6):924-929
Chloroplast lamellae of eastern white pine (Pinus strobus L.) were analyzed to determine changes in total glycerolipids, component glycerolipids, and glycerolipid fatty acids during the onset of winter hardiness. Samples were collected in September, November, and December when the average daily temperature varied between 23 and −10 C. Before November 2, phospholipids decreased 40 to 85%, glycolipids only 30%. Analysis of individual glycerolipids showed that glycerolipids containing 18:3 fatty acid were retained at the expense of glycerolipids esterified with saturated (16:0 and 18:0) and monounsaturated (18:1) fatty acids.  相似文献   

7.
Although the surface waxes from Arabidopsis thaliana leaves and stems have been thoroughly characterized, the monomer composition of the polyesters of the cuticular membrane has not been analyzed. Delipidated Arabidopsis leaves or stems, when depolymerized under conditions to cleave polyesters, produced typical omega-hydroxy fatty acid cutin monomers such as 16-hydroxy-palmitate, 10,16-dihydroxy-palmitate and 18-hydroxy-9,10-epoxy-stearate. However, the major monomer was octadeca-cis-6, cis-9-diene-1,18-dioate, with lesser amounts of octadec-cis-9-ene-1,18-dioate and hexadeca-1,16-dioate. These dicarboxylates were found predominantly in epidermal peels from Arabidopsis stems and are therefore likely to be associated with the cuticular membrane. They were also found in analyses of canola leaves but were absent in tomato and apple fruit cutins. In the fad2-1 mutant line of Arabidopsis, which has reduced levels of linoleate and linolenate and elevated oleate in cytosolic phospholipids, the amount of octadeca-cis-6, cis-9-diene-1,18-dioate was 50% reduced, with a concomitant increase in octadec-cis-9-ene-1,18-dioate. In a fatb-ko line of Arabidopsis, where the availability of cytosolic palmitate is impaired, there was an 80% loss of C16 monomers and a compensating increase in C18 monomers. The presence of substantial amounts of dicarboxylates in cuticular membranes is unexpected. High amounts of aliphatic dicarboxylates are usually considered as an indicator of suberin, and are reported only as very minor components of cutin. The high level of polyunsaturation is also unusual in cuticles; saturated fatty acid monomers usually predominate, with lesser amounts of monounsaturates. These novel findings for Arabidopsis demonstrate that a broad range of monomer compositions are possible for polyesters of the epidermis.  相似文献   

8.
Acyl-acyl-carrier protein (ACP) thioesterases are, at least in part, responsible for the fatty acyl chain length composition of seed storage oils. Acyl-ACP thioesterases with specificity for each of the saturated acyl-ACP substrates from 8:0 through 16:0 have been cloned, with the exception of 18:0, and are members of the FatB class of thioesterases. The authors have determined that the tropical tree species mangosteen (Garcinia mangostana) stores 18:0 (stearate) in its seed oil in amounts of up to 56% by weight. Acyl-ACP thioesterase activity as measured in crude mangosteen seed extracts showed a preference for 18:1-ACP substrates, but had significant activity with 18:0 relative to that with 16:0-ACP, suggesting a thioesterase might be involved in the production of stearate. Three distinct acyl-ACP thioesterases were cloned from mangosteen seed cDNA; two representative of the FatA class and one representative of the FatB class. When expressed in vitro, the enzyme encoded by one of the FatAs (Garm FatA1) while preferring 18:1-ACP showed relatively low activity with 16:0-ACP as compared to 18:0-ACP, similar to the substrate preferences shown by the crude seed extract. Expression of Garm FatA1 in Brassica seeds led to the accumulation of stearate up to 22% in seed oil. These results suggest that Garm FatA1 is at least partially responsible for determining the high stearate composition of mangosteen seed oil and that FatA as well FatB thioesterases have evolved for specialized roles.  相似文献   

9.
During de novo fatty acid synthesis in sunflower seeds, saturated fatty acid production is influenced by the competition between the enzymes of the principal pathways and the saturated acyl-ACP thioesterases. Genetic backgrounds with more efficient saturated acyl-ACP thioesterase alleles only express their phenotypic effects when the alleles for the enzymes in the main pathway are less efficient. For this reason, we studied the incorporation of [2-(14)C]acetate into the lipids of developing sunflower seeds (Helianthus annuus L.) from several mutant lines in vivo. The labelling of different triacylglycerol fatty acids in different oilseed mutants reflects the fatty acid composition of the seed and supports the channelling theory of fatty acid biosynthesis. Incubation with methyl viologen diminished the conversion of stearoyl-ACP to oleoyl-ACP in vivo through a decrease in the available reductant power. In turn, this led to the accumulation of stearoyl-ACP to the levels detected in seeds from high stearic acid mutants. The concomitant reduction of oleoyl-ACP content inside the plastid allowed us to study the activity of acyl-ACP thioesterases on saturated fatty acids. In these mutants, we verified that the accumulation of saturated fatty acids requires efficient thioesterase activity on saturated-ACPs. By studying the effects of cerulenin on the in vivo incorporation of [2-(14)C]acetate into lipids and on the in vitro activity of beta-ketoacyl-ACP synthase II, we found that elongation to very long chain fatty acids can occur both inside and outside of the plastid in sunflower seeds.  相似文献   

10.
11.
12.
Acyl–acyl carrier protein (ACP) thioesterases are enzymes that terminate the intraplastidial fatty acid synthesis in plants by hydrolyzing the acyl-ACP intermediates and releasing free fatty acids to be incorporated into glycerolipids. These enzymes are classified in two families, FatA and FatB, which differ in amino acid sequence and substrate specificity. In the present work, both FatA and FatB thioesterases were cloned, sequenced and characterized from castor (Ricinus communis) seeds, a crop of high interest in oleochemistry. Single copies of FatA and FatB were found in castor resulting to be closely related with those of Jatropha curcas. The corresponding mature proteins were heterologously expressed in Escherichia coli for biochemical characterization after purification, resulting in high catalytic efficiency of RcFatA on oleoyl-ACP and palmitoleoyl-ACP and high efficiencies of RcFatB for oleoyl-ACP and palmitoyl-ACP. The expression profile of these genes displayed the highest levels in expanding tissues that typically are very active in lipid biosynthesis such as developing seed endosperm and young expanding leaves. The contribution of these two enzymes to the synthesis of castor oil is discussed.  相似文献   

13.
周洲  张德强  卢孟柱 《遗传学报》2007,34(3):267-274
植物脂肪酸合成的主要部位是叶绿体,叶绿体向外运输脂肪酸的种类和数量受到乙酰-乙酰载体蛋白硫脂酶(FATB)控制。FATB基因在植物生长过程起着非常关键的作用。本研究以毛白杨为材料,将生物信息学知识和分子生物学手段相结合,首先利用现有的杨树基因组EST序列库资源,通过同源序列搜索,经过多次拼接合并获得了理论的杨树脂肪酸去饱和酶基因PtFATB序列全长,利用RT-PCR手段成功克隆得到了毛白杨FATB基因全长编码序列cDNA,该cDNA全长1,450bp,包括起始密码子ATG和144bp的5′末端非编码区,终止密码子TGA和40bp的3′末端非编码区,开放阅读框编码421个氨基酸。通过RT-PCR半定量研究了PtFATB在叶片组织中的表达量最高,茎、根中的表达量依次降低。在低温、干旱、NaCl、ABA四种条件下诱导生长24h,只有在低温的条件下发现PtFATB表达量略微降低,其他几种情况未有变化,该结果表明PtFATB呈组成型表达。上述结果为植物脂肪酸的基因工程提供了基础。  相似文献   

14.
The functional characterization of wax biosynthetic enzymes in transgenic plants has opened the possibility of producing tailored wax esters (WEs) in the seeds of a suitable host crop. In this study, in addition to systematically evaluating a panel of WE biosynthetic activities, we have also modulated the acyl‐CoA substrate pool, through the co‐expression of acyl‐ACP thioesterases, to direct the accumulation of medium‐chain fatty acids. Using this combinatorial approach, we determined the additive contribution of both the varied acyl‐CoA pool and biosynthetic enzyme substrate specificity to the accumulation of non‐native WEs in the seeds of transgenic Camelina plants. A total of fourteen constructs were prepared containing selected FAR and WS genes in combination with an acyl‐ACP thioesterase. All enzyme combinations led to the successful production of wax esters, of differing compositions. The impact of acyl‐CoA thioesterase expression on wax ester accumulation varied depending on the substrate specificity of the WS. Hence, co‐expression of acyl‐ACP thioesterases with Marinobacter hydrocarbonoclasticus WS and Marinobacter aquaeolei FAR resulted in the production of WEs with reduced chain lengths, whereas the co‐expression of the same acyl‐ACP thioesterases in combination with Mus musculus WS and M. aquaeolei FAR had little impact on the overall final wax composition. This was despite substantial remodelling of the acyl‐CoA pool, suggesting that these substrates were not efficiently incorporated into WEs. These results indicate that modification of the substrate pool requires careful selection of the WS and FAR activities for the successful high accumulation of these novel wax ester species in Camelina seeds.  相似文献   

15.
The acyl-acyl carrier protein thioesterase B1 from Arabidopsis (AtFATB1) was previously shown to exhibit in vitro hydrolytic activity for long chain acyl-acyl carrier proteins (P. D?rmann, T.A. Voelker, J.B. Ohlrogge [1995] Arch Biochem Biophys 316: 612-618). In this study, we address the question of which role in fatty acid biosynthesis this enzyme plays within the plant. Over-expression of the AtFATB1 cDNA under a seed-specific promoter resulted in accumulation of high amounts of palmitate (16:0) in seeds. RNA and protein-blot analysis in Arabidopsis and rapeseed (Brassica napus) showed that the endogenous AtFATB1 expression was highest in flowers and lower in leaves. All floral tissues of wild-type plants contained elevated amounts of 16:0, and in the polar lipid fraction of flowers close to 50 mol % of the fatty acids were 16:0. Therefore, flowers contain polar lipids with an unusually high amount of saturated fatty acids as compared to all other plant tissues. Antisense expression of the AtFATB1 cDNA under the cauliflower mosaic virus 35S promoter resulted in a reduction of seed and flower 16:0 content, but no changes in leaf fatty acids. We conclude that the AtFATB1 thioesterase contributes to 16:0 production particularly in flowers, but that additional factors are involved in leaves.  相似文献   

16.
Plant oilseeds are a major source of nutritional oils. Their fatty acid composition, especially the proportion of saturated and unsaturated fatty acids, has important effects on human health. Because intake of saturated fats is correlated with the incidence of cardiovascular disease and diabetes, a goal of metabolic engineering is to develop oils low in saturated fatty acids. Palmitic acid (16:0) is the most abundant saturated fatty acid in the seeds of many oilseed crops and in Arabidopsis thaliana. We expressed FAT–5, a membrane‐bound desaturase cloned from Caenorhabditis elegans, in Arabidopsis using a strong seed‐specific promoter. The FAT‐5 enzyme is highly specific to 16:0 as substrate, converting it to 16:1?9; expression of fat‐5 reduced the 16:0 content of the seed by two‐thirds. Decreased 16:0 and elevated 16:1 levels were evident both in the storage and membrane lipids of seeds. Regiochemical analysis of phosphatidylcholine showed that 16:1 was distributed at both positions on the glycerolipid backbone, unlike 16:0, which is predominately found at the sn‐1 position. Seeds from a plant line homozygous for FAT–5 expression were comparable to wild type with respect to seed set and germination, while oil content and weight were somewhat reduced. These experiments demonstrate that targeted heterologous expression of a desaturase in oilseeds can reduce the level of saturated fatty acids in the oil, significantly improving its nutritional value.  相似文献   

17.
目的:研究柏子仁与侧柏叶的脂肪酸组成.方法:用GC-MS方法对侧柏叶子与种子油进行定性鉴定和定量分析.结果:鉴定了柏子仁油中的8种脂肪酸,占脂溶性成分的93.56%;侧柏叶子油中12种脂肪酸,占脂溶性成分的93.39%.柏子仁饱和脂肪酸主要是十六烷酸(8.11%)、硬脂酸(6.08%);不饱和脂肪酸主要为亚油酸(24.59%)、亚麻酸(59.77%),占脂肪酸的83.14%.侧柏叶子饱和脂肪酸饱和脂肪酸主要为十六烷酸(14.70%)、乙酸(3.20%)、十七烷酸(2.50%);不饱和脂肪酸主要为二十二碳四烯酸(40.48%)、亚油酸(10.69%)、亚麻酸(17.62%).结论:柏子仁和侧柏叶均含有合理的脂肪酸组成.  相似文献   

18.
Brassica juncea plants transformed with the Arabidopsis ADS1 gene, which encodes a plant homologue of the mammalian and yeast acyl-CoA Delta9 desaturases and the cyanobateria acyl-lipid Delta9 desaturase, were found to have a statistically significant decrease in the level of saturated fatty acids in seeds. The decrease in the level of saturated fatty acids is largely attributable to decreases in palmitic acid (16:0) and stearic acid (18:0), although arachidic acid (20:0), behenic acid (22:0) and lignoceric acid (24:0) were also decreased in the transgenic seeds compared to the negative control lines. As a result, the level of oleic acid (18:1) was slightly increased in the transgenic seed lines compared to the non-transformed controls. However, a decrease in saturated fatty acid is not always accompanied by the corresponding increase in mono-unsaturated fatty acids. For example, palmitoleic acid (16:1), gondoic acid (20:1) and nervonic acid (24:1) were all found to be decreased in transgenic seeds. The levels of linoleic acid (18:2) and linolenic acid (18:3) were also notably changed in the transgenic lines compared to the controls. The present study provides preliminary experimental data suggesting that the Arabidopsis ADS1 encodes a fatty acid Delta9 desaturase and could be useful in genetic engineering for modifying the level of saturated fatty acids in oilseed crops. However, the effect of ADS1 gene expression on seed oil fatty acid composition is beyond the changes of total saturated and mono-unsaturated fatty acids, which suggests a complex mechanism is involved in the regulation of fatty acid metabolism.  相似文献   

19.
In expanding pea leaves, over 95% of fatty acids (FA) synthesized in the plastid are exported for assembly of eukaryotic glycerolipids. It is often assumed that the major products of plastid FA synthesis (18:1 and 16:0) are first incorporated into 16:0/18:1 and 18:1/18:1 molecular species of phosphatidic acid (PA), which are then converted to phosphatidylcholine (PC), the major eukaryotic phospholipid and site of acyl desaturation. However, by labeling lipids of pea leaves with [(14)C]acetate, [(14)C]glycerol, and [(14)C]carbon dioxide, we demonstrate that acyl editing is an integral component of eukaryotic glycerolipid synthesis. First, no precursor-product relationship between PA and PC [(14)C]acyl chains was observed at very early time points. Second, analysis of PC molecular species at these early time points showed that >90% of newly synthesized [(14)C]18:1 and [(14)C]16:0 acyl groups were incorporated into PC alongside a previously synthesized unlabeled acyl group (18:2, 18:3, or 16:0). And third, [(14)C]glycerol labeling produced PC molecular species highly enriched with 18:2, 18:3, and 16:0 FA, and not 18:1, the major product of plastid fatty acid synthesis. In conclusion, we propose that most newly synthesized acyl groups are not immediately utilized for PA synthesis, but instead are incorporated directly into PC through an acyl editing mechanism that operates at both sn-1 and sn-2 positions. Additionally, the acyl groups removed by acyl editing are largely used for the net synthesis of PC through glycerol 3-phosphate acylation.  相似文献   

20.
Seed oils enriched in omega‐7 monounsaturated fatty acids, including palmitoleic acid (16:1?9) and cis‐vaccenic acid (18:1?11), have nutraceutical and industrial value for polyethylene production and biofuels. Existing oilseed crops accumulate only small amounts (<2%) of these novel fatty acids in their seed oils. We demonstrate a strategy for enhanced production of omega‐7 monounsaturated fatty acids in camelina (Camelina sativa) and soybean (Glycine max) that is dependent on redirection of metabolic flux from the typical ?9 desaturation of stearoyl (18:0)‐acyl carrier protein (ACP) to ?9 desaturation of palmitoyl (16:0)‐acyl carrier protein (ACP) and coenzyme A (CoA). This was achieved by seed‐specific co‐expression of a mutant ?9‐acyl‐ACP and an acyl‐CoA desaturase with high specificity for 16:0‐ACP and CoA substrates, respectively. This strategy was most effective in camelina where seed oils with ~17% omega‐7 monounsaturated fatty acids were obtained. Further increases in omega‐7 fatty acid accumulation to 60–65% of the total fatty acids in camelina seeds were achieved by inclusion of seed‐specific suppression of 3‐keto‐acyl‐ACP synthase II and the FatB 16:0‐ACP thioesterase genes to increase substrate pool sizes of 16:0‐ACP for the ?9‐acyl‐ACP desaturase and by blocking C18 fatty acid elongation. Seeds from these lines also had total saturated fatty acids reduced to ~5% of the seed oil versus ~12% in seeds of nontransformed plants. Consistent with accumulation of triacylglycerol species with shorter fatty acid chain lengths and increased monounsaturation, seed oils from engineered lines had marked shifts in thermotropic properties that may be of value for biofuel applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号