首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Many Hox proteins are thought to require Pbx and Meis co-factors to specify cell identity during embryogenesis. Here we demonstrate that Meis3 synergizes with Pbx4 and Hoxb1b in promoting hindbrain fates in the zebrafish. We find that Hoxb1b and Pbx4 act together to induce ectopic hoxb1a expression in rhombomere 2 of the hindbrain. In contrast, Hoxb1b and Pbx4 acting together with Meis3 induce hoxb1a, hoxb2, krox20 and valentino expression rostrally and cause extensive transformation of forebrain and midbrain fates to hindbrain fates, including differentiation of excess rhombomere 4-specific Mauthner neurons. This synergistic effect requires that Hoxb1b and Meis3 have intact Pbx-interaction domains, suggesting that their in vivo activity is dependent on binding to Pbx4. In the case of Meis3, binding to Pbx4 is also required for nuclear access. Our results are consistent with Hoxb1b and Meis3 interacting with Pbx4 to form complexes that regulate hindbrain development during zebrafish embryogenesis.  相似文献   

4.
In this study we analysed the function of the Meinox gene prep1.1 during zebrafish development. Meinox proteins form heterotrimeric complexes with Hox and Pbx members, increasing the DNA binding specificity of Hox proteins in vitro and in vivo. However, a role for a specific Meinox protein in the regulation of Hox activity in vivo has not been demonstrated. In situ hybridization showed that prep1.1 is expressed maternally and ubiquitously up to 24 hours post-fertilization (hpf), and restricted to the head from 48 hpf onwards. Morpholino-induced prep1.1 loss-of-function caused significant apoptosis in the CNS. Hindbrain segmentation and patterning was affected severely, as revealed by either loss or defective expression of several hindbrain markers (foxb1.2/mariposa, krox20, pax2.1 and pax6.1), including anteriorly expressed Hox genes (hoxb1a, hoxa2 and hoxb2), the impaired migration of facial nerve motor neurons, and the lack of reticulospinal neurons (RSNs) except Mauthner cells. Furthermore, the heads of prep1.1 morphants lacked all pharyngeal cartilages. This was not caused by the absence of neural crest cells or their impaired migration into the pharyngeal arches, as shown by expression of dlx2 and snail1, but by the inability of these cells to differentiate into chondroblasts. Our results indicate that prep1.1 has a unique genetic function in craniofacial chondrogenesis and, acting as a member of Meinox-Pbc-Hox trimers, it plays an essential role in hindbrain development.  相似文献   

5.
We have used a morpholino-based knockdown approach to investigate the functions of a pair of zebrafish Hox gene duplicates, hoxb1a and hoxb1b, which are expressed during development of the hindbrain. We find that the zebrafish hoxb1 duplicates have equivalent functions to mouse Hoxb1 and its paralogue Hoxa1. Thus, we have revealed a 'function shuffling' among genes of paralogue group 1 during the evolution of vertebrates. Like mouse Hoxb1, zebrafish hoxb1a is required for migration of the VIIth cranial nerve branchiomotor neurons from their point of origin in hindbrain rhombomere 4 towards the posterior. By contrast, zebrafish hoxb1b, like mouse Hoxa1, is required for proper segmental organization of rhombomere 4 and the posterior hindbrain. Double knockdown experiments demonstrate that the zebrafish hoxb1 duplicates have partially redundant functions. However, using an RNA rescue approach, we reveal that these duplicated genes do not have interchangeable biochemical functions: only hoxb1a can properly pattern the VIIth cranial nerve. Despite this difference in protein function, we provide evidence that the hoxb1 duplicate genes were initially maintained in the genome because of complementary degenerative mutations in defined cis-regulatory elements.  相似文献   

6.
The Tbx20 orthologue, mab-9, is required for development of the Caenorhabditis elegans hindgut, whereas several vertebrate Tbx20 genes promote heart development. Here we show that Tbx20 orthologues also have a role in motor neuron development that is conserved between invertebrates and vertebrates. mab-9 mutants exhibit guidance defects in dorsally projecting axons from motor neurons located in the ventral nerve cord. Danio rerio (Zebrafish) tbx20 morphants show defects in the migration patterns of motor neuron soma of the facial and trigeminal motor neuron groups. Human TBX20 is expressed in motor neurons in the developing hindbrain of human embryos and we show that human TBX20 can substitute for zebrafish tbx20 in promoting cranial motor neuron migration. mab-9 is also partially able to rescue the zebrafish migration defect, whereas other vertebrate T-box genes cannot. Conversely we show that the human TBX20 T-box domain can rescue motor neuron defects in C. elegans. These data suggest the functional equivalence of Tbx20 orthologues in regulating the development of specific motor neuron groups. We also demonstrate the functional equivalence of human and C. elegans Tbx20 T-box domains for regulating male tail development in the nematode even though these genes play highly diverged roles in organogenesis.  相似文献   

7.
The transmembrane protein Van gogh‐like 2 (Vangl2) is a component of the noncanonical Wnt/Planar Cell Polarity (PCP) signaling pathway, and is required for tangential migration of facial branchiomotor neurons (FBMNs) from rhombomere 4 (r4) to r5‐r7 in the vertebrate hindbrain. Since vangl2 is expressed throughout the zebrafish hindbrain, it might also regulate motor neuron migration in other rhombomeres. We tested this hypothesis by examining whether migration of motor neurons out of r2 following ectopic hoxb1b expression was affected in vangl2? (trilobite) mutants. Hoxb1b specifies r4 identity, and when ectopically expressed transforms r2 to an “r4‐like” compartment. Using time‐lapse imaging, we show that GFP‐expressing motor neurons in the r2/r3 region of a hoxb1b‐overexpressing wild‐type embryo migrate along the anterior‐posterior (AP) axis. Furthermore, these cells express prickle1b (pk1b), a Wnt/PCP gene that is specifically expressed in FBMNs and is essential for their migration. Importantly, GFP‐expressing motor neurons in the r2/r3 region of hoxb1b‐overexpressing trilobite mutants and pk1b morphants often migrate, even though FBMNs in r4 of the same embryos fail to migrate longitudinally (tangentially) into r6 and r7. These observations suggest that tangentially migrating motor neurons in the anterior hindbrain (r1‐r3) can use mechanisms that are independent of vangl2 and pk1b functions. Interestingly, analysis of tri; val double mutants also suggests a role for vangl2‐independent factors in neuronal migration, since the valentino mutation partially suppresses the trilobite mutant migration defect. Together, the hoxb1b and val experiments suggest that multiple mechanisms regulate motor neuron migration along the AP axis of the zebrafish hindbrain. © 2009 Wiley Periodicals, Inc. Develop Neurobiol, 2010  相似文献   

8.
Individual vertebrate Hox genes specify aspects of segment identity along the anterior-posterior axis. The exquisite in vivo specificity of Hox proteins is thought to result from their interactions with members of the Pbx/Exd family of homeodomain proteins. Here, we report the identification and cloning of a zebrafish gene, lazarus, which is required globally for segmental patterning in the hindbrain and anterior trunk. We show that lazarus is a novel pbx gene and provide evidence that it is the primary pbx gene required for the functions of multiple hox genes during zebrafish development. lazarus plays a critical role in orchestrating the corresponding segmentation of the hindbrain and the pharyngeal arches, a key step in the development of the vertebrate body plan.  相似文献   

9.
Cranial neural crest cells (NCCs) migrate into the pharyngeal arches in three primary streams separated by two cranial neural crest (NC)-free zones. Multiple tissues have been implicated in the guidance of cranial NCC migration; however, the signals provided by these tissues have remained elusive. We investigate the function of semaphorins (semas) and their receptors, neuropilins (nrps), in cranial NCC migration in zebrafish. We find that genes of the sema3F and sema3G class are expressed in the cranial NC-free zones, while nrp2a and nrp2b are expressed in the migrating NCCs. sema3F/3G expression is expanded homogeneously in the head periphery through which the cranial NCCs migrate in lzr/pbx4 mutants, in which the cranial NC streams are fused. Antisense morpholino knockdown of Sema3F/3G or Nrp2 suppresses the abnormal cranial NC phenotype of lzr/pbx4 mutants, demonstrating that aberrant Sema3F/3G-Nrp2 signaling is responsible for this phenotype and suggesting that repulsive Sema3F/3G-Npn2 signaling normally contributes to the guidance of migrating cranial NCCs. Furthermore, global over-expression of sema3Gb phenocopies the aberrant cranial NC phenotype of lzr/pbx4 mutants when endogenous Sema3 ligands are knocked down, consistent with a model in which the patterned expression of Sema3 ligands in the head periphery coordinates the migration of Nrp-expressing cranial NCCs.  相似文献   

10.
11.
Motor neurons are segmentally organised in the developing chick hindbrain, with groups of neurons occupying pairs of hindbrain segments or rhombomeres. The branchiomotor nucleus of the trigeminal nerve occupies rhombomeres 2 and 3 (r2 and r3), that of the facial nerve r4 and r5, and that of the glossopharyngeal nerve r6 and r7. Branchiomotor neuron cell bodies lie within the basal plate, forming columns on either side of the ventral midline floor plate. Axons originating in rhombomeres 2, 4 and 6 grow laterally (dorsally) towards the exit points located in the alar plates of these rhombomeres, while axons originating in odd-numbered rhombomeres 3 and 5 grow laterally and then rostrally, crossing a rhombomere boundary to reach their exit point. Examination of the trajectories of motor axons in odd-numbered segments at late stages of development (19-25) showed stereotyped pathways, in which axons grew laterally before making a sharp turn rostrally. During the initial phase of outgrowth (stage 14-15), however, axons had meandering courses and did not grow in a directed fashion towards their exit point. When r3 or r5 was transplanted with reversed rostrocaudal polarity prior to motor axon outgrowth, the majority of axons grew to their appropriate, rostral exit point, despite the inverted neuroepithelial polarity. In r3 reversals, however, there was a considerable increase in the normally small number of axons that grew out via the caudal, r4 exit point. These findings are discussed with relevance to the factors involved in motor neuron specification and axon outgrowth in the developing hindbrain.  相似文献   

12.
Hox genes have been implicated in specifying positional values along the anteroposterior axis of the caudal central nervous system, but their nested and overlapping expression has complicated the understanding of how they confer specific neural identity. We have employed a direct gain-of-function approach using retroviral vectors to misexpress Hoxa2 and Hoxb1 outside of the normal Hox expression domains, thereby avoiding complications resulting from possible interactions with endogenous Hox genes. Misexpression of either Hoxa2 or Hoxb1 in the anteriormost hindbrain (rhombomere1, r1) leads to the generation of motor neurons in this territory, even though it is normally devoid of this cell type. These ectopic neurons have the specific identity of branchiomotor neurons and, in the case of Hoxb1-induced cells, their axons leave the hindbrain either by fasciculating with the resident cranial motor axons at isthmic (trochlear) or r2 (trigeminal) levels of the axis or via novel ectopic exit points in r1. Next, we have attempted to identify the precise branchiomotor subtypes that are generated after misexpression and our results suggest that the ectopic motor neurons generated following Hoxa2 misexpression are trigeminal-like, while those generated following Hoxb1 misexpression are facial-like. Our data demonstrate, therefore, that at least to a certain extent and for certain cell types, the singular activities of individual Hox genes (compared to a combinatorial mode of action, for example) are sufficient to impose on neuronal precursor cells the competence to generate distinctly specified cell types. Moreover, as these particular motor neuron subtypes are normally generated in the most anterior domains of Hoxa2 and Hoxb1 expression, respectively, our data support the idea that the main site of individual Hox gene action is in the anteriormost subdomain of their expression, consistent with the phenomenon of posterior dominance.  相似文献   

13.
Patterning and axon guidance of cranial motor neurons   总被引:1,自引:0,他引:1  
  相似文献   

14.
Newborn neurons migrate extensively in the radial and tangential directions to organize the developing vertebrate nervous system. We show here that mutations in zebrafish trilobite (tri) that affect gastrulation-associated cell movements also eliminate tangential migration of motor neurons in the hindbrain. In the wild-type hindbrain, facial (nVII) and glossopharyngeal (nIX) motor neurons are induced in rhombomeres 4 and 6, respectively, and migrate tangentially into r6 and r7 (nVII) and r7 (nIX). In all three tri alleles examined, although normal numbers of motor neurons are induced, nVII motor neurons are found exclusively in r4, and nIX-like motor neurons are found exclusively in r6. The migration of other neuronal and nonneuronal cell types is unaffected in tri mutants. Rhombomere formation and the development of other hindbrain neurons are also unaffected in tri mutants. Furthermore, tangential neuronal migration occurs normally in the gastrulation mutant knypek, indicating that the trilobite neuron phenotype does not arise nonspecifically from aberrant gastrulation-associated movements. We conclude that trilobite function is specifically required for two types of cell migration that occur at different stages of zebrafish development.  相似文献   

15.
During mammalian hindbrain development, sensory axons grow along highly stereotyped routes within the cranial mesenchyme to reach their appropriate entry points into the neuroepithelium. Thus, trigeminal ganglion axons always project to rhombomere (r)2, whilst facial/acoustic ganglia axons always project to r4. Axons are never observed to enter the mesenchyme adjacent to r3, raising the possibility that r3 mesenchyme contains an axon growth-inhibitory activity. Conversely, in mice which lack the erbB4 receptor (normally expressed in r3), trigeminal and facial/acoustic ganglia axons misproject into r3 mesenchyme, suggesting that the putative axon barrier is absent. To investigate this hypothesis, we have developed an in vitro model in which dissociated wild-type embryonic trigeminal ganglion neurons are cultured on longitudinal cryosections of embryonic mouse head. We observed that on wild-type embryonic day 10 (E10) cryosections, neurites generally failed to grow into r3 mesenchyme from the adjacent r2 or r4 mesenchyme. This barrier was removed if cryosections were pretreated with chondroitinase or were washed with excess chondroitin 6-sulphate or hypertonic saline. By contrast, when trigeminal neurons were seeded onto cryosections of E10 erbB4 -/- embryo heads their neurites readily entered mutant r3 mesenchyme. Immunohistochemical analysis demonstrated chondroitin-sulphated proteoglycans throughout the cranial mesenchyme in both wild-type and erbB4 -/- embryos. We propose that trigeminal axons are excluded from wild-type r3 mesenchyme by a growth-inhibitory activity which associates with chondroitin-sulphated proteoglycans and that the synthesis of this activity may rely on signals transduced by erbB receptors.  相似文献   

16.
17.
18.
Peripherin is a 57 kDa Type III intermediate filament protein associated with neurite extension, neuropathies such as amyotrophic lateral sclerosis, and cranial nerve and dorsal root projections. However, knowledge of peripherin expression in the CNS is limited. We have used immunoperoxidase histochemistry to characterise peripherin expression in the mouse hindbrain, including the inferior colliculus, pons, medulla and cerebellum. Peripherin immunolabelling was observed in the nerve fibres and nuclei that are associated with all cranial nerves [(CN) V–XII] in the hindbrain. Peripherin expression was prominent in the cell bodies and axons of the mesenchephalic trigeminal nucleus and the pars compacta region of nucleus ambiguus, and in the fibres that comprise the solitary tract, the descending spinal trigeminal tract and the trigeminal and facial nerves. A small proportion of peripherin positive fibres in CN VIII likely arise from cochlear type II spiral ganglion neurons. Peripherin positive fibres were also observed in the inferior cerebellar peduncle and folia in the intermediate zone of the cerebellum. Antibody specificity was confirmed by absence of labelling in hindbrain tissue from peripherin knockout mice. This study shows that in the adult mouse hindbrain, peripherin is expressed in discrete neuronal subpopulations that have sensory, motor and autonomic functions.  相似文献   

19.
Cranial nerve VII (facial) motorneurons begin extending axons through rhombomeres 4 and 5 (R4 and R5) in the chick hindbrain on the second day of incubation. Without crossing the midline, facial motorneuron axons extend laterally from a ventromedial cell body location. All facial motorneuron axons leave the hindbrain through a discrete exit site in R4. To examine the importance of the exit site in R4 on motorneuron pathfinding, we ablated R4 before motorneuron axonogenesis. We find that mechanisms intrinsic to R5 direct the initial lateral orientation of R5 motorneuron axons. Upon reaching a particular lateral position, all R5 motorneuron axons must turn. In normal embryos the axons all turn rostrally to reach the nerve exit in R4. In embryos with R4 ablated, sometimes the axons turn rostrally and sometimes they turn caudally. A model combining permissive fields and chemotropic cues is presented to account for our observations.  相似文献   

20.
In Xenopus tailbud embryos, the mandibular branch of trigeminal sensory nerve has a transient pathway innervating the cement gland. This pathway is settled by pioneer neurons in the trigeminal ganglion and along which extend later-growing axons from the trigeminal ganglion and the hindbrain. Axons in this branch express a neuronal recognition molecule, Contactin 1, from the initial stage of its outgrowth in early tailbud embryos and form a tightly joined, strongly Contactin 1-positive fascicle in the later stages. When the expression vector encoding the enhanced green fluorescent protein was electrotransfected into the brain neurons of early tailbud embryos, the fluorescence was detected in the hindbrain and the trigeminal nerve at late tailbud stages. Cotransfection of antisense vector caused knockdown of Contactin 1 concurrent with defasciculation and misguidance of the sensory axons in the trigeminal mandibular branch. The results suggest that Contactin 1 is required for the growing axon of hindbrain sensory neurons to recognize and follow the pathway settled by the pioneer neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号