首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The germination ecology of Sideritis serrata was investigated in order to improve ex‐situ propagation techniques and management of their habitat. Specifically, we analysed: (i) influence of temperature, light conditions and seed age on germination patterns; (ii) phenology of germination; (iii) germinative response of buried seeds to seasonal temperature changes; (iv) temperature requirements for induction and breaking of secondary dormancy; (v) ability to form persistent soil seed banks; and (vi) seed bank dynamics. Freshly matured seeds showed conditional physiological dormancy, germinating at low and cool temperatures but not at high ones (28/14 and 32/18 °C). Germination ability increased with time of dry storage, suggesting the existence of non‐deep physiological dormancy. Under unheated shade‐house conditions, germination was concentrated in the first autumn. S. serrata seeds buried and exposed to natural seasonal temperature variations in the shade‐house, exhibited an annual conditional dormancy/non‐dormancy cycle, coming out of conditional dormancy in summer and re‐entering it in winter. Non‐dormant seeds were clearly induced into dormancy when stratified at 5 or 15/4 °C for 8 weeks. Dormant seeds, stratified at 28/14 or 32/18 °C for 16 weeks, became non‐dormant if they were subsequently incubated over a temperature range from 15/4 to 32/18 °C. S. serrata is able to form small persistent soil seed banks. The maximum seed life span in the soil was 4 years, decreasing with burial depth. This is the second report of an annual conditional dormancy/non‐dormancy cycle in seeds of shrub species.  相似文献   

2.
Temperate forest herbs with seeds exhibiting both a physical and a physiological dormancy mechanism are rare, and knowledge on the factors regulating germination of these species is fragmentary. The biennial Geranium robertianum L. grows mainly in temperate woodlands, but can also be found in exposed habitats. Seedlings of G. robertianum are known to emerge from spring until autumn, but little is known about the environmental factors regulating germination. In this study, phenology of seedling emergence and of physical dormancy loss was examined for seeds buried at shaded or sunny exposed locations. The role of temperature in regulating dormancy and germination was analysed by incubating seeds in temperature sequences simulating temperatures that seeds experience in nature. The results indicate that most seeds of G. robertianum buried in sunny conditions germinate immediately after physical dormancy loss in summer. Seeds buried in shaded conditions also lose physical dormancy mainly during summer, but remain physiologically dormant and do not germinate until late winter or early spring. Besides physical dormancy, seeds of G. robertianum also initially have a high level of physiological dormancy, which is reduced during dry storage. Physiological dormancy is reduced through chilling in winter, thus enabling the seeds to germinate at low temperatures. We conclude that a complex combination of physical and physiological dormancy ensures that G. robertianum seeds germinate in summer at exposed sites and in early spring at shaded sites.  相似文献   

3.
Bethke PC  Libourel IG  Reinöhl V  Jones RL 《Planta》2006,223(4):805-812
The seeds of many plant species are dormant at maturity and dormancy loss is a prerequisite for germination. Numerous environmental and chemical treatments are known to lessen or remove seed dormancy, but the biochemical changes that occur during this change of state are poorly understood. Several lines of research have implicated nitric oxide (NO) as a participant in this process. Here, we show that dormant seeds of Arabidopsis thaliana (L.) Heynh. will germinate following treatment with the NO donor sodium nitroprusside (SNP), cyanide (CN), nitrite or nitrate. In all cases, the NO scavenger c-PTIO effectively promotes the maintenance of seed dormancy. c-PTIO does not, however, inhibit germination of fully after-ripened seeds, and c-PTIO does not interact directly with nitrite, nitrate or CN. We also show that volatile CN effectively breaks dormancy of Arabidopsis seeds, and that CN is the volatile compound in SNP that promotes dormancy loss. Our data support the hypothesis that NO is a signaling molecule that plays an important role in the loss of seed dormancy.  相似文献   

4.
《Acta Oecologica》1999,20(5):571-577
Leptochloa panicea ssp. mucronata is an annual grass that grows in relatively dry habitats. Requirements for dormancy loss and germination were determined for seeds of this species and compared to those of two species from wet habitats. Seeds of L. panicea were dormant at maturity in autumn, but when exposed to actual or simulated autumn temperatures (e.g. 20/10, 15/6 °C), they entered conditional dormancy and thus germinated to high percentages in light at 35/20 °C. Seeds buried in non-flooded soil exposed to natural seasonal temperature changes in Kentucky (USA) were non-dormant by the following summer and germinated to 80–100 % in light at 25/15, 30/15 and 35/20 °C. Seeds buried in non-flooded soil exhibited an annual conditional dormancy/non-dormancy cycle, with seeds mostly germinating to 80–100 % in light at 30/15 and 35/20 °C throughout the year but to 80–100 % in light at 25/15 °C only in summer. Results for L. panicea were compared to published data for L. panicoides and L. fusca. Whereas seeds of L. panicea buried in flooded soil failed to come out of dormancy, those of L. panicoides, an annual of moist habitats such as mudflats, exhibited an annual conditional dormancy/non-dormancy cycle, and those of L. fusca, a semi-aquatic, required flooding for both dormancy loss and germination. Differences in dormancy breaking and germination responses of seeds of Leptochloa species may help to explain why this genus occupies a wide range of habitats with regard to soil moisture conditions.  相似文献   

5.
Factors controlling the timing of seed germination were investigated in the small succulent winter annual Sedum pulchellum Michx. (Crassulaceae) in its natural habitat on unshaded limestone outcrops in northcentral Kentucky. At maturity in early July the dormant seeds are not dispersed but are retained in the fruits on the standing dead plants until September and October. Many, but not all, of the seeds afterripen in the fruits during summer, and at the time of dispersal some of them are dormant and some are nondormant. Germination and annual population establishment occur in September and October from seed reserves that have been in the soil for one or more years and from seeds produced in the current year. Germination of nondormant seeds may be prevented in autumn by lack of the appropriate combination of environmental factors including light, temperature and soil moisture in the seed's microsite. The effect of low winter temperatures on ungerminated seeds in the population is to induce nondormant seeds into secondary dormancy and to prevent afterripening of dormant seeds. Thus, in spring all the seeds in the population's seed reserve are dormant. During spring and summer some of these seeds afterripen, and they germinate in autumn when, and if, germination requirements are fulfilled.  相似文献   

6.
Freshly harvested, dormant seeds of Amaranthus retroflexus were unable to germinate at 25 and 35 °C. To release their dormancy at the above temperatures, the seeds were stratified at a constant temperature (4 °C) under laboratory conditions or at fluctuating temperatures in soil or by outdoor burial in soil. Fully dormant, or seeds stratified or buried (2006/2007 and 2007/2008) for various periods were treated with exogenous gibberellic acid (GA3), ethephon and abscisic acid (ABA). Likewise, the effects of these regulators, applied during stratification, on seed germination were determined. The results indicate that A. retroflexus seed dormancy can be released either by stratification or by autumn–winter burial. The effect of GA3 and ethylene, liberated from ethephon, applied after various periods of stratification or during stratification, depends on dormancy level. GA3 did not affect or only slightly stimulated the germination of non-stratified, fully dormant seeds at 25 and 35 °C respectively. Ethylene increased germination at both temperatures. Seed response to GA3 and ethylene at 25 °C was increased when dormancy was partially removed by stratification at constant or fluctuating temperatures or autumn–winter burial. The response to GA3 and ethylene increased with increasing time of stratification. The presence of GA3 and ethephon during stratification may stimulate germination at 35 °C. Thus, both GA3 and ethylene can partially substitute the requirement for stratification or autumn–winter burial. Both hormones may also stimulate germination of secondary dormant seeds, exhumed in September. The response to ABA decreased in parallel with an increasing time of stratification and burial up to May 2007 or March 2008. Endogenous GAn, ethylene and ABA may be involved in the control of dormancy state and germination of A. retroflexus. It is possible that releasing dormancy by stratification or partial burial is associated with changes in ABA/GA and ethylene balance and/or sensitivity to these hormones.  相似文献   

7.
The effect of temperature on the level of dormancy of primary and secondary dormant Carex pendula and Carex remota seeds was investigated. Primary dormant and secondary dormant seeds were stratified for 4 weeks at 5, 11, 13, and 15 °C, respectively, and tested for germination at 15/5 °C in light. To obtain secondary dormant seeds, primary dormant seeds were stratified at 5 °C and afterwards at 25 °C for 4 weeks. Germination tests were carried out in water and in 25 μmol KNO3-solution to examine differences in sensitivity to nitrate between seeds relieved from primary and secondary dormancy. In both species, seeds with primary and with induced secondary dormancy showed no significant differences in germination. The two sedges showed significant differences in the effect of stratification temperatures between primary and secondary dormant seeds. Primary dormant seeds of C. pendula showed high germination (>80%) in nitrate-solution after stratification at all temperatures, while only temperatures of 5, 11, and 13 °C led to higher germination in nitrate-solution in secondary dormant seeds. Germination percentages of primary and of secondary dormant C. pendula seeds in water increased to a higher extent only after stratification at 5 and 11 °C; stratification of 11 °C was more effective in secondary than in primary dormant seeds. The only temperature that relieved primary dormancy in C. remota seeds was 5 °C where germination in water and nitrate-solution was >90%. Germination of secondary dormant seeds was increased by stratification at 11 °C independent of the test solution but higher germination after stratification at 13 °C occurred only in nitrate-solution. The results support the existence of physiological differences in the regulation of primary and secondary dormancy by temperature, and in the reaction of nitrate, at least in C. remota.  相似文献   

8.
The purpose of our research was to determine why seeds of Schoenoplectus hallii germinate only in some wet years. Seeds mature in autumn, at which time they are dormant. Seeds come out of dormancy during winter, if buried in nonflooded, moist soil, but they remain dormant if buried in flooded soil. Nondormant seeds require flooding, light, and exposure to ethylene to germinate. One piece of apple in water (1/12 of an apple in 125 mL of water in a glass jar for a depth of 5 cm) or a 1-μmol/L solution of ethephon elicited very similar (high) germination percentages and vigor of seedlings. Apple, which was shown to produce ethylene in the air space of the jar, was used in a series of experiments to better understand germination. Seeds germinated to 72% if apple was removed from the water after 1 d of incubation, and they germinated to 97% if seeds were washed and placed in fresh water after 3 d of exposure to apple. No seeds germinated in control with no apple. Seeds incubated in apple leachate for 5 d and then transferred to filter paper moistened with distilled water germinated to 90%. Minimum depth of flooding in apple leachate (no soil in jars) for optimum germination was ≥3 cm. Buried seeds of S. hallii exhibited an annual conditional dormancy/nondormancy cycle. Regardless of the month in which seeds were exhumed, they germinated to 59-100% in light in water with apple at daily alternating temperature regimes of 25°/15°, 30°/15°, and 35°/20°C, but germination at 20°/10°C (and to some extent at 15°/6°C) tended to peak in autumn to spring. Thus, seeds can germinate throughout the summer if flooded (ethylene production) and exposed to light. An ethylene cue for germination serves as a "flood-detecting" mechanism and may serve as an indirect signal that water is available for completion of the life cycle and competing species are absent.  相似文献   

9.
Seed of Avena fatua were shown to exhibit a characteristic loss of dormancy during dry storage at 25 C, whereas similar seed stored at 5 C maintained dormancy. 2-Chloroethylphosphonic acid was shown to increase germination of partly dormant seed imbibed under certain temperature regimes; a similar effect could not be established for fully dormant or fully nondormant seed. Using gas-liquid chromatography, natural ethylene levels were followed during imbibition of fully dormant and nondormant seed. A large peak in production was observed in the period prior to radicle emergence in the case of the nondormant seed. Measurements of ethylene production taken at 15 C, following periods of after-ripening in moist soil at either 5 or 25 C, indicated that endogenous production was unlikely to be a main cause of dormancy breakage in this species. The possibility that endogenous ethylene could play a role in natural dormancy breakage in aged seeds is discussed. The practical possibilities of 2-chloroethylphosphonic acid as a dormancy breaking agent in a field situation are outlined.  相似文献   

10.
J. van Baalen 《Oecologia》1982,53(1):61-67
Summary The germination ecology and the dynamics of the generative reproduction in populations of Digitalis purpurea L. were investigated in the field as well as in experiments. Germination of fresh seeds in the dark on moist filter paper appeared to differ between populations. These differences were eliminated when a moist natural soil functioned as germination substrate. An interaction between the spectral composition of light and the germination substrate was present. Germination in gradients of light, temperature and soil moisture revealed some clear-cut results. Germination proved to be strongly dependent on the percentage of vegetation cover. During two years of burial in litter bags, the number of buried viable seeds did not decrease. From one generation of seeds produced in a natural population, 18% was introduced into the buried seed bank, 10% germinated in autumn and 24% was present as a enforced dormant surface seed bank in late autumn.The results are discussed in relation to secondary succession. can be derived from Milton (1936), Salisbury (1942) and Thompson and Grime (1979). Soil disturbance and germination seem to be correlated in D. purpurea (Grime 1979). The purpose of this study is to analyse the dormancy and germination behaviour of D. purpurea in relation to the relevant environmental factors in order to explain the mechanisms of entry into, and the escape of D. purpurea seeds from a seed bank. Furthermore, an attempt will be made to quantify seed rain as well as the fate of different germinating and non-germinating seed rain fractions in space and time per unit area, in different stages of succession.  相似文献   

11.
The seed germination behaviour of Primula veris and Trollius europaeus , both perennial, polycarpic grassland plants was compared The species have similar-sized seeds that are dormant at dispersal Seeds buried in soil and exhumed at regular intervals showed that for both species, primary seed dormancy was overcome by cold-stratification Hence, their germination in the field should occur in spring, following dispersal, or later Seeds of P veris became dormant again in the late spring/early summer, and dormancy was broken again in the second winter Seeds of T europaeus did not exhibit such changes in dormancy
Seeds of P veris did not germinate in darkness This suggests that P veris can accumulate a persistent seed bank because buried seeds are prevented from germinating Trollius europaeus , on the other hand, germinated equally well in darkness and in light which suggests that seeds might germinate even when they are too deep in the soil for seedlings to emerge Two lines of evidence confirm this difference in seed bank behaviour (1) Primula veris was detected in the persistent seed bank of a grassland site, whereas T europaeus was not (n) After 16 months burial, 85% of the P veris seeds but only 8% of the T europaeus seeds remained viable  相似文献   

12.
Studying seed dormancy and its consequent effect can provide important information for vegetation restoration and management. The present study investigated seed dormancy, seedling emergence and seed survival in the soil seed bank of Stipa bungeana, a grass species used in restoration of degraded land on the Loess Plateau in northwest China. Dormancy of fresh seeds was determined by incubation of seeds over a range of temperatures in both light and dark. Seed germination was evaluated after mechanical removal of palea and lemma (hulls), chemical scarification and dry storage. Fresh and one-year-stored seeds were sown in the field, and seedling emergence was monitored weekly for 8 weeks. Furthermore, seeds were buried at different soil depths, and then retrieved every 1 or 2 months to determine seed dormancy and seed viability in the laboratory. Fresh seeds (caryopses enclosed by palea and lemma) had non-deep physiological dormancy. Removal of palea and lemma, chemical scarification, dry storage (afterripening), gibberellin (GA3) and potassium nitrate (KNO3) significantly improved germination. Dormancy was completely released by removal of the hulls, but seeds on which hulls were put back to their original position germinated to only 46%. Pretreatment of seeds with a 30% NaOH solution for 60 min increased germination from 25% to 82%. Speed of seedling emergence from fresh seeds was significantly lower than that of seeds stored for 1 year. However, final percentage of seedling emergence did not differ significantly for seeds sown at depths of 0 and 1 cm. Most fresh seeds of S. bungeana buried in the field in early July either had germinated or lost viability by September. All seeds buried at a depth of 5 cm had lost viability after 5 months, whereas 12% and 4% seeds of those sown on the soil surface were viable after 5 and 12 months, respectively.  相似文献   

13.
  • Dormancy cycling is a key mechanism that contributes to the maintenance of long‐term persistent soil seed banks, but has not been recorded in long‐lived woody shrub species from fire‐prone environments. Such species rely on seed banks and dormancy break as important processes for post‐fire recruitment and recovery.
  • We used germination experiments with smoke treatments on fresh seeds and those buried for 1 year (retrieved in spring) and 1.5 years (retrieved the following late autumn) to investigate whether Asterolasia buxifolia, a shrub from fire‐prone south‐eastern Australia with physiologically dormant seeds, exhibited dormancy cycling.
  • All seeds had an obligation for winter seasonal temperatures and smoke to promote germination, even after ageing in the soil. A high proportion of germination was recorded from fresh seeds. but germination after the first retrieval was significantly lower, despite high seed viability. After the second retrieval, germination returned to the initial level. This indicates a pattern of annual dormancy cycling; one of the few observations, to our knowledge, for a perennial species. Additionally, A. buxifolia’s winter temperature and smoke requirements did not change over time, highlighting the potential for seeds to remain conditionally dormant (i.e. restricted to a narrow range of germination conditions) for long periods.
  • For physiologically dormant species, such as A. buxifolia, we conclude that dormancy cycling is an important driver of successful regeneration, allowing seed bank persistence, sometimes for decades, during fire‐free periods unsuitable for successful recruitment, while ensuring that a large proportion of seeds are available for recruitment when a fire occurs.
  相似文献   

14.
Summary The role of temperature in the regulation of seasonal changes in dormancy and germination was studied in seeds of Polygonum persicaria. Seeds were buried in the field and under controlled conditions. Portions of seeds were exhumed at regular intervals and germination was tested over a range of conditions. Seeds of P. persicaria exhibited a seasonal dormancy pattern that clearly showed the typical features of summer annuals, i.e. dormancy was relieved at low winter temperatures, the germination peak occurred in spring and dormancy was re-induced in summer. The expression of the dormancy pattern was influenced by the temperature at which germination was tested. At 30°C exhumed seeds germinated over a much longer period of the year than at 20° or 10°C. Nitrate added during the germination test occasionally stimulated germination. The seasonal changes in dormancy of buried seeds were regulated by the field temperature. Soil moisture and nitrate content did not influence the changes in dormancy. The fact that, on the one hand, field temperature determined the changes in dormancy and, on the other hand, germination itself was influenced by temperature, was used to describe the seasonal germination pattern of P. persicaria with a model. Germination of exhumed seeds in Petri dishes at field temperature was accurately described with this model. Germination in the field was restricted to the period where the range of temperatures over which germination could proceed (computed with the model) and field temperature overlapped.  相似文献   

15.
Soil seed banks act as a gene pool for local plant species and, as such, can buffer local populations, especially those experiencing challenging environmental conditions. Seed dormancy has important implications to dynamics of soil seed banks. Therefore, estimating the seed dormancy of transgenic crop–wild hybrids could shed light on the persistence of transgenes in wild‐plant soil seed banks. Individuals from eight populations of wild rice Oryza rufipogon were crossed with those of three insect‐resistant transgenic rice lines. Selfed (F2–F4) and backcrossed populations (BC1, BC1F2 and BC1F3) were then made from the hybrids. Seed germination was tested under three treatments: (a) normal; (b) overwintering in soil; and (c) one‐week heat‐shocking. The effects of transgene, wild parent and hybrid generation on hybrid seed germination were examined. No significant effect of insect‐resistant transgenes (Bt and CpTI) was detected on the seed dormancy of crop–wild hybrids, while a significant wild parent effect was found. The seeds of advanced generation hybrids have higher germination percentages and lower dormancy than do those of F1 and BC1 generations. The study showed that the dormancy of hybrid seeds was determined mainly by their genetic backgrounds. All hybrid seeds have higher germination percentages and lower dormancy (and, consequently, a poorer overwintering ability), compared with wild seeds, and reduce dormancy would contribute to a fitness disadvantage, compared with wild types. Therefore, such seeds might form part of naturally occurring soil seed banks, through which crop genes would persist in wild populations.  相似文献   

16.
Seed germination and seedling emergence of ‘Arctic’ and ‘Lineta’ orchardgrass (Dactylis glomerata L.) and ‘Walsh’ and ‘LC9078a’ western wheatgrass (Pascopyrum smithii [Rydb.] L.) were studied both in the field and laboratory. Four seeding dates were conducted each year over 2 years and seedling emergence and seed fate in the soil were monitored. The effects of alternating temperature and light on germination were quantified and correlated with seedling emergence from soil and in the field. Orchardgrass seeds were less dormant than western wheatgrass as indicated by the disparity in germination percentage between constant and alternating temperatures. Seed germination percentage was usually higher than seedling emergence in the field for orchardgrass but lower for western wheatgrass, and temperature was not responsible for the difference. Exposing orchardgrass seeds to light during germination check helped break dormancy in orchardgrass when temperature was unfavorable (low and/or constant temperatures), while favorable temperatures (optimal, alternating temperatures) conditions overcame the inhibiting effect of light in western wheatgrass. The final seedling emergence of orchardgrass was either similar among the four seeding dates or decreased slightly from early May to early June. For western wheatgrass, however, final seedling emergence increased with seeding dates from early to late May and decreased in early June. Soil temperatures of the first 2 weeks after seeding increased from the early May to late May and then decreased. These temperatures were below or near the optimal temperatures for western wheatgrass seeds to release dormancy and germinate. Germination of the previously buried seeds indicated that orchardgrass and western wheatgrass had the potential for a high germination percentage under field conditions for all seeding dates. While soil temperatures close to the optimal temperature for dormancy breaking and germination promoted germination of orchardgrass, the same conditions could cause deterioration of seeds if they failed to germinate. For western wheatgrass, deeper dormancy reduced seed mortality.  相似文献   

17.
Butia odorata (Barb. Rodr.) Noblick is a palm tree that grows in savanna‐like formations in subtropical regions of South America, and whose regeneration is threatened by agricultural management. Its diaspores are dormant after dispersal which takes place during the summer and early autumn. The aim of this study was to investigate seasonal and microhabitat effects on the germination and seedling recruitment of this palm species. Diaspores were sown in the field, in both open lands and forest patches. During 2 years, we measured seed germination, viability and moisture, seedling emergence and germination response to warm stratification of those seeds that failed to germinate in the field. Germination was concentrated during the summer, when soil temperatures were highest, whilst seedling emergence peaked in the autumn and early winter, when temperature and humidity conditions became less extreme. In open lands, there were two pulses of germination (first and second summer), whilst in forest patches, a single pulse (second summer) was detected. Although overall germination did not differ between microhabitats, the percentage of seedling emergence from seeds that remained buried until the end of the experiment was almost twice as large in the forest patches compared with open areas. The viability of seeds declined over time, particularly in open areas. Laboratory‐induced warm stratification was found to act on seed dormancy release in a cyclic way, being far more effective on seeds retrieved from the field in spring–summer months than in those retrieved in the winter. This cyclic pattern of dormancy in B. odorata seeds results in major seedling recruitment after the summer, under wetter and cooler conditions, thus reducing mortality risk. This process can be enhanced by the presence of surrounding vegetation, which both increases seedling emergence and/or prolongs seed viability.  相似文献   

18.
Izumi Washitani 《Oecologia》1985,66(3):338-342
Summary The germination of seeds of Amaranthus patulus Bertol., is known to be sensitive to leaf-transmitted light. Seeds were enclosed in transparent polyester-mesh envelopes and placed horizontally in 10-cm deep soil or on the soil surface, beneath a closed vegetation cover in the field. Changes in the numbers of firm intact seeds and of germinable seeds were traced for up to 3 years by periodical retrievals and germination tests. Rapid loss of germinable seeds, mainly due to germination, was observed in the buried seed population, in which only 20% of seeds maintained their germinability after 1 year, and a negligible number after 3 years. In contrast, the seeds placed on the soil surface maintained germinability relatively well: over 80% of seeds remained germinable after 1 year and a low percentage still preserved their germinability after 3 years. Assuming exponential decay in germinability, the decay rates on and in the soil were calculated from the data of the 1-year experiment to be 0.21 and 0.84 year-1 respectively. The fate of seeds that were exposed to canopy light on the soil for a month and then buried was shown to be almost the same as that of the seeds which had been continuously in 10-cm deep soil. Correspondingly, the possibility of the induction of secondary (induced) dormancy by exposure to canopy light was excluded in a laboratory experiment, in which it was found that the imbibed seeds suffering leaf-canopy inhibition of germination exuded some diffusible germination inhibitor responsible for apparent dormancy. Estimation of numbers of A. patulus in the seed bank of an early successional field showed that 3,500 seeds/m2 remained in the soil to the depth of 10 cm after 3 years' exclusion of the species following the production of 700,000 seeds/m2, by a population explosively established after experimental induction of secondary succession.  相似文献   

19.
The effects of stratification temperatures and burial in soil on dormancy levels of Carex pendula L. and C. remota L., two spring-germinating perennials occurring in moist forests, were investigated. Seeds buried for 34 months outdoors, and seeds stratified in the laboratory at temperatures between 3 and 18 °C for periods between 2 and 28 weeks, were tested over a range of temperatures. Seeds of the two species responded similarly to stratification treatments, except for an absolute light requirement in C. pendula. Primary dormancy was alleviated at all stratification temperatures, but low temperatures were more effective than higher ones . (≥ 12 °C). Dormancy induction in non-dormant seeds kept at 5 °C occurred when seeds were subsequently exposed to 18 °C. Dormancy was not induced by a transfer to lower temperatures. Buried seeds of both species exhibited seasonal dormancy cycles with high germination from autumn to spring and low germination during summer. Temperatures at which the processes of dormancy relief and of dormancy induction occurred, overlapped to a high degree. Whether, and when, dormancy changes occurred depended on test conditions. The lower temperature limit for germination (> 10%) was 9 °C in C. remota and 15 °C in C. pendula. Germination ceased abruptly above 36 °C. Germination requirements and dormancy patterns suggest regeneration from seed in late spring and summer at disturbed, open sites (forest gaps) and the capability to form long, persistent seed banks in both species.  相似文献   

20.
Common ragweed (Ambrosia artemisiifolia L.) was one of 19 herbaceous weedy species used by Beal in his buried viable seed experiment started in 1879. No seeds germinated during the first 35 years of the experiment when germination tests were performed in late spring, summer or early autumn. Germination did occur in seeds buried for 40 years when seeds were exhumed and tested for germination in early spring. Data obtained in more recent research provide the probable explanation for these results. Seeds of common ragweed that do not germinate in spring enter secondary dormancy by mid to late spring and will not germinate until dormancy is broken the following late autumn and winter. Thus, during the first 35 years of the experiment seeds were dormant when tested for germination, whereas seeds buried for 40 years were nondormant. Seeds buried 50 years or longer did not germinate when tested in spring, probably because they had lost viability and/or seeds germinated during burial and seedlings died.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号