首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
To examine the identity of binding sites for thyrotropin (TSH) and thyroid stimulating antibodies (TSAbs) associated with Graves' disease, we constructed eight human TSH receptor/rat LH-CG receptor chimeras. Substitution of amino acid residues 8-165 of the TSH receptor with the corresponding LH-CG receptor segment (Mc1 + 2) results in a chimera which retains high affinity TSH binding and the cAMP response to TSH but loses both the cAMP response to Graves' IgG and Graves' IgG inhibition of TSH binding. Two of three IgGs from idiopathic myxedema patients which contain thyroid stimulation blocking antibodies (TSBAbs) still, however, react with this chimera. Chimeras which substitute residues 90-165 (Mc2) and 261-370 (Mc4) retain the ability to interact with TSH, Graves' IgG, and idiopathic myxedema IgG. The data thus suggest that residues 8-165 contain an epitope specific for TSAbs and that TSH receptor determinants important for the activities of TSAbs and TSH are not identical. Further, binding sites for TSBAbs in idiopathic myxedema may be different from receptor binding sites for both Graves' IgG TSAb as well as TSH and may be different in individual patients.  相似文献   

2.
Deletions, substitutions, or mutations of the rat TSH receptor extracellular domain between residues 20 and 107 (all residue numbers are determined by counting from the methionine start site) have been made by site-directed mutagenesis of receptor cDNA. After transfection in Cos-7 cells, constructs were evaluated for their ability to bind [125I]TSH or respond to TSH and thyroid-stimulating antibodies (TSAbs) from Graves' patients in assays measuring cAMP levels of the transfected cells. Assay results were compared to results from Cos-7 cells transfected with wild-type receptor constructs or vector alone. We identify threonine-40 as a TSAb-specific site whose mutation to asparagine, but not alanine, reduces TSAb activity 10-fold, but only minimally affects TSH-increased cAMP levels. We show that thyroid-stimulating blocking antibodies (TSBAbs), which block TSH or TSAb activity and are found in hypothyroid patients with idiopathic myxedema, continue to inhibit TSH-stimulated cAMP levels when threonine-40 is mutated to asparagine or alanine, suggesting that TSBAbs interact with different TSH receptor epitopes than the TSAb autoantibodies in Graves' patients. This is confirmed by the demonstration that these TSBAbs interact with high affinity TSH-binding sites previously identified at tyrosine-385 or at residues 295-306 of the extracellular domain of the TSH receptor. This is evidenced by a loss in the ability of TSBAbs to inhibit TSAb activity when these residues are mutated or deleted, respectively. Since the TSAb and TSBAb epitopes are in regions of the extracellular domain of the TSH receptor that have no homology in gonadotropin receptors, these data explain at least in part the organ-specific nature of TSH receptor autoantibodies in autoimmune thyroid disease. Data are additionally provided which indicate that residues 30-37 and 42-45, which flank the TSAb epitope at threonine-40, appear to be ligand interaction sites more important for high affinity TSH binding than for the ability of TSH to increase cAMP levels and that cysteine-41 is critical for TSH receptor conformation and expression on the surface of the cell. Thus, despite unchanged maximal values for TSH-increased cAMP levels, substitution of residues 42-45 or deletion of residues 30-37 results in receptors, which, by comparison to wild-type constructs, exhibit significantly worsened Kd values for TSH binding than EC50 values for TSH- or TSAb-increased cAMP activity.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
To identify the site(s) on the thyrotropin (TSH) receptor that interacts with TSH or thyroid stimulating antibody (TSAb), we examined the effect of the synthetic TSH receptor peptide (termed N2 peptide, No. 35-50) on the cAMP accumulation induced by TSH or TSAb. Preincubation of bovine TSH with N2 peptide resulted in a significant and dose-dependent decrease in cAMP accumulation. This decrease was not observed when bovine TSH was preincubated with P1 peptide, which was used as a control (No. 398-417). In contrast, the N2 peptide did not affect TSAb activity in immunoglobulin fractions from three TSAb-positive patients with Graves' disease. P1 peptide also had no effect on TSAb activity. These results suggest that the N-terminal region of the TSH receptor is important for TSH action, and also that TSAb activity cannot be suppressed only by the application of the synthetic peptide corresponding to the N-terminal region.  相似文献   

4.
We observed amino acid homology between the cysteine-rich N terminus of the thyrotropin receptor (TSHR) ectodomain and epidermal growth factor-like repeats in the laminin gamma1 chain. Thyroid-stimulating autoantibodies (TSAb), the cause of Graves' disease, interact with this region of the TSHR in a manner critically dependent on antigen conformation. We studied the role of the cluster of four cysteine (Cys) residues in this region of the TSHR on the functional response to TSAb in Graves' patients' sera. As a benchmark we also studied TSH binding and action. Removal in various permutations of the four cysteines at TSHR positions 24, 29, 31, and 41 (signal peptide residues are 1-21) revealed Cys(41) to be the key residue for receptor expression. Forced pairing of Cys(41) with any one of the three upstream Cys residues was necessary for trafficking to the cell surface of a TSHR with high affinity TSH binding similar to the wild-type receptor. However, for a full biological response to TSAb, forced pairing of Cys(41) with Cys(29) or with Cys(31), but not with Cys(24), retained functional activity comparable with the wild-type TSHR. These data suggest that an N-terminal disulfide-bonded loop between Cys(41) and Cys(29) or its close neighbor Cys(31) comprises, in part, the highly conformational epitope for TSAb at the critical N terminus of the TSHR. Amino acid homology, as well as cysteine pairing similar to the laminin gamma1 chain epidermal growth factor-like repeat 11, suggests conformational similarity between the two molecules and raises the possibility of molecular mimicry in the pathogenesis of Graves' disease.  相似文献   

5.
There are two types of TSH receptor antibodies (TRAb); thyroid stimulating antibody (TSAb) and TSH-stimulation blocking antibody (TSBAb). TSAb causes Graves' hyperthyroidism. TSBAb causes hypothyroidism. Both TSAb and TSBAb block TSH-binding to thyroid cells as TSH receptor antibodies (TRAb). TSBAb-positive patients with hypothyroidism and Graves' patients with hyperthyroidism may have both TSBAb and TSAb. We studied TSBAb and TSAb in 43 TSBAb-positive patients with hypothyroidism and in 55 untreated Graves' patients with hyperthyroidism. TSBAb-activities were expressed as percentage inhibition of bovine (b) TSH-stimulated cAMP production by test IgG. Two formulas were used to calculate TSBAb-activities; TSBAb-A (%) = [1 - (c - b)/(a - b)] x 100 and TSBAb-B (%) = [1 - (c - d)/(a - b)] x 100, where a: cAMP generated in the presence of normal IgG and bTSH, b: cAMP generated in the presence of normal IgG, c: cAMP generated in the presence of test IgG and bTSH, and d: cAMP generated in the presence of test IgG. TSAb (%) = [d/b] x 100. All of the 43 TSBAb-positive patients with hypothyroidism had strongly positive TSBAb-A and -B. Some of them had weakly positive TSAb (<240%). All 55 untreated Graves' patients had positive TSAb (205-2509%). Some of them had both TSAb and TSBAb. TSBAb-positive patients with hypothyroidism had a limited distribution of TSBAb- and TSAb-activities (TSBAb-A + 75 - + 103%, TSBAb-B + 87 - + 106%, TSAb 92-240%), but Graves' patients with hyperthyroidsim had a wide distribution of TSAb- and TSBAb-activities (TSAb 205-2509%, TSBAb-A - 158 - + 43%, TSBAb-B - 14 - + 164%). TSBAb-A ignores TSAb activity in serum, and might give low TSBAb activity. However, TSBAb-A clearly differentiates TSBAb-positive patients with hypothyroidism from Graves' patients with hyperthyroidism; thus, we favor TSBAb-A over TSBAb-B. Some of TSBAb-positive patients with hypothyroidism and Graves' patients with hyperthyroidism have both TSBAb and TSAb.  相似文献   

6.
An 11-residue oligopeptide, P-195, was synthesized to match human thyrotropin (TSH) receptor structure from No. 333 to 343 of amino acid sequence. Preincubation of 5 Graves' IgGs with P-195 up to 10 micrograms resulted in dose-dependent reductions of thyroid stimulating antibody (TSAb) activity. [125I] labeled P-195 was found to bind Graves' IgG. The bound radioactivity correlated significantly with their TSAb activity (N = 25, r = 0.587, p less than 0.01). A peptide having a completely reverse sequence as P-195 did not show such biological activity. The peptide did not affect TSH and thyrotropin binding inhibitor immunoglobulin (TBII) on their receptor binding nor biological activities. P-195 was concluded to have a part of TSAb binding sites.  相似文献   

7.
Thyrotropin (TSH) and IgG preparations from patients with Graves' disease increase inositol phosphate as well as cAMP formation in Cos-7 cells transfected with rat TSH receptor cDNA. Mutation of alanine 623 in the carboxyl end of the third cytoplasmic loop of the TSH receptor, to lysine or glutamic acid, results in the loss of TSH- and Graves' IgG-stimulated inositol phosphate formation but not in stimulated cAMP formation. There is no effect of the mutations on basal or P2-purinergic receptor-mediated inositol phosphate formation. The mutations do not affect transfection efficiency or the synthesis, processing, or membrane integration of the receptor, as evidenced by the unchanged amount and composition of the TSH receptor forms on Western blots of membranes from transfected cells. The mutations increase the affinity of the TSH receptor for [125I]TSH and decrease Bmax; however, cells with an equivalently decreased Bmax as a result of transfection with lower levels of wild type receptor do not lose either TSH-induced inositol phosphate formation or cAMP signaling activity. Thus, in addition to discriminating between ligand-induced phosphatidylinositol bisphosphate and cAMP signals, the mutation appears to cause an altered receptor conformation which affects ligand binding to its large extracellular domain.  相似文献   

8.
We have produced rabbit antibodies against synthetic peptides corresponding to the mid-region (amino acid residues 172-202, C peptide) and to the unique segment near the transmembrane region (amino acid residues 341-370, P peptide) in the extracellular component of the human thyrotropin (TSH) receptor and evaluated their biological activities. Both anti-C peptide antibodies raised in two rabbits showed strong thyroid stimulating activities (TSAb) (4127% and 2548%). Anti-P peptide antibodies raised in two rabbits were also strongly positive for TSAb activities (359% and 3468%). However, none of these antibodies had TSH-binding inhibitor immunoglobulin (TBII) activities. These results suggest that the domains responsible for TSAb are likely to span the entire extracellular component of the TSH receptor.  相似文献   

9.
We previously demonstrated the stimulatory effect of polyethylene glycol (PEG) on thyroid-stimulating antibody (TSAb)-IgG-stimulated cAMP production (thyroid stimulating (TS) index) in porcine thyroid cell (PTC) assay. In the present study the clinical usefulness of the practical method using high PEG concentrations was examined. TS activity using PEG 22.5% precipitated fraction (PF) was significantly higher compared to standard TSAb activity using 12.5% PF from TSAb-positive serum, but the maximum TS activity was observed with PEG 12.5% PF + 4% PEG or PEG 22.5% PF + 2% PEG. In all cases of untreated Graves' patients, TSAb activity determined by PEG 22.5% PF was higher compared to standard TSAb activity using PEG 12. 5% PF from test serum, but the highest TSAb activity was observed by PEG 12.5% PF + 4% PEG without increased cAMP production to normal serum. TSAb was positive in 85% (40/47), 98% (46/47) and 100% (47/47) of untreated Graves' patients by the method of PEG 12.5% PF, PEG 22.5% PF and PEG 12.5% + 4% PEG, respectively. Increased TSAb activity by PEG 12.5% PF + 4% PEG method was also observed even if the standard TSAb activity using PEG 12.5% PF method was negative in the euthyroid states of Graves' patients during antithyroid drug therapy. The stimulatory effect of PEG on TS activity was not found in other thyroidal diseases [thyroiditis chronica (with high serum TSH), thyroid stimulation-blocking antibody (TSBAb)-positive sera (with low serum TSH), adenomatous goiter, subacute thyroiditis, and thyroid cancer]. The stimulatory effect of 5% PEG on TS activity produced directly by small amounts of Graves' serum (50 microl) was also found, although the sensitivity was lower than with PEG-precipitated IgG from 0.2 ml serum. The clinical usefulness of the sensitive TSAb assay using PEG-precipitated IgG or direct serum assay in the presence of high PEG concentrations was demonstrated.  相似文献   

10.
Distinguishing Graves' disease (GD) from a toxic multinodular goiter (TMG) subgroup with a diffuse but uneven Tc-distribution depends on the diagnostic power of the TSH-receptor antibody (TRAb) determination. Bioassays using CHO cell lines expressing the hTSH-receptor or a new TBII assay, which uses the hTSH-receptor as an antigen (DYNOTEST TRAK human, Brahms, Germany), showed a higher sensitivity for the detection of TRAbs in patients with GD than assays using solubilized porcine epithelial cell membranes. The aim of this study was to investigate whether the new Dynotest TRAK human assay has an increased sensitivity to distinguish GD from non-autoimmune hyperthyroidism. Therefore, we examined 21 consecutive patients with the initial diagnosis of TMG for thyroid-stimulating antibodies (TSAbs, JP26 cell assay) and TBII with the new highly sensitive Dynotest TRAK human (Brahms, Germany). The initial diagnosis of TMG was based on suppressed TSH and a patchy Tc-uptake of more than 1 % and less than 7 % or TSH of more than 0.3 mIE/l with a patchy Tc-uptake of more than 1.5 % and less than 7 % and negative TBII values in a displacement assay using solubilized porcine epithelial cell membranes (TRAK, Brahms, Germany). 11 sera from these 21 patients showed TSAb activity. Furthermore, 10 of these 11 TSAb-positive sera were also positive in the Dynotest TRAK human assay, whereas one serum sample was borderline positive. TSAb activity and inhibition of (125)I-bTSH binding in the Dynotest TRAK human assay correlated well (r = 0.7). Therefore, 11 of the 21 investigated patients initially classified as TMG actually had GD, which was undetectable using the porcine TBII assay. In conclusion, TSAbs or TRAbs detected with the Dynotest TRAK human have the highest diagnostic power to differentiate GD from TMG. Because of the less cumbersome assay technique, the Dynotest TRAK human measurements should be obtained for all patients with non-typical TMG to differentiate GD from non-autoimmune hyperthyroidism in order to select the appropriate therapy for these patients.  相似文献   

11.
To identify immunogenic regions in human thyrotropin (TSH) receptor for immunoglobulin G (IgG) of patients with Graves' disease, seven different peptides (each consisting of 14-29 residues long) corresponding to segments of the extracellular domain of the receptor were synthesized. Graves' sera and IgG significantly bound to two out of seven peptides (the amino acid sequence of peptide #1, HQEEDFRVTCKDIQRIPSLPPSTQT; that of peptide #5, LRQRKSVNALNSPLHQEYEENLGDSIVGY). The present data indicate the characteristic existence of immunogenic regions in human TSH receptor for IgG of patients with Graves' disease.  相似文献   

12.
Guinea pig fat cell membranes (FCM) have been widely used in preference to thyroid membranes as a source of TSH receptors to investigate TSH receptor antibodies in Graves' disease, because FCM are ostensibly free of other thyroid antigens. However, by FCM immunoblotting we have found: 8 of 10 normal sera bound to determinants at 38 and 190 kDa; 17 other determinants were recognised by 60% of Graves' or Hashimoto sera and by 20% of normal sera; three determinants at 65-90 kDa were recognised by 5 of 13 Graves' but by none of the normal or Hashimoto sera; and none of the determinants recognised appeared to be related to the TSH receptor.  相似文献   

13.
125I-TSH binding to porcine thyroid and guinea pig fat resulted in curvilinear Scatchard plots with similar dissociation constants for the high and low affinity binding components. Antibodies from the sera of patients with Graves' disease inhibited binding to the high and low affinity binding components of both tissues. Covalent cross-linking of 125I-TSH to membranes from each tissue resulted in the specific labeling of two protein bands. The guinea pig fat receptor subunits have Mr values of 52,000 and 38,000, whereas the porcine thyroid receptor subunits have values of 46,000 & 35,000. The labeling of the receptor subunits was inhibited by preincubation with Graves' autoantibodies. Despite possessing a different subunit composition, the receptors from these tissues exhibit similar affinity for TSH and share similar antigenic determinants for Graves' autoantibodies.  相似文献   

14.
There exists a consensus that hyperthyroid Graves' disease is caused by thyrotropin receptor (TSH-R) autoantibodies. To test the possibility that the TSH-R is the sole antigen for thyroid stimulating antibodies (TSAb), we compared bioactivities of Graves' IgGs between non-thyroid mammalian cells transfected with human TSH-R cDNA and the reference thyroid bioassay. A Graves' IgG with TSH-binding inhibitor immunoglobulin (TBII) activity (89%) markedly stimulated cAMP formation in both CHO-K1 cells transfected with TSH-R cDNA (340 microU/ml of TSH equivalent) and rat thyroid cells, FRTL-5, (410 microU/ml of TSH equivalent). In contrast, a TBII negative (-1.5%) IgG from another patient with Graves' disease showed a strong thyroid stimulating activity (87 microU/ml of TSH equivalent) when FRTL-5 cells were used for the assay. But no stimulating activity was observed in this IgG when CHO-K1 cells transfected with TSH-R cDNA were used, suggesting a possible existence of TSH-R non-mediated thyroid stimulating immunoglobulin in some cases of Graves' disease.  相似文献   

15.
OBJECTIVE: Evidence of anti-thyroid-stimulating hormone (TSH) antibody in Graves' serum has been reported. We found that extremely high Graves' anti-TSH antibodies neutralized other Graves' thyroid-stimulating antibody (TSAb) activity. METHOD: TSAb-IgG was affinity-purified by Sepharose-bound Graves' anti-TSH antibody (extremely high). RESULT: The thyroid-stimulating activity in affinity-purified TSAb-IgG increased about 4-5 times compared to that before purification. TSH-binding inhibitory immunoglobulin (TBII) activity in affinity-purified TSAb-IgG also increased using TSH receptor-coated tube assay. A similar increase of thyroid-stimulating activity accompanied with TBII activity was also observed in affinity-purified TSAb-IgG-F(ab')(2). CONCLUSION: This suggests the possibility that either TSAb may be an anti-idiotypic antibody against anti-TSH antibody or anti-TSH antibody may be an anti-idiotypic antibody against anti-TSH receptor antibody.  相似文献   

16.
Since cross-reactivity of TSH with the human FSH receptor has been reported, in this study we tested the effect of thyroid-stimulating antibody (TSAb) and thyroid stimulation-blocking antibody (TSBAb) on Chinese hamster ovary cells expressing human FSH receptor (CHO-hFSH-R cells). We examined the TSBAb activity of sera from hypothyroid patients who had a positive TBII to determine whether these sera also block the effect of FSH on CHO-hFSH-R cells. Although human FSH I-3 (0.25-16 ng/ml) stimulated the production of intracellular cAMP in CHO-hFSH-R cells with dose-responsive manner, neither TSAb nor TSBAb had such an effect on the cells.  相似文献   

17.
Several Graves' sera were simultaneously assessed in a bioassay based on the ability of porcine thyroid cells to organify 125I and in a radioreceptor assay for TSH receptor binding activity. Both assay systems were sensitive to 1 mcU/ml (final concentration) of unlabelled bovine TSH. Six Graves' sera were studied in detail over a wide (0-1.0 mcl sera) dose response range in repeat determinations. Two sera exhibited parallel binding and stimulating. However, two sera revealed significant inhibition of 125I-TSH binding prior to the demonstration of stimulation and the other two sera showed stimulatory capabilities before significant binding was evident. IgG was prepared from one serum by ammonium sulphate precipitation and chromatography on Sepharose 6B and then subjected to preparative isoelectric focusing. The isoelectric distribution of the two activities were found to be identical with major peaks of activity at pl=9.5 and pl=8.5. In summary: 1) each Graves' sera exhibits different dose-response curves with respect to binding and stimulation, 2) at certain concentrations of sera, only binding or stimulation were evident, 3) neither assay was consistently more sensitive for the presence of Graves' immunoglobulins, 4) for one Graves' sera, binding and stimulation could not be separated by isoelectric focusing. These studies would suggest each Graves' immunoglobulin has inherently different characteristics in its interaction with the TSH receptor.  相似文献   

18.
Previously we reported the augmentative effect of nonionic hydrophilic polymers such as polyethylene glycol (PEG), polyvinyl alcohol (PVA) and dextran on thyroid-stimulating antibody (TSAb) activity in porcine thyroid cell assays. We examined whether a similar phenomenon occurs in FRTL-5 thyroid cells and CHO cells expressing the human (h) TSH receptor (CHO-hTSHR cells). As with porcine thyroid cells, PEG 22.5% precipitated crude IgG from serum of patients with Graves' disease, significantly increased cAMP production as compared with PEG 12.5% precipitated crude IgG in both FRTL-5 cells and CHO-hTSHR cells. PEG 5% augmented purified-TSAb-IgG-stimulated cAMP production in both cell assays. TSAb activities and positivity by the direct assay using whole serum (0.05 ml) in the presence of 5% PEG in untreated Graves' patients were significantly increased as compared with the absence of 5% PEG. The augmentative effects of PVA 10% or dextran T-70 10% on TSAb-IgG-stimulated cAMP production were also observed in both cell assays. PVA 10% did not augment TSH-stimulated cAMP production in spite of weak augmentation by dextran 10% in both cell assays. Lack of the augmentative effects of PEG 5%, PVA 10% and dextran 10% on cAMP produced by GTPgammaS, forskolin and pituitary adenylate cyclase activating polypeptide was observed in both cell assays. The augmentative effects of these polymers in both cell assays similar to porcine thyroid cells suggest that there is no apparent species specificity among human, porcine and rat thyroid cells as far as TSH receptor linked cAMP production in cell membranes existed.  相似文献   

19.
When co-expressed with receptor activity-modifying protein (RAMP) 1, calcitonin receptor-like receptor (CRLR) can function as a receptor for both calcitonin gene-related peptide (CGRP) and adrenomedullin (AM). To investigate the structural determinants of ligand binding specificity, we examined the extracellular domain of human (h) RAMP1 using various deletion mutants. Co-expression of the hRAMP1 mutants with hCRLR in HEK-293 cells revealed that deletion of residues 91-94, 96-100, or 101-103 blocked [125I]CGRP binding and completely abolished intracellular cAMP accumulation normally elicited by CGRP or AM. On the other hand, the deletion of residues 78-80 or 88-90 significantly attenuated only AM-evoked responses. In all of these cases, the receptor heterodimers were fully expressed at the cell surface. Substituting alanine for residues 91-103 one at a time had little effect on CGRP-induced responses, indicating that although this segment is essential for high affinity agonist binding to the receptors, none of the residues directly interacts with either CGRP or AM. This finding suggests that RAMPs probably determine ligand specificity by contributing to the structure of the ligand-binding pocket or by allosteric modulation of the conformation of the receptor. Interestingly, the L94A mutant up-regulated surface expression of the receptor heterodimer to a greater degree than wild-type hRAMP1, thereby increasing CGRP binding and signaling. L94A also significantly increased cell surface expression of the hRAMP1 deletion mutant D101-103 when co-transfected with hCRLR, and expression of a L94A/D101-103 double mutant markedly attenuated the activity of endogenous RAMP1 in HEK-293T cells.  相似文献   

20.
The aim of this study was to investigate thyroid states, significance of anti-TSH receptor antibodies and the clinical courses of patients with euthyroid Graves' ophthalmopathy. The clinical and laboratory finding of 30 patients with euthyroid Graves' ophthalmopathy were briefly as follows: 1) normal sized thyroid or small goiter; 2) negative or weakly positive thyrotropin binding inhibitor immunoglobulin (TBII); 3) normal thyroid [99 m-Tc] pertechnetate uptake; and 4) frequent observations of low serum TSH values. Besides TBII, thyroid stimulating antibody (TSAb) was measured under low salt and isotonic conditions using FRTL-5 rat thyroid cells. Both TBII and TSAb titers were lower in euthyroid Graves' ophthalmopathy than in hyperthyroid Graves' disease. Serum TSH levels frequently became low in patients considered as euthyroid upon the first examination as well as in Graves' patients in remission, reflecting preceding or mild hyperthyroidism. In follow-up studies, these patients with mildly elevated thyroid hormone levels and low TSH levels seldom reached a state of persistent hyperthyroidism, when TBII was negative or only weakly positive.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号