首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract Glucose consumption and catabolite production by thick suspensions of Trypanosoma cruzi, Leishmania mexicana and Crithidia fasciculata were similar under aerobic and anaerobic conditions, indicating lack of Pasteur effect. Succinate was the main product for L. mexicana and C. fasciculata ; the latter also produced similar amounts of ethanol. T. cruzi produced succinate and l -alanine to a similar extent. l -Alanine was also a major product of L. mexicana , but was neither produced, nor consumed, by C. fasciculata . Small amounts of glycerol were produced by L. mexicana and C. fasciculata , but not by T. cruzi , which had no detectable NAD-dependent sn -glycerol-3-phosphate dehydrogenase activity.  相似文献   

2.
Putrescine transport in human platelets   总被引:1,自引:0,他引:1  
Putrescine transport has been studied in human platelets. The uptake of putrescine is saturable and appears to be an energy-dependent process, since it is inhibited by the uncoupler 2,4-dinitrophenol and low temperature. The evidence presented suggests that the uptake process is complex and may be dependent upon pH gradient, membrane potential, and other unidentified factors. Putrescine transport is not inhibited by amino acids and is only slightly inhibited by spermidine and spermine. A membrane protein involved in putrescine transport has been identified and partially purified. Differential labeling with N-ethylmaleimide identified proteins with apparent molecular weights of 65000 and 23000 as determined by SDS-polyacrylamide gel electrophoresis. Column chromatographic purification on a putrescine affinity column revealed a Mr 55000 protein which copurified with the Mr 65000 protein. Additional evidence supporting the involvement of these proteins in putrescine transport was seen in putrescine protection against N-ethylmaleimide inhibition of putrescine uptake. Putrescine uptake may occur via the serotonin transport system, since imipramine inhibits transport and because of the similarities in the molecular weights of the proteins implicated in transport.  相似文献   

3.
S-Adenosylmethionine decarboxylase (AdoMetDC) is a pyruvoyl-dependent enzyme that catalyzes an essential step in polyamine biosynthesis. The polyamines are required for cell growth, and the biosynthetic enzymes are targets for antiproliferative drugs. The function of AdoMetDC is regulated by the polyamine-precursor putrescine in a species-specific manner. AdoMetDC from the protozoal parasite Trypanosoma cruzi requires putrescine for maximal enzyme activity, but not for processing to generate the pyruvoyl cofactor. The putrescine-binding site is distant from the active site, suggesting a mechanism of allosteric regulation. To probe the structural basis by which putrescine stimulates T. cruzi AdoMetDC we generated mutations in both the putrescine-binding site and the enzyme active site. The catalytic efficiency of the mutant enzymes, and the binding of the diamidine inhibitors, CGP 48664A and CGP 40215, were analyzed. Putrescine stimulates the k(cat)/K(m) for wild-type T. cruzi AdoMetDC by 27-fold, and it stimulates the binding of both inhibitors (IC(50)s decrease 10-20-fold with putrescine). Unexpectedly CGP 48664A activated the T. cruzi enzyme at low concentrations (0.1-10 microM), while at higher concentrations (>100 microM), or in the presence of putrescine, inhibition was observed. Analysis of the mutant data suggests that this inhibitor binds both the putrescine-binding site and the active site, providing evidence that the putrescine-binding site of the T. cruzi enzyme has broad ligand specificity. Mutagenesis of the active site identified residues that are important for putrescine stimulation of activity (F7 and T245), while none of the active site mutations altered the apparent putrescine-binding constant. Mutations of residues in the putrescine-binding site that resulted in reduced (S111R) and enhanced (F285H) catalytic efficiency were both identified. These data provide evidence for coupling between residues in the putrescine-binding site and the active site, consistent with a mechanism of allosteric regulation.  相似文献   

4.
Parasites belonging to Leishmania braziliensis, Leishmania donovani, Leishmania mexicana complexes and Trypanosoma cruzi (clones 20 and 39) were searched in blood, lesions and strains collected from 28 patients with active cutaneous leishmaniasis and one patient with visceral leishmaniasis. PCR-hybridization with specific probes of Leishmania complexes (L. braziliensis, L. donovani and L. mexicana) and T. cruzi clones was applied to the different DNA samples. Over 29 patients, 8 (27.6%) presented a mixed infection Leishmania complex species, 17 (58.6%) a mixed infection Leishmania-T. cruzi, and 4 (13.8%) a multi Leishmania-T. cruzi infection. Several patients were infected by the two Bolivian major clones 20 and 39 of T. cruzi (44.8%). The L. braziliensis complex was more frequently detected in lesions than in blood and a reverse result was observed for L. mexicana complex. The polymerase chain reaction-hybridization design offers new arguments supporting the idea of an underestimated rate of visceral leishmanisis in Bolivia. Parasites were isolated by culture from the blood of two patients and lesions of 10 patients. The UPGMA (unweighted pair-group method with arithmetic averages) dendrogram computed from Jaccard's distances obtained from 11 isoenzyme loci data confirmed the presence of the three Leishmania complexes and undoubtedly identified human infections by L. (V.) braziliensis, L. (L.) chagasi and L. (L.) mexicana species. Additional evidence of parasite mixtures was visualized through mixed isoenzyme profiles, L. (V.) braziliensis-L. (L.) mexicana and Leishmania spp.-T. cruzi.The epidemiological profile in the studied area appeared more complex than currently known. This is the first report of parasitological evidence of Bolivian patients with trypanosomatidae multi infections and consequences on the diseases' control and patient treatments are discussed.  相似文献   

5.
The uptake of intracellular putrescine and spermidine was examined in B16 melanoma cells. It was found that difluoromethylornithine preferentially induced putrescine transport (28-fold) compared to that for spermidine (3.5-fold). Putrescine uptake was partially Na+ dependent, whereas spermidine uptake was not. Inhibition studies with the two polyamines showed that putrescine was a poor competitive inhibitor of spermidine uptake, exhibiting a Ki of 69-75 microM, whereas the estimated Km for putrescine uptake was only 5.36 microM. By contrast, spermidine inhibition of putrescine transport produced a non-linear Eadie-Scatchard plot suggesting that putrescine was taken up by a spermidine-sensitive and a spermidine-insensitive process. The estimated spermidine Ki for inhibition of the spermidine-sensitive process was 0.125 microM. Using a series of polypyridinium quaternary salts to inhibit transport, no correlation between inhibition of putrescine uptake and inhibition of spermidine uptake was seen. Finally, the photoaffinity label, 1,12-di(N5-azido-2-nitrobenzoyl)spermine selectively inactivated the putrescine transporter(s) without affecting spermidine uptake. From these observations, it was concluded that multiple polyamine transporters are present on B16 melanoma cells and that separate, distinct transporter(s) account for the uptake of putrescine and spermidine in this cell-line following induction with difluoromethylornithine. The present of different transporters for the two polyamines indicates that expression of uptake activity for putrescine and spermidine may be under separate cellular control.  相似文献   

6.
Escherichia coli KK313, which was deficient in spermidine transport, was isolated by treatment of E. coli MA261 with N-methyl-N'-nitro-N-nitrosoguanidine. E. coli NH1596, which was deficient in spermidine transport and has a 90% decreased putrescine transport activity, was obtained by a second treatment of E. coli KK313 with the same mutagen. Genes for polyamine transport systems were isolated by transforming E. coli NH1596 through DNA fragments from E. coli DR112 using pACYC184 as a vector. One clone for the gene of protein(s) catalyzing both putrescine and spermidine uptake (pPT104) was isolated. Two clones for the genes of protein(s) catalyzing only putrescine uptake (pPT79 and pPT71) were obtained. The genes encoded by pPT104, pPT79, and pPT71 were mapped at 15, 19, and 16 min of E. coli chromosome, respectively. Spermidine uptake by NH1596 carrying pPT104, and by MA261, was not inhibited by putrescine and several polyamine analogues, and the Kt values of these two systems were both approximately 0.1 microM. Putrescine transport by NH1596 carrying pPT104 was inhibited completely by spermidine, N,N-dimethyl-4,4'-bipyridylium (paraquat), and N1-acetyl-spermidine, and the Kt value was 1.4 microM. Putrescine uptake by NH1596 carrying pPT79 or pPT71 was not inhibited by spermidine and several polyamine analogues, and the Kt values were 0.5 and 1.8 microM, respectively. In MA261, the putrescine uptake was inhibited by 25-35% by paraquat and N1-acetyl-polyamines and showed two Kt values, 0.5 and 1.5 microM. Based on these findings, the polyamine transport systems of E. coli are discussed.  相似文献   

7.
The transport of putrescine into a moderately salt tolerant cyanobacterium Synechocystis sp. PCC 6803 was characterized by measuring the uptake of radioactively-labeled putrescine. Putrescine transport showed saturation kinetics with an apparent K(m) of 92 +/- 10 microM and V(max) of 0.33 +/- 0.05 nmol/min/mg protein. The transport of putrescine was pH-dependent with highest activity at pH 7.0. Strong inhibition of putrescine transport was caused by spermine and spermidine whereas only slight inhibition was observed by the addition of various amino acids. These results suggest that the transport system in Synechocystis sp. PCC 6803 is highly specific for polyamines. Putrescine transport is energy-dependent as evidenced by the inhibition by various metabolic inhibitors and ionophores. Slow growth was observed in cells grown under salt stress. Addition of low concentration of putrescine could restore growth almost to the level observed in the absence of salt stress. Upshift of the external osmolality generated by either NaCl or sorbitol caused an increased putrescine transport with an optimum 2-fold increase at 20 mosmol/kg. The stimulation of putrescine transport mediated by osmotic upshift was abolished in chloramphenicol-treated cells, suggesting possible involvement of an inducible transport system.  相似文献   

8.
The biochemical properties of polyamine transport system have been studied in detail in NB-15 mouse neuroblastoma cells in culture by measuring the uptake of [14C]putrescine under various experimentally imposed pharmacological conditions. Putrescine uptake in the NB-15 mouse neuroblastoma cells appeared to be a sodium-dependent process. Iso-osmotic displacement of Na+ in the assay medium with either choline or Li+ resulted in a linear decrease of putrescine uptake. Gramicidin, a channel-former ionophore, inhibited putrescine uptake by more than 90% at 20 nM. N-Ethylmaleimide at 5 mM or p-chloromercuribenzene sulfonate at 50 microM completely abolished putrescine uptake. Conversely, oxidized glutathione at 10 mM or 5,5'-dithiobis-(2-nitrobenzoic acid) at 5 microM gave a 1.3-1.4-fold stimulation after a 1-h incubation. This polyamine transport system appeared to be subjected to adaptive regulation. Polyamine antimetabolites such as alpha-difluoromethyl ornithine stimulated putrescine uptake whereas preloading of cells with polyamines inhibited putrescine uptake. Preloading cells with neutral amino acids that belong to sodium-dependent transport System A stimulated putrescine uptake by more than 8-10-fold. These results suggested that the polyamine transport system in NB-15 mouse neuroblastoma cells was sodium dependent and shared some characteristics common to other known sodium-dependent transport systems. These characteristics included (a) sensitivity to ionophores, (b) sensitivity to sulfhydryl reagents, and (c) sensitivity to intracellular contents of substrate molecules. Our data also indicated that polyamine transport may be regulated by transport System A amino acids.  相似文献   

9.
Clyne T  Kinch LN  Phillips MA 《Biochemistry》2002,41(44):13207-13216
S-Adenosylmethionine decarboxylase (AdoMetDC) is a pyruvoyl-dependent enzyme that is processed from a single polypeptide into two subunits creating the cofactor. In the human enzyme, both the proenzyme processing reaction and enzyme activity are stimulated by the polyamine putrescine. The processing reaction of Trypanosoma cruzi AdoMetDC was studied in an in vitro translation system. The enzyme was fully processed in the absence of putrescine, and the rate of this reaction was not stimulated by addition of the polyamine. Residues in the putrescine binding site of the human enzyme were evaluated for their role in processing of the T. cruzi enzyme. The E15A, I80K/S178E, D174A, and E256A mutant T. cruzi enzymes were fully processed. In contrast, mutation of R13 to Leu (the equivalent residue in the human enzyme) abolished processing of the T. cruzi enzyme, demonstrating that Arg at position 13 is a major determinant for proenzyme processing in the parasite enzyme. This amino acid change is a key structural difference that is likely to be a factor in the finding that putrescine has no role in processing of the T. cruzi enzyme. In contrast, the activity of T. cruzi AdoMetDC is stimulated by putrescine. Equilibrium sedimentation experiments demonstrated that putrescine does not alter the oligomeric state of the enzyme. The putrescine binding constant for binding to the T. cruzi enzyme (K(d) = 150 microM) was measured by a fluorescence assay and by ultrafiltration with a radiolabeled ligand. The mutant T. cruzi enzyme D174V no longer binds putrescine, and is not activated by the diamine. In contrast, mutation of E15, S178, E256, and I80 had no effect on putrescine binding. The k(cat)/K(m) values for E15A and E256A mutants were stimulated by putrescine to a smaller extent than the wild-type enzyme (2- and 4-fold vs 11-fold, respectively). These data suggest that the putrescine binding site on the T. cruzi enzyme contains only limited elements (D174) in common with the human enzyme and that the diamine plays different roles in the function of the mammalian and parasite enzymes.  相似文献   

10.
Putrescine uptake and translocation were studied by feeding [3H] putrescine to roots of tomato seedlings ( Lycopersicon esculentum Miller, cv. Earlypak 7) at the stage of expanded cotyledons, of maize seedlings ( Zea mais L.) at the coleoptile stage, and of one year old pines ( Pinus pinea L.). Putrescine translocation was rapid as radioactivity appeared in the upper part of the seedlings within 30 min, continuing to increase up to 24 h, while it decreased in roots. The putrescine supplied was partly metabolized to spermidine and spermine in the course of 24 h. The transport was temperature-dependent as it increased with increasing temperature from 4°C to 30°C. In plants kept in 100% relative humidity the transport decreased by 27% compared to controls kept in 50% relative humidity. The existence of basipetal transport was assessed by feeding labeled putrescine to cotyledons or to a primary leaf of tomato plants at different stages of growth. The influence of ringing at the hypocotyl level on polyamine translocation in pine plants was studied in order to exclude cortical parenchyma and phloem from transport. Radioactivity decreased in the hypocotyl just above the ring and in the upper parts (epicotyls with needles), but long-distance transport was low affected indicating xylem transport. It is suggested that polyamine transport is not polar, and that it occurs mainly through xylem vessels.  相似文献   

11.
Robello C  Gamarro F  Castanys S  Alvarez-Valin F 《Gene》2000,246(1-2):331-338
For the purpose of investigating the evolutionary relationships among strains of the human parasite Trypanosoma cruzi, we have determined the nucleotide sequence, in 16 T. cruzi stocks, of a DNA fragment having approximately 1030 nucleotides in length. Phylogenetic analyses show the presence of at least three major groups of T. cruzi strains, a result that contradicts previous phylogenetic inferences based on polymorphism data. We also performed an analysis of the relative extent of nucleotide divergence among T. cruzi strains compared to the divergence between Leishmania species, using the gene encoding pteridine reductase. The results presented in this work show that the divergence among the most distant T. cruzi strains is at least as high as the divergence between two different species complexes of Leishmania, those containing L. major and L. mexicana.  相似文献   

12.
lmcpb, a gene from Leishmania mexicana that encodes a major cysteine proteinase in the parasite, has been cloned and sequenced. LmCPb is related more to cysteine proteinases from Trypanosoma brucei and Trypanosoma cruzi than to a previously characterized cysteine proteinase, LmCPa, of L. mexicana. It contains a long C-terminal extension characteristic of similar enzymes of T. brucei and T. cruzi. The gene is multi-copy and tandemly arranged. lmcpb RNA levels are developmentally regulated with steady state levels being high in amastigotes, low in metacyclic promastigotes and undetectable in multiplicative promastigotes. This variation correlates with and may account for the stage-specific expression of LmCPb enzyme activity.  相似文献   

13.
A comparison of Trypanosoma cruzi water soluble antigens with those of stercorarian and salivarian trypanosomes, and Leishmania using immunoprecipitation in gels and immunoelectrophoresis, with the aid of hyperimmune rabbit serum and heterologous adsorptions showed the following. 1) There is a high complexity of soluble antigens of T. cruzi and T. rangeli. 2) At the intraspecific level our results demonstrated the antigenic stability of T. cruzi when maintained in vitro, and that there was quantitative antigenic consistency of the culture forms of different strains of T. cruzi from diverse geographic and parasite sources. At the interspecific level, the antigenic relationships between T. cruzi and the other Trypanosomatidae were established, as follows: 6/10ths of the antigens are shared by stercorarian species (T. dionisii, T. rangeli); 4/10ths by a salivarian trypanosome (T. brucei); and 3/10ths by Leishmania (L. donovani, L. mexicana). 3) Among the 4/10ths of antigenic components specific to T. cruzi, one component was characterized by its antigenicity and immunogenicity in natural and experimental infections, and in immunization experiments; this component was specific to T. cruzi when compared to the other Trypanosomatidae antigens.  相似文献   

14.
Cytidine deaminase (cytidine aminohydrolase, 3.5.4.5) is present in Crithidia fasciculata (a mosquito parasite) and in Trypanosoma cruzi (a human pathogen). The enzyme from C. fasciculata deaminated both cytidine and deoxycytidine, the affinity for the former being much lower than the latter. Affinities for both substrates are equal for the T. cruzi enzyme. The production of the enzyme in C. fasciculata was significantly stimulated by the addition of a number of pyrimidine nucleosides (cytidine, uridine, 5-bromouridine, thymidine, orotidine) to the culture media. Only cytidine stimulated enzyme production in T. cruzi. The enzyme from both organisms was unstable in air, even in the frozen state. Stabilization was achieved under anaerobic conditions.  相似文献   

15.
Trypanosoma cruzi lipids contain a high content of unsaturated fatty acids, primarily oleic acid (C18:1) and linoleic acid (C18:2). Previous data suggest that this parasite is able to convert oleic acid into linoleic acid; humans are not able to do this. Presently, we show that T. cruzi has a gene with high similarity to the delta12 (omega6)-oleate desaturase from plants. Northern blot analysis of the oleate desaturase gene from T. cruzi (OD(Tc)) indicated that this gene is transcribed in epimastigote, amastigote, and trypomastigote forms. Pulsed-field analysis showed that OD(Tc) is located at distinct chromosomal bands on distinct T. cruzi phylogenetic groups. In addition, the chromoblot analysis demonstrated the presence of homologous OD(Tc) genes in several trypanosomatids; namely, Crithidia fasciculata, Herpetomonas megaseliae, Leptomonas seymouri, Trypanosoma freitasi, Trypanosoma rangeli, Trypanosoma lewisi, Blastocrithidia sp., Leishmania amazonensis, Endotrypanum schaudinni, and Trypanosoma conorhini. The native OD(Tc) activity was detected by metabolic labeling and analysis of total fatty acids from epimastigotes and trypomastigotes of T. cruzi, coanomastigotes of C. fasciculata, and promastigotes of L. amazonensis, H. megaseliae, and L. seymouri. The fact that the enzyme oleate desaturase is not present in humans makes it an ideal molecular target for the development of new chemotherapeutic approaches against Chagas disease.  相似文献   

16.
Putrescine metabolism, uptake, and compartmentation were studied in roots of hydroponically grown intact maize (Zea mays L.) seedlings. In vivo analysis of exogenously applied putrescine indicated that the diamine is primarily metabolized by a cell wall-localized diamine oxidase. Time-dependent kinetics for putrescine uptake could be resolved into a rapid phase of uptake and binding within the root apoplasm, followed by transport across the plasma membrane that was linear for 30 to 40 minutes. Concentration-dependent kinetics for putrescine uptake (between 0.05 and 1.0 millimolar putrescine) appeared to be nonsaturating but could be resolved into a saturable (Vmax 0.397 micromoles per gram fresh weight per hour; Km 120 micromolar) and a linear component. The linear component was determined to be cell wall-bound putrescine that was not removed during the desorption period following uptake of [3H]putrescine. These results suggest that a portion of the exogenously applied putrescine can be metabolized in maize root cell walls by diamine oxidase activity, but the bulk of the putrescine is transported across the plasmalemma by a carrier-mediated process, similar to that proposed for animal systems.  相似文献   

17.
Putrescine transport in Neurospora is saturable and concentrative in dilute buffers, but in the growth medium putrescine simply equilibrates across the cell membrane. We describe a mutant, puu-1, that can concentrate putrescine from the growth medium because the polyamine transport system has lost its normal sensitivity to Ca2+. The wild type closely resembles the mutant if it is washed with citrate and ethylene glycol bis(beta-aminoethyl ether)N,N'-tetraacetic acid. The mutant phenotype also appears in the wild type after treatment with cycloheximide. The results suggest that putrescine uptake is normally regulated by an unstable Ca(2+)-binding protein that restricts polyamine uptake. This protein is evidently distinct from the polyamine-binding function for uptake, which is normal in mutant and in cycloheximide-treated wild type cells. The puu-1 mutation, stripping of Ca2+, and cycloheximide treatment all cause an impairment of amino acid transport, indicating that other membrane transport functions rely upon the product of the puu-1+ gene. Preliminary evidence suggests that the putrescine carrier is not the Ca(2+)-sensitive, low-affinity K(+)-transport system, but K+ efflux does accompany putrescine uptake.  相似文献   

18.
The herbicide paraquat is a selective pulmonary toxin in many mammals, including man, and its pulmonary toxicity has been attributed to selective uptake by a polyamine transport system in lung. In the present study, we investigated the characteristics of this transport process in rabbit lung slices. [14C]Putrescine was accumulated by both saturable and non-saturable processes and the accumulated putrescine was non-effluxable over 60 min. The saturable component was inhibited by spermine and paraquat. Moreover, uptake studies in Na+-deficient medium indicated that the lack of Na+ may selectively enhance uptake via the non-saturable process. The two components also differed in the metabolic fate of accumulated substrate. At 0.6 μM putrescine, where the saturable process predominated, 98% of the 14C in the perchloric acid-soluble fraction of tissue homogenates was present as putrescine, whilst 3% of the accumulated substrate was found in the acid-insoluble fraction. With 500 μM putrescine, where the non-saturable process predominated, 82% of the 14C in the acid-soluble fraction was present as putrescine and 15% of accumulated putrescine was found in the acid-insoluble fraction. The acid-insoluble 14C was localised mainly in the 700 g and 4500 g pellets obtained after homogenising the tissue. We conclude that there are two components to putrescine uptake in rabbit lung slices, both of an apparently irreversible nature. We suggest that the components represent compartmentalisation of putrescine in selective pulmonary cell-types or separate subcellular organelles. The observed metabolism and covalent binding of putrescine appeared to be associated with the non-saturable component only.  相似文献   

19.
Multiple Transport Components for Putrescine in Escherichia coli   总被引:7,自引:6,他引:1       下载免费PDF全文
Putrescine uptake was studied in cultures of Escherichia coli K-12 grown in media of high or low osmolarity. When grown in high osmolarity medium, a transport system of low K(m) and low V(max) was found. For cultures grown in a medium of low osmolarity, the kinetics of putrescine uptake was more complex and consistent with the existence of an additional transport system of higher K(m) and V(max). This conclusion is supported by the isolation of mutants in which one or the other system appears to be defective and by the ability of chloramphenicol to block the expression of the second transport system. Both systems appear to prefer putrescine over other compounds, since several basic amino acids and other polyamines competed only weakly for transport. The action of both uptake systems was shown to cause significant displacement of intracellular putrescine. Both systems also are at least partially energy dependent.  相似文献   

20.
Názer E  Sánchez DO 《PloS one》2011,6(8):e24184
We have recently shown in T. cruzi that a group of RNA Binding Proteins (RBPs), involved in mRNA metabolism, are accumulated into the nucleolus in response to Actinomycin D (ActD) treatment. In this work, we have extended our analysis to other members of the trypanosomatid lineage. In agreement with our previous study, the mechanism seems to be conserved in L. mexicana, since both endogenous RBPs and a transgenic RBP were relocalized to the nucleolus in parasites exposed to ActD. In contrast, in T. brucei, neither endogenous RBPs (TbRRM1 and TbPABP2) nor a transgenic RBP from T. cruzi were accumulated into the nucleolus under such treatment. Interestingly, when a transgenic TbRRM1 was expressed in T. cruzi and the parasites exposed to ActD, TbRRM1 relocated to the nucleolus, suggesting that it contains the necessary sequence elements to be targeted to the nucleolus. Together, both experiments demonstrate that the mechanism behind nucleolar localization of RBPs, which is present in T. cruzi and L. mexicana, is not functional in T. brucei, suggesting that it has been lost or retained differentially during the evolution of the trypanosomatid lineage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号