首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Molecular oxygen evolution from water is a universal signature of oxygenic photosynthesis. Detection of the presence, speed and efficiency of the enzymatic machinery that catalyzes this process in vivo has been limited. We describe a laser-based fast repetition rate fluorometer (FRRF) that allows highly accurate and rapid measurements of these properties via the kinetics of Chl-a variable fluorescence yield (Fv) in living cells and leaves at repetition rates up to 10 kHz. Application to the detection of quenching of Fv is described and compared to flash-induced O2 yield data. Period-four oscillations in both Fv and O2, caused by stimulation of primary charge recombination by the O2 evolving complex (WOC) within Photosystem II (PS II), are directly compared. The first quantitative calculations of the enzymatic parameters of the Kok model (α – miss; β – double hit; S-state populations) are reported from Fv data over a 5 kHz range of flash frequencies that is 100-fold wider than previously examined. Comparison of a few examples of cyanobacteria, green algae and spinach reveals that Arthrospira m., a cyanobacterium that thrives in alkaline carbonate lakes, exhibits the fastest water-splitting rates ever observed thus farin vivo. In all oxygenic phototrophs examined thus far, an unprecedented large increase in the Kok α and β parameters occur at both high and low flash frequencies, which together with their strong correlation, indicates that PS II-WOC centers split water at remarkably lower efficiencies and possibly by different mechanisms at these extreme flash frequencies. Revisions to the classic Kok model are anticipated.  相似文献   

2.
Oxygen consumption in Mn-depleted photosystem II (PSII) preparations under continuous and pulsed illumination is investigated. It is shown that removal of manganese from the water-oxidizing complex (WOC) by high pH treatment leads to a 6-fold increase in the rate of O2 photoconsumption. The use of exogenous electron acceptors and donors to PSII shows that in Mn-depleted PSII preparations along with the well-known effect of O2 photoreduction on the acceptor side of PSII, there is light-induced O2 consumption on the donor side of PSII (nearly 30% and 70%, respectively). It is suggested that the light-induced O2 uptake on the donor side of PSII is related to interaction of O2 with radicals produced by photooxidation of organic molecules. The study of flash-induced O2 uptake finds that removal of Mn from the WOC leads to O2 photoconsumption with maximum in the first flash, and its yield is comparable with the yield of O2 evolution on the third flash measured in the PSII samples before Mn removal. The flash-induced O2 uptake is drastically (by a factor of 1.8) activated by catalytic concentration (5-10 μM, corresponding to 2-4 Mn per RC) of Mn2+, while at higher concentrations (> 100 μM) Mn2+ inhibits the O2 photoconsumption (like other electron donors: ferrocyanide and diphenylcarbazide). Inhibitory pre-illumination of the Mn-depleted PSII preparations (resulting in the loss of electron donation from Mn2+) leads to both suppression of flash-induced O2 uptake and disappearance of the Mn-induced activation of the O2 photoconsumption. We assume that the light-induced O2 uptake in Mn-depleted PSII preparations may reflect not only the negative processes leading to photoinhibition but also possible participation of O2 or its reactive forms in the formation of the inorganic core of the WOC.  相似文献   

3.
The functional state of the Photosystem (PS) II complex in Arabidopsis psbR T-DNA insertion mutant was studied. The ΔPsbR thylakoids showed about 34% less oxygen evolution than WT, which correlates with the amounts of PSII estimated from YDox radical EPR signal. The increased time constant of the slow phase of flash fluorescence (FF)-relaxation and upshift in the peak position of the main TL-bands, both in the presence and in the absence of DCMU, confirmed that the S2QA and S2QB charge recombinations were stabilized in ΔPsbR thylakoids. Furthermore, the higher amount of dark oxidized Cyt-b559 and the increased proportion of fluorescence, which did not decay during the 100s time span of the measurement thus indicating higher amount of YD+QA recombination, pointed to the donor side modifications in ΔPsbR. EPR measurements revealed that S1-to-S2-transition and S2-state multiline signal were not affected by mutation. The fast phase of the FF-relaxation in the absence of DCMU was significantly slowed down with concomitant decrease in the relative amplitude of this phase, indicating a modification in QA to QB electron transfer in ΔPsbR thylakoids. It is concluded that the lack of the PsbR protein modifies both the donor and the acceptor side of the PSII complex.  相似文献   

4.
Alain Gauthier 《BBA》2006,1757(11):1547-1556
The flash-induced thermoluminescence (TL) technique was used to investigate the action of N,N,N′,N′-tetramethyl-p-phenylenediamine (TMPD) on charge recombination in photosystem II (PSII). Addition of low concentrations (μM range) of TMPD to thylakoid samples strongly decreased the yield of TL emanating from S2QB and S3QB (B-band), S2QA (Q-band), and YD+QA (C-band) charge pairs. Further, the temperature-dependent decline in the amplitude of chlorophyll fluorescence after a flash of white light was strongly retarded by TMPD when measured in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU). Though the period-four oscillation of the B-band emission was conserved in samples treated with TMPD, the flash-dependent yields (Yn) were strongly declined. This coincided with an upshift in the maximum yield of the B-band in the period-four oscillation to the next flash. The above characteristics were similar to the action of the ADRY agent, carbonylcyanide m-chlorophenylhydrazone (CCCP). Simulation of the B-band oscillation pattern using the integrated Joliot-Kok model of the S-state transitions and binary oscillations of QB confirmed that TMPD decreased the initial population of PSII centers with an oxidized plastoquinone molecule in the QB niche. It was deduced that the action of TMPD was similar to CCCP, TMPD being able to compete with plastoquinone for binding at the QB-site and to reduce the higher S-states of the Mn cluster.  相似文献   

5.
Our recently presented PS II model (Belyaeva et al., 2008) was improved in order to permit a consistent simulation of Single Flash Induced Transient Fluorescence Yield (SFITFY) traces that were earlier measured by Steffen et al. (2005) on whole leaves of Arabidopsis (A.) thaliana at four different energies of the actinic flash. As the essential modification, the shape of the actinic flash was explicitly taken into account assuming that an exponentially decaying rate simulates the time dependent excitation of PS II by the 10 ns actinic flash. The maximum amplitude of this excitation exceeds that of the measuring light by 9 orders of magnitude. A very good fit of the SFITFY data was achieved in the time domain from 100 ns to 10 s for all actinic flash energies (the maximum energy of 7.5 × 1016 photons/(cm2 flash) is set to 100%, the relative energies of weaker actinic flashes were of ∼8%, 4%, ∼1%). Our model allows the calculation and visualization of the transient PS II redox state populations ranging from the dark adapted state, via excitation energy and electron transfer steps induced by pulse excitation, followed by final relaxation into the stationary state eventually attained under the measuring light. It turned out that the rate constants of electron transfer steps are invariant to intensity of the actinic laser flash. In marked contrast, an increase of the actinic flash energy by more than two orders of magnitude from 5.4 × 1014 photons/(cm2 flash) to 7.5 × 1016 photons/(cm2 flash), leads to an increase of the extent of fluorescence quenching due to carotenoid triplet (3Car) formation by a factor of 14 and of the recombination reaction between reduced primary pheophytin (Phe) and P680+ by a factor of 3 while the heat dissipation in the antenna complex remains virtually constant.The modified PS II model offers new opportunities to compare electron transfer and dissipative parameters for different species (e.g. for the green algae and the higher plant) under varying illumination conditions.  相似文献   

6.
Pavel Pospíšil 《BBA》2009,1787(10):1151-1160
Photosysthetic cleavage of water molecules to molecular oxygen is a crucial process for all aerobic life on the Earth. Light-driven oxidation of water occurs in photosystem II (PSII) — a pigment-protein complex embedded in the thylakoid membrane of plants, algae and cyanobacteria. Electron transport across the thylakoid membrane terminated by NADPH and ATP formation is inadvertently coupled with the formation of reactive oxygen species (ROS). Reactive oxygen species are mainly produced by photosystem I; however, under certain circumstances, PSII contributes to the overall formation of ROS in the thylakoid membrane. Under limitation of electron transport reaction between both photosystems, photoreduction of molecular oxygen by the reducing side of PSII generates a superoxide anion radical, its dismutation to hydrogen peroxide and the subsequent formation of a hydroxyl radical terminates the overall process of ROS formation on the PSII electron acceptor side. On the PSII electron donor side, partial or complete inhibition of enzymatic activity of the water-splitting manganese complex is coupled with incomplete oxidation of water to hydrogen peroxide. The review points out the mechanistic aspects in the production of ROS on both the electron acceptor and electron donor side of PSII.  相似文献   

7.
Many heavy metals inhibit electron transfer reactions in Photosystem II (PSII). Cd2+ is known to exchange, with high affinity in a slow reaction, for the Ca2+ cofactor in the Ca/Mn cluster that constitutes the oxygen-evolving center. This results in inhibition of photosynthetic oxygen evolution. There are also indications that Cd2+ binds to other sites in PSII, potentially to proton channels in analogy to heavy metal binding in photosynthetic reaction centers from purple bacteria. In search for the effects of Cd2+-binding to those sites, we have studied how Cd2+ affects electron transfer reactions in PSII after short incubation times and in sites, which interact with Cd2+ with low affinity. Overall electron transfer and partial electron transfer were studied by a combination of EPR spectroscopy of individual redox components, flash-induced variable fluorescence and steady state oxygen evolution measurements. Several effects of Cd2+ were observed: (i) the amplitude of the flash-induced variable fluorescence was lost indicating that electron transfer from YZ to P680+ was inhibited; (ii) QA to QB electron transfer was slowed down; (iii) the S2 state multiline EPR signal was not observable; (iv) steady state oxygen evolution was inhibited in both a high-affinity and a low-affinity site; (v) the spectral shape of the EPR signal from QAFe2+ was modified but its amplitude was not sensitive to the presence of Cd2+. In addition, the presence of both Ca2+ and DCMU abolished Cd2+-induced effects partially and in different sites. The number of sites for Cd2+ binding and the possible nature of these sites are discussed.  相似文献   

8.
The long-lived, light-induced radical YD of the Tyr161 residue in the D2 protein of Photosystem II (PSII) is known to magnetically interact with the CaMn4 cluster, situated ∼ 30 Å away. In this study we report a transient step-change increase in YD EPR intensity upon the application of a single laser flash to S1 state-synchronised PSII-enriched membranes from spinach. This transient effect was observed at room temperature and high applied microwave power (100 mW) in samples containing PpBQ, as well as those containing DCMU. The subsequent decay lifetimes were found to differ depending on the additive used. We propose that this flash-induced signal increase was caused by enhanced spin relaxation of YD by the OEC in the S2 state, as a consequence of the single laser flash turnover. The post-flash decay reflected S2 → S1 back-turnover, as confirmed by their correlations with independent measurements of S2 multiline EPR signal and flash-induced variable fluorescence decay kinetics under corresponding experimental conditions. This flash-induced effect opens up the possibility to study the kinetic behaviour of S-state transitions at room temperature using YD as a probe.  相似文献   

9.
The discovery of period four oscillations of the fluorescence yield under flashing light demonstrated that not only the redox state of the Photosystem II (PS II) electron acceptor QA, but also the oxygen evolving cycle (described by the S states) modulates the fluorescence yield of chlorophyll (Chl). The positive charges accumulated on the donor side of PS II act on the fluorescence yield (measured in the QA state during a strong flash) through the concentration of the quencher P680 +, the oxidized form of PS II reaction center Chl a. However, the period four oscillations of the fluorescence yield detected 1 s after a strong flash (in the P680QA state) have not yet been fully explained. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

10.
The flash-induced kinetics of various characteristics of Photosystem II (PS II) in the thylakoids of oxygenic plants are modulated by a period of two, due to the function of a two-electron gate in the electron acceptor side, and by a period of four, due to the changes in the state of the oxygen-evolving complex. In the absence of inhibitors of PS II, the assignment of measured signal to the oxygen-evolving complex or to quinone acceptor side has frequently been done on the basis of the periodicity of its flash-induced oscillations, i.e. four or two. However, in some circumstances, the period four oscillatory processes of the donor side of PS II can generate period two oscillations. It is shown here that in the Kok model of oxygen evolution (equal misses and equal double hits), the sum of the concentrations of the S 0 and S 2 states (as well as the sum of concentrations of S 1 and S 3 states) oscillates with period of two: S 0+S 2S 1+S 3S 0+S 2S 1+S 3. Moreover, in the generalized Kok model (with specific miss factors and double hits for each S-state) there always exist such 0, 1, 2, 3 that the sum 0[S0] + 1[S1] + 2[S2] + 3[S3] oscillates with period of two as a function of flash number. Any other coefficients which are linearly connected with these coefficients, % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGak0dh9WrFfpC0xh9vqqj-hEeeu0xXdbba9frFj0-OqFf% ea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs0dXdbPYxe9vr0-vr% 0-vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbew7aLzaaja% aaaa!3917!\[\hat \varepsilon \]i = c1i + c2, also generate binary oscillations of this sum. Therefore, the decomposition of the flash-induced oscillations of some measured parameters into binary oscillations, depending only on the acceptor side of PS II, and quaternary oscillations, depending only on the donor side of PS II, becomes practically impossible when measured with techniques (such as fluorescence of chlorophyll a, delayed fluorescence, electrochromic shift, transmembrane electrical potential, changes of pH and others) that could not spectrally distinguish the donor and acceptor sides. This property of the Kok cycle puts limits on the simultaneous analysis of the donor and acceptor sides of the RC of PS II in vivo and suggests that binary oscillations are no longer a certain indicator of the origin of a signal in the acceptor side of PS II.Abbreviations PS II Photosystem II - P680 primary electron donor of reaction center of PS II - QA one electron acceptor plastoquinone - QB two electron acceptor plastoquinone - S n redox state of the oxygen evolving complex, where n=0,1,2,3 and 4 - Chl a chlorophyll a This paper is dedicated to the memory of Alexander Kononenko.  相似文献   

11.
Genome sequence of Arabidopsis thaliana (Arabidopsis) revealed two psbO genes (At5g66570 and At3g50820) which encode two distinct PsbO isoforms: PsbO1 and PsbO2, respectively. To get insights into the function of the PsbO1 and PsbO2 isoforms in Arabidopsis we have performed systematic and comprehensive investigations of the whole photosynthetic electron transfer chain in the T-DNA insertion mutant lines, psbo1 and psbo2.The absence of the PsbO1 isoform and presence of only the PsbO2 isoform in the psbo1 mutant results in (i) malfunction of both the donor and acceptor sides of Photosystem (PS) II and (ii) high sensitivity of PSII centers to photodamage, thus implying the importance of the PsbO1 isoform for proper structure and function of PSII. The presence of only the PsbO2 isoform in the PSII centers has consequences not only to the function of PSII but also to the PSI/PSII ratio in thylakoids. These results in modification of the whole electron transfer chain with higher rate of cyclic electron transfer around PSI, faster induction of NPQ and a larger size of the PQ-pool compared to WT, being in line with apparently increased chlororespiration in the psbo1 mutant plants. The presence of only the PsbO1 isoform in the psbo2 mutant did not induce any significant differences in the performance of PSII under standard growth conditions as compared to WT. Nevertheless, under high light illumination, it seems that the presence of also the PsbO2 isoform becomes favourable for efficient repair of the PSII complex.  相似文献   

12.
In Photosystem II (PS II), water is oxidized to molecular oxygen and plastoquinone is reduced to plastoquinol. The oxidation of water requires the accumulation of four oxidizing equivalents, through the so-called S-states of the oxygen evolving complex; the production of plastoquinol requires the accumulation of two reducing equivalents on a bound plastoquinone, QB. It has been generally believed that during the flash-induced transition of each of the S-states (Sn Sn+1, where n=0, 1, 2 and 3), a certain small but equal fraction of the PS II reaction centers are unable to function and, thus, miss being turned over. We used thoroughly dark-adapted thylakoids from peas (Pisum sativum) and Chenopodium album (susceptible and resistant to atrazine) starting with 100% of the oxygen evolving complex in the S1 state. Thylakoids were illuminated with saturating flashes, providing a double hit parameter of about 0.07. Our experimental data on flashnumber dependent oscillations in the amount of oxygen per flash fit very well with a binary pattern of misses: 0, 0.2, 0, 0.4 during S0 S1, S1 S2, S2 S3 and S3 S0 transitions. Addition of 2 mM ferricyanide appears to shift this pattern by one flash. These results are consistent with the bicycle model recently proposed by V. P. Shinkarev and C. A. Wraight (Oxygen evolution in photosynthesis: From unicycle to bicycle, 1993, Proc Natl Acad Sci USA 90: 1834–1838), where misses are due to the presence of P+ or QA - among the various equilibrium states of PS II centers.Abbreviations miss parameter - double hit parameter - PS II Photosystem II - QA primary one-electron acceptor of PS II, a plastoquinone molecule - QB secondary plastoquinone two-electron acceptor of PS II - S-states (Sn, where n=0, 1, 2, 3 or 4) redox states of the oxygen evolving complex  相似文献   

13.
Electron paramagnetic resonance (EPR) spectroscopy reveals functional and structural similarities between the reaction centres of the chlorophyll d-binding photosystem I (PS I) and chlorophyll a-binding PS I. Continuous wave EPR spectrometry at 12K identifies iron-sulphur centres as terminal electron acceptors of chlorophyll d-binding PS I. A transient light-induced electron spin echo (ESE) signal indicates the presence of a quinone as the secondary electron acceptor (Q) between P(740)(+) and the iron-sulphur centres. The distance between P(740)(+) and Q(-) was estimated within point-dipole approximation as 25.23+/-0.05A, by the analysis of the electron spin echo envelope modulation.  相似文献   

14.
15.
Saber Hamdani 《BBA》2009,1787(10):1223-1229
The interaction of methylamine with chloroplasts' photosystem II (PSII) was studied in isolated thylakoid membranes. Low concentration of methylamine (mM range) was shown to affect water oxidation and the advancement of the S-states. Modified kinetics of chlorophyll fluorescence rise and thermoluminescence in the presence of methylamine indicated that the electron transfer was affected at both sides of PSII, and in particular the electron transfer between YZ and P680+. As the concentration of methylamine was raised above 10 mM, the extrinsic polypeptides associated with the oxygen-evolving complex were lost and energy transfer between PSII antenna complexes and reaction centers was impaired. It was concluded that methylamine is able to affect both extrinsic and intrinsic subunits of PSII even at the lowest concentrations used where the extrinsic polypeptides of the OEC are still associated with the luminal side of the photosystem. As methylamine concentration increases, the extrinsic polypeptides are lost and the interaction with intrinsic domains is amplified resulting in an increased F0.  相似文献   

16.
The obligate phototrophic green alga Chlamydobotrys stellata does not evolve oxygen when grown in CO2-free atmosphere on acetate. With the application of the lipophilic acceptor 2,6-dichloro-p-benzoquinone it was investigated whether this phenomenon is caused by the inactivation of the water-splitting system or by an inhibition of the electron transport chain. It was found that in the presence of DCQ, the photoheterotrophic alga exhibited a normal period-4 flash oxygen pattern, but the steady state yield was only 25% of that measured in the autotrophic cells. After DCQ addition, the initial distribution of S-states and the values of the transition probabilities proved to be the same in the autotrophic and photoheterotrophic algae. These results indicate that photoheterotrophic growth conditions inhibit the electron transport of Chl. stellata behind the acceptor site of DCQ, but the water-splitting system remains active with a reduced oxygen evolving capacity.Abbreviations Chl chlorophyll - DCQ 2,6-dichloro-p-benzoquinone - DCMU 3-(3,4)-dichlorophenyl)-1,1-dimethylurea - DBMIB 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone - pBQ 1,4-benzoquinone - PS I photosystem I - PS II photosystem II  相似文献   

17.
It is well known that two photosystems, I and II, are needed to transfer electrons from H2O to NADP+ in oxygenic photosynthesis. Each photosystem consists of several components: (a) the light-harvesting antenna (L-HA) system, (b) the reaction center (RC) complex, and (c) the polypeptides and other co-factors involved in electron and proton transport. First, we present a mini review on the heterogeneity which has been identified with the electron acceptor side of Photosystem II (PS II) including (a) L-HA system: the PS II and PS II units, (b) RC complex containing electron acceptor Q1 or Q2; and (c) electron acceptor complex: QA (having two different redox potentials QL and QH) and QB (QB-type; Q'B type; and non-QB type); additional components such as iron (Q-400), U (Em,7=–450 mV) and Q-318 (or Aq) are also mentioned. Furthermore, we summarize the current ideas on the so-called inactive (those that transfer electrons to the plastoquinone pool rather slowly) and active reaction centers. Second, we discuss the bearing of the first section on the ratio of the PS II reaction center (RC-II) and the PS I reaction center (RC-I). Third, we review recent results that relate the inactive and active RC-II, obtained by the use of quinones DMQ and DCBQ, with the fluorescence transient at room temperature and in heated spinach and soybean thylakoids. These data show that inactive RC-II can be easily monitored by the OID phase of fluorescence transient and that heating converts active into inactive centers.Abbreviations DCBQ 2,5 or 2,6 dichloro-p-benzoquinone - DMQ dimethylquinone - QA primary plastoquinone electron acceptor of photosystem II - QB secondary plastoquinone electron acceptor of photosystem II - IODP successive fluorescence levels during time course of chlorophyll a fluorescence: O for origin, I for inflection, D for dip or plateau, and P for peak  相似文献   

18.
Rémy Beauchemin 《BBA》2007,1767(7):905-912
Polyamines are implicated in plant growth and stress response. However, the polyamines spermine and spermidine were shown to elicit strong inhibitory effects in photosystem II (PSII) submembrane fractions. We have studied the mechanism of this inhibitory action in detail. The inhibition of electron transport in PSII submembrane fractions treated with millimolar concentrations of spermine or spermidine led to the decline of plastoquinone reduction, which was reversed by the artificial electron donor diphenylcarbazide. The above inhibition was due to the loss of the extrinsic polypeptides associated with the oxygen evolving complex. Thermoluminescence measurements revealed that charge recombination between the quinone acceptors of PSII, QA and QB, and the S2 state of the Mn-cluster was abolished. Also, the dark decay of chlorophyll fluorescence after a single turn-over white flash was greatly retarded indicating a slower rate of QA reoxidation.  相似文献   

19.
Photosystem II (PS II) is the site of oxygen evolution. Activation of dark adapted samples by a train of saturating flashes produces oxygen with a yield per flash which oscillates with a periodicity of four. Damping of the oxygen oscillations is accounted for by misses and double hits. The mechanisms hidden behind these parameters are not yet fully understood. The components which participate in charge transfer and storage in PS II are believed to be anchored to the heterodimer formed by the D1 and D2 proteins. The secondary plastoquinone acceptor QB binds on D1 in a loop connecting the fourth and fifth helices (the QB pocket). Several D1 mutants, mutated in the QB binding region, have been studied over the past ten years.In the present report, our results on nine D1 mutants of Synechocystis PCC 6714 and 6803 are analyzed. When oxygen evolution is modified, it can be due to a change in the electron transfer kinetics at the level of the acceptor side of PS II and also in some specific mutants to a long ranging effect on the donor side of PS II. The different properties of the mutants enable us to propose a classification in three categories. Our results can fit in a model in which misses are substantially determined by the fraction of centers which have QA - before each flash due to the reversibility of the electron transfer reactions. This idea is not new but was more thoroughly studied in a recent paper by Shinkarev and Wraight (1993). However, we will show in the discussion that some doubts remain as to the true origin of misses and double hits.Abbreviations BQ p-benzoquinone - Chl chlorophyll - D1 and D2 proteins of the core of PS II - DCMU 3-(3,4-dichlorophenyl)-1,1 dimethyl urea - OEC oxygen evolving complex - P680 chlorophyll center of PS II acting as the primary donor - PS II Photosystem II - QA and QB primary and secondary quinone electron acceptor - TL thermoluminescence  相似文献   

20.
In this work, the effect of the exogenously added ascorbate (Asc) against the UV-B inhibition of the photosystem II (PSII) functions in isolated pea thylakoid membranes was studied. The results reveal that Asc decreases the UV-B induced damage of the donor and the acceptor side of PSII during short treatment up to 60 min. The exogenous Asc exhibits a different UV-protective effect on PSII centers in grana and stroma lamellae, as the effect is more pronounced on the PSIIβ centers in comparison to PSIIα centers. Data also suggest that one of the possible protective roles of the Asc in photosynthetic membranes is the modification of the oxygen-evolving complex by influence on the initial S0S1 state distribution in the dark.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号