首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Escherichia coli B glutathione synthetase is composed of four identical subunits; each subunit contains 4 cysteine residues (Cys-122, -195, -222, and -289). We constructed seven different mutant enzymes containing 3, 2, or no cysteine residues/subunit by replacement of cysteine codons with those of alanine in the gsh II gene using site-directed mutagenesis. Three mutant enzymes, Ala289, Ala222/289, Cys-free (Ala122/195/222/289), in which cysteine at residue 289 was replaced with alanine, were not inactivated by 5,5'-dithiobis(2-nitrobenzoate) (DTNB), while the other four mutants retaining Cys-289 were inactivated at the wild-type rate. From these selective inactivations of mutant enzymes by DTNB, the sulfhydryl group modified by DTNB was unambiguously identified as Cys-289. In this way, Cys-289 was found to be also a target of modification with 2-nitrothiocyanobenzoate and N-ethylmaleimide, while Cys-195 was of p-chloromercuribenzoate. These results suggest that both Cys-195 and Cys-289 were not essential for the activity of the glutathione synthetase, but chemical modification of either one of the two sulfhydryl groups resulted in complete loss of the activity. Replacement of Cys-122 to Ala-122 enhanced the reactivity of Cys-289 with sulfhydryl reagents.  相似文献   

2.
The alkylating agent 2-bromo-4'-nitroacetophenone (BrNAP) binds covalently to each of 10 isozymes of purified rat liver microsomal cytochrome P-450 (P-450a-P-450j) but substantially inhibits the catalytic activity of only cytochrome P-450c. Regardless of pH, incubation time, presence of detergents, or concentration of BrNAP, treatment of cytochrome P-450c with BrNAP resulted in no more than 90% inhibition of catalytic activity. Alkylation with BrNAP did not cause the release of heme from the holoenzyme or alter the spectral properties of cytochrome P-450c, data that exclude the putative heme-binding cysteine, Cys-460, as the major site of alkylation. Two residues in cytochrome P-450c reacted rapidly with BrNAP, for which reason maximal loss of catalytic activity was invariably associated with the incorporation of approximately 1.5 mol of BrNAP/mol of cytochrome P-450c. Two major radio-labeled peptides were isolated from a tryptic digest of [14C]BrNAP-treated cytochrome P-450c by reverse-phase high performance liquid chromatography. The amino acid sequence of each peptide was determined by microsequence analysis, but the identification of the residues alkylated by BrNAP was complicated by the tendency of the adducts to decompose when subjected to automated Edman degradation. However, results of competitive binding experiments with the sulfhydryl reagent 4,4'-dithiodipyridine identified Cys-292 as the major site of alkylation and Cys-160 as the minor site of alkylation by BrNAP in cytochrome P-450c.  相似文献   

3.
Hsp90 is a highly abundant chaperone whose clientele includes hundreds of cellular proteins, many of which are central players in key signal transduction pathways and the majority of which are protein kinases. In light of the variety of Hsp90 clientele, the mechanism of selectivity of the chaperone toward its client proteins is a major open question. Focusing on human kinases, we have demonstrated that the chaperone recognizes a common surface in the amino-terminal lobe of kinases from diverse families, including two newly identified clients, NFkappaB-inducing kinase and death-associated protein kinase, and the oncoprotein HER2/ErbB-2. Surface electrostatics determine the interaction with the Hsp90 chaperone complex such that introduction of a negative charge within this region disrupts recognition. Compiling information on the Hsp90 dependence of 105 protein kinases, including 16 kinases whose relationship to Hsp90 is first examined in this study, reveals that surface features, rather than a contiguous amino acid sequence, define the capacity of the Hsp90 chaperone machine to recognize client kinases. Analyzing Hsp90 regulation of two major signaling cascades, the mitogen-activated protein kinase and phosphatidylinositol 3-kinase, leads us to propose that the selectivity of the chaperone to specific kinases is functional, namely that Hsp90 controls kinases that function as hubs integrating multiple inputs. These lessons bear significance to pharmacological attempts to target the chaperone in human pathologies, such as cancer.  相似文献   

4.
The molecular chaperone heat shock protein 90 (Hsp90) is required for the stabilization and conformational maturation of various oncogenic proteins in cancer. The loading of protein kinases to Hsp90 is actively mediated by the cochaperone Cdc37. The crucial role of the Hsp90-Cdc37 complex has made it an exciting target for cancer treatment. In this study, we characterize Hsp90 and Cdc37 interaction and drug disruption using a reconstituted protein system. The GST pull-down assay and ELISA assay show that Cdc37 binds to ADP-bound/nucleotide-free Hsp90 but not ATP-bound Hsp90. Celastrol disrupts Hsp90-Cdc37 complex formation, whereas the classical Hsp90 inhibitors (e.g. geldanamycin) have no effect. Celastrol inhibits Hsp90 ATPase activity without blocking ATP binding. Proteolytic fingerprinting indicates celastrol binds to Hsp90 C-terminal domain to protect it from trypsin digestion. These data suggest that celastrol may represent a new class of Hsp90 inhibitor by modifying Hsp90 C terminus to allosterically regulate its chaperone activity and disrupt Hsp90-Cdc37 complex.  相似文献   

5.
The release of cytochrome c from mitochondria results in the formation of an Apaf-1-caspase-9 apoptosome and induces the apoptotic protease cascade by activation of procaspase-3. The present studies demonstrate that heat shock protein 90 (Hsp90) forms a cytosolic complex with Apaf-1 and thereby inhibits the formation of the active complex. Immunodepletion of Hsp90 depletes Apaf-1 and thereby inhibits cytochrome c-mediated activation of caspase-9. Addition of purified Apaf-1 to Hsp90-depleted cytosolic extracts restores cytochrome c-mediated activation of procaspase-9. We also show that Hsp90 inhibits cytochrome c-mediated oligomerization of Apaf-1 and thereby activation of procaspase-9. Furthermore, treatment of cells with diverse DNA-damaging agents dissociates the Hsp90-Apaf-1 complex and relieves the inhibition of procaspase-9 activation. These findings provide the first evidence for a negative cytosolic regulator of cytochrome c-dependent apoptosis and for involvement of a chaperone in the caspase cascade.  相似文献   

6.
Substrate transfer from the chaperone Hsp70 to Hsp90   总被引:5,自引:0,他引:5  
Hsp90 is an essential chaperone protein in the cytosol of eukaryotic cells. It cooperates with the chaperone Hsp70 in defined complexes mediated by the adaptor protein Hop (Sti1 in yeast). These Hsp70/Hsp90 chaperone complexes play a major role in the folding and maturation of key regulatory proteins in eukaryotes. Understanding how non-native client proteins are transferred from one chaperone to the other in these complexes is of central importance. Here, we analyzed the molecular mechanism of this reaction using luciferase as a substrate protein. Our experiments define a pathway for luciferase folding in the Hsp70/Hsp90 chaperone system. They demonstrate that Hsp70 is a potent capture device for unfolded protein while Hsp90 is not very efficient in this reaction. When Hsp90 is absent, in contrast to the in vivo situation, Hsp70 together with the two effector proteins Ydj1 and Sti1 exhibits chaperone activity towards luciferase. In the presence of the complete chaperone system, Hsp90 exhibits a specific positive effect only in the presence of Ydj1. If this factor is absent, the transferred luciferase is trapped on Hsp90 in an inactive conformation. Interestingly, identical results were observed for the yeast and the human chaperone systems although the regulatory function of human Hop is completely different from that of yeast Sti1.  相似文献   

7.
Hsp90 is an essential chaperone that requires large allosteric changes to determine its ATPase activity and client binding. The co‐chaperone Aha1, which is the major ATPase stimulator in eukaryotes, is important for regulation of Hsp90's allosteric timing. Little is known, however, about the structure of the Hsp90/Aha1 complex. Here, we characterize the solution structure of unmodified human Hsp90/Aha1 complex using NMR spectroscopy. We show that the 214‐kDa complex forms by a two‐step binding mechanism and adopts multiple conformations in the absence of nucleotide. Aha1 induces structural changes near Hsp90's nucleotide‐binding site, providing a basis for its ATPase‐enhancing activity. Our data reveal important aspects of this pivotal chaperone/co‐chaperone interaction and emphasize the relevance of characterizing dynamic chaperone structures in solution.  相似文献   

8.
9.
With assistance from co-chaperone partner proteins, Hsp90 plays an essential positive role in supporting the structure and function of numerous client proteins in vivo. Hsp90's co-chaperone partnerships are believed to regulate and/or target its function. Here we describe associations between Hsp90 chaperone machinery and another chaperone, the 97-kDa valosin-containing protein VCP. Coimmunoadsorption assays indicate that VCP occurs in one or more native heterocomplexes containing Hsp90 and the Hsp90 partner proteins Cdc37, FKBP52, and p23. Functional characterizations indicate that VCP is not an Hsp90 substrate, but rather demonstrate the biochemical hallmarks of an Hsp90 co-chaperone. Potential roles for a collaboration between for Hsp90 and VCP are discussed.  相似文献   

10.
The Rab-specific alphaGDP-dissociation inhibitor (alphaGDI) regulates the recycling of Rab GTPases. We have now identified a novel alphaGDI complex from synaptic membranes that contains three chaperone components: Hsp90, Hsc70 and cysteine string protein (CSP). We find that the alphaGDI-chaperone complex is dissociated in response to Ca(2+)-induced neurotransmitter release, that chaperone complex dissociation is sensitive to the Hsp90 inhibitor geldanamycin (GA) and that GA inhibits the ability of alphaGDI to recycle Rab3A during neurotransmitter release. We propose that alphaGDI interacts with a specialized membrane-associated Rab recycling Hsp90 chaperone system on the vesicle membrane to coordinate the Ca(2+)-dependent events triggering Rab-GTP hydrolysis with retrieval of Rab-GDP to the cytosol.  相似文献   

11.

Background

Hsp90 is an essential molecular chaperone that is also a novel anti-cancer drug target. There is growing interest in developing new drugs that modulate Hsp90 activity.

Methodology/Principal Findings

Using a virtual screening approach, 4-hydroxytamoxifen, the active metabolite of the anti-estrogen drug tamoxifen, was identified as a putative Hsp90 ligand. Surprisingly, while all drugs targeting Hsp90 inhibit the chaperone ATPase activity, it was found experimentally that 4-hydroxytamoxifen and tamoxifen enhance rather than inhibit Hsp90 ATPase.

Conclusions/Significance

Hence, tamoxifen and its metabolite are the first members of a new pharmacological class of Hsp90 activators.  相似文献   

12.
Ppt1 is the yeast member of a novel family of protein phosphatases, which is characterized by the presence of a tetratricopeptide repeat (TPR) domain. Ppt1 is known to bind to Hsp90, a molecular chaperone that performs essential functions in the folding and activation of a large number of client proteins. The function of Ppt1 in the Hsp90 chaperone cycle remained unknown. Here, we analyzed the function of Ppt1 in vivo and in vitro. We show that purified Ppt1 specifically dephosphorylates Hsp90. This activity requires Hsp90 to be directly attached to Ppt1 via its TPR domain. Deletion of the ppt1 gene leads to hyperphosphorylation of Hsp90 in vivo and an apparent decrease in the efficiency of the Hsp90 chaperone system. Interestingly, several Hsp90 client proteins were affected in a distinct manner. Our findings indicate that the Hsp90 multichaperone cycle is more complex than was previously thought. Besides its regulation via the Hsp90 ATPase activity and the sequential binding and release of cochaperones, with Ppt1, a specific phosphatase exists, which positively modulates the maturation of Hsp90 client proteins.  相似文献   

13.
Heat shock protein-90 (Hsp90) is an essential molecular chaperone in eukaryotes that plays a vital role in protecting and maintaining the functional integrity of deregulated signaling proteins in tumors. We have previously reported that the stability and activity of the mitotic checkpoint kinase Mps1 depend on Hsp90. In turn, Mps1-mediated phosphorylation Hsp90 regulates its chaperone function and is essential for the mitotic arrest. Cdc14-assisted dephosphorylation of Hsp90 is vital for the mitotic exit. Post-translational regulation of Hsp90 function is also known as the Hsp90 “Chaperone Code.” Here, we demonstrate that only the active Mps1 is ubiquitinated on K86, K827, and K848 by the tumor suppressor von Hippel-Lindau (VHL) containing E3 enzyme, in a prolyl hydroxylation-independent manner and degraded in the proteasome. Furthermore, we show that this process regulates cell exit from the mitotic checkpoint. Collectively, our data demonstrates an interplay between the Hsp90 chaperone and VHL degradation machinery in regulating mitosis.  相似文献   

14.
15.
Hsp90 is an essential molecular chaperone in the eukaryotic cytosol. Its function is modulated by cochaperones and posttranslational modifications. Importantly, the phosphatase Ppt1 is a dedicated regulator of the Hsp90 chaperone system. Little is known about Ppt1-dependent phosphorylation sites and how these affect Hsp90 activity. Here, we identified the major phosphorylation sites of yeast Hsp90 in its middle or the C-terminal domain and determined the subset regulated by Ppt1. In general, phosphorylation decelerates the Hsp90 machinery, reduces chaperone function in vivo, sensitizes yeast cells to Hsp90 inhibition and affects DNA repair processes. Modification of one particular site (S485) is lethal, whereas others modulate Hsp90 activity via distinct mechanisms affecting the ATPase activity, cochaperone binding and manipulating conformational transitions in Hsp90. Our mechanistic analysis reveals that phosphorylation of Hsp90 permits a regulation of the conformational cycle at distinct steps by targeting switch points for the communication of remote regions within Hsp90.  相似文献   

16.
The molecular chaperone Hsp90 regulates the activity and stability of a set of client proteins. Despite progress in understanding its mechanism, the interaction of Hsp90 with clients has remained enigmatic. Now, in a recent issue of Molecular Cell, Street and coworkers present results that integrate the client in the Hsp90 chaperone cycle.  相似文献   

17.
Histone deacetylases (HDAC) play a critical role in chromatin modification and gene expression. Recent evidence indicates that HDACs can also regulate functions of nonhistone proteins by catalyzing the removal of acetylated lysine residues. Here, we show that the HDAC inhibitor LBH589 down-regulates DNA methyltransferase 1 (DNMT1) protein expression in the nucleus of human breast cancer cells. Cotreatment with the proteasomal inhibitor MG-132 abolishes the ability of LBH589 to reduce DNMT1, suggesting that the proteasomal pathway mediates DNMT1 degradation on HDAC inhibition. Deletion of the NH(2)-terminal 120 amino acids of DNMT1 diminishes LBH589-induced ubiquitination, indicating that this domain is essential for its proteasomal degradation. DNMT1 recruits the molecular chaperone heat shock protein 90 (Hsp90) to form a chaperone complex. Treatment with LBH589 induces hyperacetylation of Hsp90, thereby inhibiting the association of DNMT1 with Hsp90 and promoting ubiquitination of DNMT1. In addition, inactivation of HDAC1 activity by small interfering RNA and MS-275 is associated with Hsp90 acetylation in conjunction with reduction of DNMT1 protein expression. We conclude that the stability of DNMT1 is maintained in part through its association with Hsp90. Disruption of Hsp90 function by HDAC inhibition is a unique mechanism that mediates the ubiquitin-proteasome pathway for DNMT1 degradation. Our studies suggest a new role for HDAC1 and identify a novel mechanism of action for the HDAC inhibitors as down-regulators of DNMT1.  相似文献   

18.
Members of the Hsp90 molecular chaperone family are found in the cytosol, ER, mitochondria and chloroplasts of eukaryotic cells, as well as in bacteria. These diverse family members cooperate with other proteins, such as the molecular chaperone Hsp70, to mediate protein folding, activation and assembly into multiprotein complexes. All examined Hsp90 homologs exhibit similar ATPase rates and undergo similar conformational changes. One of the key differences is that cytosolic Hsp90 interacts with a large number of cochaperones that regulate the ATPase activity of Hsp90 or have other functions, such as targeting clients to Hsp90. Diverse Hsp90 homologs appear to chaperone different types of client proteins. This difference may reflect either the pool of clients requiring Hsp90 function or the requirement for cochaperones to target clients to Hsp90. This review discusses known functions, similarities and differences between Hsp90 family members and how cochaperones are known to affect these functions. This article is part of a Special Issue entitled: Heat Shock Protein 90 (HSP90).  相似文献   

19.
The widely-expressed molecular chaperone heat shock protein 90 (Hsp90) regulates several important cellular processes via its’ repertoire of ‘client’ proteins. Signal transduction pathways controlled by Hsp90 contribute to all major components of the malignant phenotype, so Hsp90 inhibitors are under investigation as anticancer agents. Since Hsp90 is also expressed at high levels in many normal tissues, it was unclear why Hsp90 inhibitors such as 17-allylamino-geldanamycin (17-AAG) have selective antitumor activity in animals and are well tolerated clinically. Recent findings indicate that Hsp90 is largely latent in unstressed normal cells, but tumor Hsp90 becomes completely utilized during malignant progression, resulting in an activation-dependent conformational shift that radically increases 17-AAG binding affinity in cancer cells. In this article, the implications of this discovery are discussed, with particular reference to cell cycle regulation in normal and malignant cells, and the consequences of inducing cell cycle arrest with Hsp90 inhibitors.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号