首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 256 毫秒
1.
This study shows for the first time microheterogeneity of 1,3-linked poly(glycerophosphate) lipoteichoic acids. The lipoteichoic acids investigated were those of Enterococcus faecalis Kiel 27738 (I), Enterococcus hirae (Streptococcus faecium) ATCC 9790 (II), and Leuconostoc mesenteroides DMS 20343 (III). Lipoteichoic acids II and III are partially substituted by mono-, di-, tri-, and tetra-alpha-D-glucopyranosyl residues with (1----2) interglycosidic linkages. Lipoteichoic acid I is substituted with alpha-kojibiosyl residues only. Lipoteichoic acids I and III additionally carry D-alanine ester. Lipoteichoic acids were separated on columns of concanavalin-A-Sepharose according to their increasing number of glycosyl substituents per chain. It was evident that all molecular species are usually glycosylated and that alanine ester and glycosyl residues occur on the same chains. The chain lengths of lipoteichoic acid I and II vary between 9-40 glycerophosphate residues, whereas those of lipoteichoic acid III appear to be uniform (33 +/- 2 residues). Molecular species differ in the extent of glycosylation but their content of alanyl residues is fairly constant. All lipoteichoic acids contain a small fraction (5-15%) different in composition from the bulk and most likely reflecting an early stage of biosynthesis. Two procedures for chain length determination of poly(glycerophosphate) lipoteichoic acids are described.  相似文献   

2.
A complex polydispersity became apparent when the poly(glycerophosphate) lipoteichoic acid of Enterococcus faecalis was chromatographed on DEAE-sephadex. The chain length varied between 13 and 33 glycerophosphate residues per lipid anchor. In parallel, the extent of chain glycosylation increased from 0.2 to 0.4 diglucosyl residues per glycerophosphate unit. Substitution with D-alanine ester showed a reverse distribution dropping with increasing chain length from 0.53 to 0.23 mol D-alanine per mol phosphorus. Variations in the fatty acid composition were also observed. The results extent and modify the current picture of lipoteichoic acid biosynthesis. They further suggest that during infection the mammalian organism may be confronted particularly with long-chain less hydrophobic molecular species.  相似文献   

3.
On the basic structure of poly(glycerophosphate) lipoteichoic acids   总被引:11,自引:0,他引:11  
Poly(glycerophosphate) lipoteichoic acids from 24 Gram-positive bacteria of the genera Bacillus, Enterococcus, Lactobacillus, Lactococcus, Listeria, Staphylococcus, and the streptococcal pyogenic and oral group were analyzed. The 1,3-linked poly(glycerophosphate) structure was proved by analysis of glycerol and glycerophosphates after acid and alkaline hydrolysis. Using the molar ratios of glycolipid to phosphorus (A) and phosphomonoester to phosphorus after periodate oxidation followed by hydrazinolysis (B) or beta-elimination (C), we show that all lipoteichoic acids contain a single unbranched poly(glycerophosphate) chain and that the chain is uniformly phosphodiester-linked to C-6 of the nonreducing hexopyranosyl residue of the glycolipid moiety. On some chains minor phosphate-containing substituents were detected whose structure remains to be clarified. The lipoteichoic acids of enterococci and listeria strains were separated by hydrophobic interaction chromatography into glycolipid- and phosphatidylglycolipid-containing molecular species. The phosphatidylglycolipid moieties were structurally characterized after liberation from lipoteichoic acids with moist acetic acid. After periodate oxidation of lipoteichoic acids beta-elimination released both phosphatidic acid and the poly(glycerophosphate) chain. This indicates together with the sequence analysis of the released phosphatidylglycolipid that the phosphatidyl residue is located at C-6 of the reducing hexosyl residue of the glycolipid moiety and the poly(glycerophosphate) chain at C-6 of the nonreducing one. Together with earlier observations these results complete the evidence for the structural and possibly biosynthetic relationship between lipoteichoic acids and glycerophosphoglycolipids.  相似文献   

4.
The Streptococcus sp. studied here is closely related to Streptococcus pneumoniae with 98.6% 16S rRNA similarity and 65% DNA/DNA homology. We isolated the lipoteichoic acid and the membrane glycolipids whose structures were established using conventional procedures and NMR spectroscopy. The lipoteichoic acid contains a linear 1,3-linked poly(glycerophosphate) chain which is partly substituted with D-alanine ester and is phosphodiester-linked to O6 of beta-D-Galf(1-->3)acyl2Gro. This lipoteichoic acid is the first example in which a monohexosylglycerol serves as the glycolipid anchor; and with an average chain length of 10 glycerophosphate residues it is the shortest known to date. MS analysis, applied for the first time to a native acylated lipoteichoic acid, revealed a continuous increase in chain length from seven to 17 glycerophosphate residues with a maximum at 10, and allowed identification of the fatty acid combinations. Membrane glycolipids consisted of beta-D-Galf(1-->3)acyl2Gro (9%), alpha-D-Glcp(1-->3)acyl2Gro (22%), alpha-D-Galp(1-->2)-alpha-D-Glcp(1-->3)acyl2Gro (64%) and alpha-D-Galp(1-->2)-(6-O-acyl)-alpha-D-Glcp(1-->3)acyl2Gro (5%). It is noteworthy that in lipoteichoic acid biosynthesis, Galfacyl2Gro, a less abundant membrane glycolipid, is selected as the lipid anchor. Despite the genetic relatedness to Streptococcus pneumoniae, the lipoteichoic acid structure is quite different to the complex structure of pneumococcal lipoteichoic acid [T. Behr et al. (1992) Eur. J. Biochem. 207, 1063-1075], thus providing an example that minor differences in DNA sequence exert major changes in macromolecular structure.  相似文献   

5.
H U Koch  R Dker    W Fischer 《Journal of bacteriology》1985,164(3):1211-1217
Toluene-treated Staphylococcus aureus cells did not synthesize teichoic acid and lipoteichoic acid under the conditions used. The organism displayed, however, a high capacity of incorporating D-[14C]alanine into previously formed polymers. The reaction was dependent on ATP and enhanced by magnesium ions. The incorporation rate into lipoteichoic acid correlated with the rate of loss of alanine ester which occurred through transfer to teichoic acid and base-catalyzed hydrolysis. At pH 6.5 the loss (20% within 4 h) was completely compensated for by reesterification. At pH 7.5 the loss was 60%, but by accelerated incorporation it was reduced to 10%. Incorporation was also enhanced when the original substitution of lipoteichoic acid was lowered by previous growth of S. aureus at high salt concentration. The newly added alanine was randomly distributed along the poly(glycerophosphate) chain. The decreased alanine substitution of lipoteichoic acid after growth at high salt concentration was shown to result from a direct inhibition of alanine incorporation.  相似文献   

6.
Hydrophobic interaction chromatography fractionated the lipoteichoic acid of Enterococcus faecalis into species of decreasing poly(glycerophosphate) chain length and decreasing extent of substitution with alpha-kojibiosyl residues (Glcp alpha 1----2Glcp alpha 1----). The chain length varied between 14 and 33 glycerophosphate residues per lipid anchor, the extent of glycosylation between 0.18 and 0.44 mol of alpha-kojibiosyl residues per mole of phosphorus, and, accordingly, the number of alpha-kojibiosyl substituents per chain between 3 and 15. Almost identical values were obtained when the same lipoteichoic acid was chromatographed on DEAE-Sephadex and concanavalin A, which separate molecular species according to increasing number of phosphate groups and alpha-kojibiosyl residues, respectively. Species from all three columns, which were identical in chain length and glycosylation, also had similar fatty acid patterns. These results prove the suitability of all three procedures for species analysis. One advantage of hydrophobic interaction chromatography over the other two procedures lies in its broader applicability since it is not dependent on negative charges or specifically binding oligosaccharide structures. Another advantage is the capacity of hydrophobic interaction chromatography to separate molecular species differing in the number of fatty acids [W. Fischer, H.U. Koch, and R. Haas (1983) Eur. J. Biochem. 133, 523-530] and render them accessible to molecular analyses.  相似文献   

7.
In order to understand the phosphatidylglycerol turnover mechanism, especially the differential turnover of diacylated and unacylated glycerol moieties of the lipid, products of phosphatidylglycerol metabolism were surveyed in vivo in Bacillus subtilis W23 and an alkalophile, Bacillus sp. strain A007. When cells of B. subtilis W23 labeled with radioactive glycerol were chased, lipoteichoic acid accumulated 90% of the radioactivity lost from the unacylated glycerol moiety of phosphatidylglycerol. Also, lipids other that phosphatidylglycerol, except diacylglycerol, and glycerol and glycerophosphate incorporated much less radioactivity. The [32P]phosphoryl group was also transferred from phosphatidylglycerol to lipoteichoic acid almost quantitatively in B. subtilis W23. A unique metabolism of phosphatidylglycerol was found in Bacillus sp. strain A007 which lacked phosphoglycolipid and lipoteichoic acid, that is, the turnover of phosphatidylglycerol of this organism was less extensive compared with that of B. subtilis W23, and both glycerol moieties of the lipid were metabolized at an identical rate. These results suggested that the major reaction involved in the turnover of phosphatidylglycerol was the transfer of glycerophosphate residue to lipoteichoic acid in a bacterium which possessed lipoteichoic acid and that several minor reactions also were involved in phosphatidylglycerol turnover.  相似文献   

8.
Pulse-chase experiments with [2-3H]glycerol and [14C]acetate revealed that in Staphylococcus aureus lipoteichoic acid biosynthesis plays a dominant role in membrane lipid metabolism. In the chase, 90% of the glycerophosphate moiety of phosphatidylglycerol was incorporated into the polymer: 25 phosphatidylglycerol + diglucosyldiacylglycerol leads to (glycerophospho)25-diglucosyldiacylglycerol + 25 diacylglycerol. Glycerophosphodiglucosyldiacylglycerol was shown to be an intermediate, confirming that the hydrophilic chain is polymerized on the final lipid anchor. Total phosphatidylglycerol served as the precursor pool and was estimated to turn over more than twice for lipoteichoic acid synthesis in one bacterial doubling. Of the resulting diacylglycerol approximately 10% was used for the synthesis of glycolipids and the lipid anchor of lipoteichoic acid. The majority of diacylglycerol recycled via phosphatidic acid to phosphatidylglycerol. Synthesis of bisphosphatidylglycerol was negligible and only a minor fraction of phosphatidylglycerol passed through the metabolically labile lysyl derivative. In contrast to normal growth, energy deprivation caused an immediate switch-over from the synthesis of lipoteichoic acid to the synthesis of bisphosphatidylglycerol.  相似文献   

9.
The lipoteichoic acid (LTA) of the Streptococcus species DSM 8747 consists of a β-d-galactofuranosyl diacylglycerol moiety (with different acyl groups) that is linked via 6-O to a poly(glycerophosphate) backbone; about 30% of the glycerophosphate moieties carry at 2-O hydrolytically labile d-alanyl residues. As typical LTA for this array of compounds LTA 1a was synthesized. To this end, from d-galactose the required galactofuranosyl building block 5 was obtained. The anomeric stereocontrol in the glycosylation step with 1,2-O-cyclohexylidene-sn-glycerol (4) was based on anchimeric assistance, thus finally leading to the unprotected core glycolipid 16. Regioselective protection and deprotection procedures permitted the defined attachment of the pentameric glycerophosphate 3 to the 6-hydroxy group of the galactose residue. Introduction of four d-alanyl residues led after global deprotection and purification to target molecule 1a possessing on average about two d-alanyl residues at 2-O of the pentameric glycerophosphate backbone, thus being in close accordance with the structure of the natural material.  相似文献   

10.
X-ray scattering analysis was performed on various types of bacterial lipoteichoic acid in solution. The X-ray data show that all samples investigated were characterized by a similar micellar ultrastructure (hydrophilic moiety on the outside) with a fatty acid chain conformation of the disordered, alpha-type at all temperatures between 5 degrees-53 degrees C. The size distribution of Staphylococcus aureus lipoteichoic acid micelles was sufficiently homogeneous to determine their size and some related molecular parameters by detailed small-angle X-ray scattering analysis. Nearly independent of the degree of D-alanine substitution and the ionic strength of the aqueous dispersion, an average micelle contained about 150 lipoteichoic acid molecules arranged in a spherical assembly with a diameter of about 22 nm, whereby the hydrophilic region occupied an outer shell of about 8.5 nm thickness. Based on the average chain length of lipoteichoic acid, it could be estimated that each glycerophosphate residue contributed by about 0.34 nm to the thickness of the hydrophilic shell as compared to a theoretical value of approximately 0.8 nm for a fully extended chain conformation, indicating a highly coiled conformation of the hydrophilic chain. The bearing of these findings on the properties of membrane-associated and secreted lipoteichoic acids is discussed.  相似文献   

11.
The lipid macroamphiphile of Bifidobacterium bifidum subsp. pennsylvanicum DSM 20239 was extracted with phenol/water and purified by treatment with nucleases and hydrophobic interaction chromatography. From analytical data, the results of Smith degradation, hydrolysis with HF and methylation studies, the following structure is proposed: (formula; see text) where n and m are approximately 7-10 and 8-15, respectively. The monoglycerophosphate residues have the sn-glycero-1-phosphate configuration; 20-50% of them are substituted with L-alanine in ester linkage. The lipid anchor is most likely a galactosyldiacylglycerol, part of which carries a third fatty acid. This is the first example among gram-positive bacteria of a glycerophosphate-containing lipid macroamphiphile that carries the glycerophosphate residues as monomeric side chains on a lipoglycan. Further, it contains L-alanine in place of the D-alanine found in lipoteichoic acids.  相似文献   

12.
Lipoteichoic acid (LTA) from Lactobacillus casei contains poly(glycerophosphate) substituted with D-alanyl ester residues. The distribution of these residues in the in vitro-synthesized polymer is uniform. Esterification of LTA with D-alanine may occur in one of two modes: (i) addition at random or (ii) addition at a defined locus in the poly(glycerophosphate) chain followed by redistribution of the ester residues. A time-dependent transacylation of these residues from D-[14C]alanyl-lipophilic LTA to hydrophilic acceptor was observed. The hydrophilic acceptor was characterized as D-alanyl-hydrophilic LTA. This transacylation requires neither ATP nor the D-alanine incorporation system, i.e., the D-alanine activating enzyme and D-alanine:membrane acceptor ligase. No evidence for an enzyme-catalyzed transacylation reaction was observed. We propose that this process of transacylation may be responsible for the redistribution of D-alanyl residues after esterification to the poly(glycerophosphate). As a result, it is difficult to distinguish between these proposed modes of addition.  相似文献   

13.
Nuclear magnetic resonance spectra of lipoteichoic acid   总被引:2,自引:0,他引:2  
Lipoteichoic acid acids with a range of chemical compositions have been studied using 1H; 13C- and 31P-nuclear magnetic resonance. Proton spectroscopy provided a rapid method for demonstrating whether alanine in a sample is covalently bound to the polyglycerophosphate chains and for monitoring hydrolysis of alanine. The nature of sugar substituents can be determined, with some limitations, from the 13C spectra, and the proportions of glycerol residues substituted by alanine and sugar can be measured. The 31P spectra of lipoteichoic acid provided information about both the degree of substitution and the distribution of the substituent along the polyglycerophosphate chain, except when the substituent was galactose. The polyglycerophosphate chains were shown to undergo rapid internal rotation and no evidence for tertiary structure was found either in the presence or absence of magnesium ions. Magnesium ions exchange rapidly between the bound and free state and the binding constant to lipoteichoic acid of 64 M-1 is typical for monophosphates in aqueous solution. There was no evidence that alanine substitution affects the binding constant for magnesium ions.  相似文献   

14.
For the investigation of the minimal structural requirements for cytokine induction, Staphylococcus aureus lipoteichoic acid derivatives with two, three, four, and five glycerophosphate backbone moieties, carrying each a d-alanyl residue, were needed. Based on two different glycerophosphate building blocks and 6b-O-phosphitylated gentiobiosyl diacylglycerol the desired target molecules (compounds 1-4) could be readily obtained and provided for biological studies.  相似文献   

15.
The lipoteichoic acids were isolated from phenol extracts of four Listeria strains representing serotypes 4a, 4b, 6a, and 6 to compare the differences in structure of amphiphilic polysaccharides from various serotypes of Listeria spp. The lipoteichoic acids from the four strains examined had the same structure in both hydrophilic chains and lipid portions. On the basis of the results of nuclear magnetic resonance spectroscopy and Smith degradation, the hydrophilic chains were shown to be 1,3-linked poly(glycerol phosphate) in which some of the glycerol residues had alpha-galactosyl substituents. The lipid portions were released by treatment with 46% hydrogen fluoride or 98% acetic acid. They were determined to be 3(1)-(2'-O-alpha-D-galactopyranosyl-alpha-D-glucopyranosyl)-1(3), 2-diacylglycerol and 3(1)-[6'-phosphatidyl-2'-O-(alpha-D-galactopyranosyl)-alpha- D-glucopyranosyl]-1(3),2-diacylglycerol. The degrees of glycosyl substitution and proportions of the two lipids varied to some extent among these four strains.  相似文献   

16.
A ribitol-containing lipoteichoic acid was obtained from the 20,000 x g supernatant fraction of Staphylococcus aureus H by extraction with Triton X-100 followed by fractionation on Sepharose 6B and DEAE-cellulose columns. The purified lipoteichoic acid was composed of phosphate, glycerol, glucose, glucosamine, ribitol, and fatty acids in a molar ratio of 1 : 0.9 : 0.06 : 0.03 : 0.09 : 0.07. Based on the structural analysis of fragments from alkali and HF hydrolysis, the lipoteichoic acid appears to consist of three moieties, namely a ribitol phosphate oligomer, poly(glycerol phosphate) which has about 30 glycerol phosphate units, and beta-glucosyl-beta-glucosyl(1 leads to 1)diacylglycerol. N-Acetylglucosamine was linked to the ribitol residues. The lipoteichoic acid serves as an acceptor of glycosyl moieties from UDP-glucose and UDP-N-acetylglucosamine in the enzyme reaction catalyzed by the membrane preparation. The rate of enzymatic glycosylation was increased by prior treatment of the lipoteichoic acid with N-acetyl-beta-D-glucosaminidase. The glycosylation seems to occur at the ribitol residues of the lipoteichoic acid.  相似文献   

17.
T Ishii 《Plant physiology》1997,113(4):1265-1272
Acetylated trigalacturonides and rhamnogalacturonan I (RG-I)-derived oligosaccharides were isolated from a Driselase digest of potato tuber cell walls by ion-exchange and size-exclusion chromatography. The oligosaccharides were structurally characterized by fast atom bombardment-mass spectroscopy, nuclear magnetic resonance spectroscopy, and glycosyl-linkage composition analysis. One trigalacturonide contained a single acetyl group at O-3 of the reducing galacturonic acid residue. A second trigalacturonide contained two acetyl substituents, which were located on O-3 or O-4 of the nonreducing galacturonic acid residue and O-3 of the reducing galacturonic acid residue. RG-I backbone-derived oligomers had acetyl groups at O-2 of the galacturonic acid residues. Some of these galacturonic acid residues were O-acetylated at both O-2 and O-3 positions. Rhamnosyl residues of RG-I oligomers were not acetylated.  相似文献   

18.
Group B Streptococcus (GBS) cell walls potently activate phagocytes by a largely TLR2-independent mechanism. In contrast, the cell wall component lipoteichoic acid (LTA) from diverse Gram-positive bacterial species has been shown to engage TLR2. In this study we examined the role of LTA from GBS in phagocyte activation and the requirements for TLR-LTA interaction. Using cells from knockout mice and genetic complementation in epithelial cells we found that highly pure LTA from both GBS and Staphylococcus aureus interact with TLR2 and TLR6, but not TLR1, in contrast to previous reports. Furthermore, NF-kappaB activation by LTA required the integrity of two putative PI3K binding domains within TLR2 and was inhibited by wortmannin, indicating an essential role for PI3K in cellular activation by LTA. However, LTA from GBS proved to be a relatively weak stimulus of phagocytes containing approximately 20% of the activity observed with LTA from Staphylococcus aureus. Structural analysis by nuclear magnetic resonance spectrometry revealed important differences between LTA from GBS and S. aureus, specifically differences in glycosyl linkage, in the glycolipid anchor and a lack of N-acetylglucosamine substituents of the glycerophosphate backbone. Furthermore, GBS expressing LTA devoid of d-alanine residues, that are essential within immune activation by LTA, exhibited similar inflammatory potency as GBS with alanylated LTA. In conclusion, LTA from GBS is a TLR2/TLR6 ligand that might contribute to secreted GBS activity, but does not contribute significantly to GBS cell wall mediated macrophage activation.  相似文献   

19.
Gram positive bacteria produce cell envelope macroamphiphile glycopolymers, i.e. lipoteichoic acids or lipoglycans, whose functions and biosynthesis are not yet fully understood. We report for the first time a detailed structure of lipoteichoic acid isolated from a Streptomyces species, i.e. Streptomyces hygroscopicus subsp. hygroscopicus NRRL 2387T. Chemical, MS and NMR analyses revealed a polyglycerolphosphate backbone substituted with α-glucosaminyl and α-N-acetyl-glucosaminyl residues but devoid of any amino-acid substituent. This structure is very close, if not identical, to that of the wall teichoic acid of this organism. These data not only contribute to the growing recognition that lipoteichoic acid is a cell envelope component of gram positive Actinobacteria but also strongly support the recently proposed hypothesis of an overlap between the pathways of lipoteichoic acid and wall teichoic acid synthesis in these bacteria. S. hygroscopicus lipoteichoic acid induced signalling by human innate immune receptor TLR2, confirming its role as a microbe-associated molecular pattern. Its activity was partially dependant on TLR1, TLR6 and CD14. Moreover, it stimulated TNF-α and IL-6 production by a human macrophage cell line to an extent similar to that of Staphylococcus aureus lipoteichoic acid. These results provide new clues on lipoteichoic acid structure/function relationships, most particularly on the role of the polyglycerolphosphate backbone substituents.  相似文献   

20.
A glucosyltransferase, extracted from the membranes of Bacillus cereus AHU 1030 with Tris-HCl buffer containing 0.1% Triton X-100 at pH 9.5, was separated from an endogenous glucosyl acceptor by chromatography on DEAE-Sepharose CL-6B subsequent to chromatography on Sepharose 6B. Structural analysis data showed that the glucosyl acceptor was a glycerol phosphate polymer linked to beta-gentiobiosyl diglyceride. The enzyme catalyzed the transfer of glucosyl residues from UDP-glucose to C-2 of the glycerol residues of repeating units of the acceptor. On the other hand, a lipoteichoic acid which contained 0.3 D-alanine residue per phosphorus was isolated from the cells by phenol treatment at pH 4.6. Except for the presence of D-alanine, this lipoteichoic acid had the same structure as the glucosyl acceptor. The rate of glucosylation observed with the D-alanine-containing lipoteichoic acid as the substrate was less than 40% of that observed with the D-alanine-free lipoteichoic acid, indicating that the ester-linked D-alanine in the lipoteichoic acid interferes with the action of the glucosyltransferase. The enzyme also catalyzed glucosylation of poly(glycerol phosphate) which was synthesized in the reaction of a separate enzyme fraction with CDP-glycerol. Thus, it is likely that the glucosyltransferase functions in the synthesis of cell wall teichoic acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号