共查询到20条相似文献,搜索用时 0 毫秒
1.
UBP1, a novel hnRNP-like protein that functions at multiple steps of higher plant nuclear pre-mRNA maturation 总被引:12,自引:0,他引:12 下载免费PDF全文
Lambermon MH Simpson GG Wieczorek Kirk DA Hemmings-Mieszczak M Klahre U Filipowicz W 《The EMBO journal》2000,19(7):1638-1649
Efficient splicing of higher plant pre-mRNAs depends on AU- or U-rich sequences in introns. Moreover, AU-rich sequences present in 3'-untranslated regions (3'-UTRs) may play a role in 3' end processing of plant mRNAs. Here, we describe the cloning and characterization of a Nicotiana plumbaginifolia nuclear protein that can be cross-linked to U-rich intron and 3'-UTR sequences in vitro, and associates with nuclear poly(A)(+) RNA in vivo. The protein, UBP1, strongly enhances the splicing of otherwise inefficiently processed introns when overexpressed in protoplasts. It also increases the accumulation of reporter mRNAs that contain suboptimal introns or are intronless. The enhanced accumulation is apparently due to UBP1 interacting with the 3'-UTR and protecting mRNA from exonucleolytic degradation. The effect on mRNA accumulation but not on mRNA splicing was found to be promoter specific. The fact that these effects of UBP1 can be separated suggests that they represent two independent activities. The properties of UBP1 indicate that it is an hnRNP protein that functions at multiple steps to facilitate the nuclear maturation of plant pre-mRNAs. 相似文献
2.
Bertolaet BL Clarke DJ Wolff M Watson MH Henze M Divita G Reed SI 《Nature structural biology》2001,8(5):417-422
Rad23 is a highly conserved protein involved in nucleotide excision repair (NER) that associates with the proteasome via its N-terminus. Its C-terminal ubiquitin-associated (UBA) domain is evolutionarily conserved from yeast to humans. However, the cellular function of UBA domains is not completely understood. Recently, RAD23 and DDI1, both DNA damage-inducible genes encoding proteins with UBA domains, were implicated genetically in Pds1-dependent mitotic control in yeast. The UBA domains of RAD23 and DDI1 are required for these interactions. Timely degradation of Pds1 via the ubiquitin/proteasome pathway allows anaphase onset and is crucial for chromosome maintenance. Here, we show that Rad23 and Ddi1 interact directly with ubiquitin and that this interaction is dependent on their UBA domains, providing a possible mechanism for UBA-dependent cell cycle control. Moreover, we show that a hydrophobic surface on the UBA domain, which from structural work had been predicted to be a protein-protein interaction interface, is indeed required for ubiquitin binding. By demonstrating that UBA domains interact with ubiquitin, we have provided the first indication of a cellular function for the UBA domain. 相似文献
3.
By the use of the yeast two-hybrid screen we have identified two proteins that interacted with UCH37: S14, which is a subunit of PA700 and a novel protein, UIP1 (UCH37 interacting protein 1). The interaction of UCH37 with S14 or UIP1 was confirmed by in vitro binding assay and in vivo co-immunoprecipitation analysis. The C-terminal extension of UCH37 is essential for interaction with S14 or UIP1 as shown by the yeast two-hybrid assay and the in vitro binding assay. Furthermore, UIP1 blocked the interaction between UCH37 and S14 in vitro. 相似文献
4.
Identification of two novel proteins that interact with germ-cell-specific RNA-binding proteins DAZ and DAZL1 总被引:17,自引:0,他引:17
The human DAZ (deleted in azoospermia) gene family on the Y chromosome and an autosomal DAZ-like gene, DAZL1, encode RNA-binding proteins that are expressed exclusively in germ cells. Their role in spermatogenesis is supported by their homology with a Drosophila male infertility gene boule and sterility of Daz11 knock-out mice. While all mammals contain a DAZL1 homologue on their autosomes, DAZ homologues are present only on the Y chromosomes of great apes and Old World monkeys. The DAZ and DAZL1 proteins differ in the copy numbers of a DAZ repeat and the C-terminal sequences. We studied the interaction of DAZ and DAZL1 with other proteins as an approach to investigate functional similarity between these two proteins. Using DAZ as bait in a yeast two-hybrid system, we isolated two DAZAP (DAZ-associated protein) genes. DAZAP1 encodes a novel RNA-binding protein that is expressed most abundantly in the testis, and DAZAP2 encodes a ubiquitously expressed protein with no recognizable functional motif. DAZAP1 and DAZAP2 bind similarly to both DAZ and DAZL1 through the DAZ repeats. The DAZAP genes were mapped to chromosomal regions 19p13.3 and 2q33-q34, respectively, where no genetic diseases affecting spermatogenesis are known to map. 相似文献
5.
Meng X Bonasera JM Kim JF Nissinen RM Beer SV 《Molecular plant-microbe interactions : MPMI》2006,19(1):53-61
The disease-specific (dsp) gene dspA/E of Erwinia amylovora encodes an essential pathogenicity effector of 198 kDa, which is critical to the development of the devastating plant disease fire blight. A yeast two-hybrid assay and in vitro protein pull-down assay demonstrated that DspA/E interacts physically and specifically with four similar putative leucine-rich repeat (LRR) receptor-like serine/threonine kinases (RLK) from apple, an important host of E. amylovora. The genes encoding these four DspA/E-interacting proteins of Malus xdomestica (DIPM1 to 4) are conserved in all genera of hosts of E. amylovora tested. They also are conserved in all cultivars of apple tested that range in susceptibility to fire blight from highly susceptible to highly resistant. The four DIPMs have been characterized, and they are expressed constitutively in host plants. In silico analysis indicated that the DIPMs have similar sequence structure and resemble LRR RLKs from other organisms. Evidence is presented for direct physical interaction between DspA/E and the apple proteins encoded by the four identified clones, which may act as susceptibility factors and be essential to disease development. Knowledge of DIPMs and the interaction with DspA/E thus may facilitate understanding of fire blight development and lead to new approaches to control of disease. 相似文献
6.
7.
8.
Weigel Ralf R. Bäuscher Christoph Pfitzner Artur J.P. Pfitzner Ursula M. 《Plant molecular biology》2001,46(2):143-160
9.
We used the yeast two-hybrid system to show that the serum response factor (SRF) and zinc-fingers and homeobox 1 (ZHXI) proteins interact with the A subunit of nuclear factor-Y (NF-YA). GST pulldown assays revealed that both proteins interact specifically with NF-YA in vitro. Amino acids located between 272 and 564, a region that contains two homeodomains, are required for the interaction of ZHX1 with NF-YA. Two different domains of NF-YA, a glutamine-rich region and a serine/threonine-rich region, are necessary for the interactions with ZHX1 and SRF, respectively. 相似文献
10.
11.
Miki F Kurabayashi A Tange Y Okazaki K Shimanuki M Niwa O 《Molecular genetics and genomics : MGG》2004,270(6):449-461
In interphase cells of fission yeast, the spindle pole body (SPB) is thought to be connected with chromosomal centromeres by an as yet unknown mechanism that spans the nuclear membrane. To elucidate this mechanism, we performed two-hybrid screens for proteins that interact with Kms1 and Sad1, which are constitutive membrane-bound components of the SPB that interact with each other. Seven and 26 genes were identified whose products potentially interact with Kms1 and Sad1, respectively. With the exception of Dlc1 (a homolog of the 14-kDa dynein light chain), all of the Kms1 interactors also interacted with Sad1. Among the genes identified were the previously known genes rhp9
+/ crb2
+, cut6
+, ags1
+/ mok1
+, gst3
+, kms2
+, and sid4
+. The products of kms2
+
and sid4
+
localize to the SPB. The novel genes were characterized by constructing disruption mutations and by localization of the gene products. Two of them, putative homologues of budding yeast UFE1 (which encodes a t-SNARE) and SFH1 (an essential component of a chromatin-remodeling complex), were essential for viability. Two further genes, which were only conditionally essential, genetically interact with sad1
+
. One of these was named sif1
+ (for Sad1-interacting factor) and is required for proper septum formation at high temperature. Cells in which this gene was overexpressed displayed a wee -like phenotype. The product of the other gene, apm1
+, is very similar to the medium chain of an adaptor protein complex in clathrin-coated vesicles. Apm1 appears to be required for SPB separation and spindle formation, and tended to accumulate at the SPB when it was overproduced. It was functionally distinct from its homologues Apm2 and Apm4. Other novel genes identified in this study included one for a nucleoporin and genes encoding novel membrane-bound proteins that were genetically related to Sad1. We found that none of the newly identified genes tested were necessary for centromere/telomere clustering.Communicated by C. P. HollenbergThe first three authors contributed equally to this work 相似文献
12.
The function of proteins that interact with mRNA 总被引:4,自引:0,他引:4
Specific proteins are associated with mRNA in the cytoplasm of eukaryotic cells. The complement of associated proteins depends upon whether the mRNA is an integral component of the polysomal complex being translated, or, alternatively, whether it is part of the non-translated free mRNP fraction. By subjecting cells to ultraviolet irradiation in vivo to cross-link proteins to mRNA, mRNP proteins have been shown to be associated with specific regions of the mRNA molecule. Examination of mRNP complexes containing a unique mRNA has suggested that not all mRNA contain the same family of associated RNA binding proteins. The function of mRNA associated proteins may include a role in providing stability for mRNA, and/or in modulating translation. With the recent demonstrations that both free and polysomal mRNPs are associated with the cytoskeletal framework, specific mRNP proteins may play a role in determining the subcellular localization of specific mRNPs. 相似文献
13.
Catherine Croft Swanwick Marietta E. Shapiro Zhaohong Yi Kai Chang Robert J. Wenthold 《FEBS letters》2009,583(8):1226-1230
N-methyl-d-aspartate receptors (NMDARs) mediate excitatory synaptic transmission in the brain. Here we demonstrate interactions between the NR2A and NR2B subunits of NMDARs with flotillin-1 (flot-1), a lipid raft-associated protein. When mapped, analogous regions in the far distal C-termini of NR2A and NR2B mediate binding to flot-1, and the prohibitin homology domain of flot-1 contains binding sites for NR2A and NR2B. Although NR2B can also directly bind to flot-2 via a separate region of its distal C-terminus, NMDARs were significantly more colocalized with flot-1 than flot-2 in cultured hippocampal neurons. Overall, this study defines a novel interaction between NMDARs and flotillins.
Structured summary
MINT-7013094: NR2A (uniprotkb:Q00959), NR2B (uniprotkb:Q00960) and Flot2 (uniprotkb:Q9Z2S9) colocalize (MI:0403) by fluorescence microscopy (MI:0416)MINT-7013147: Flot1 (uniprotkb:Q9Z1E1) physically interacts (MI:0218) with NR2A (uniprotkb:Q00959) by anti bait coimmunoprecipitation (MI:0006)MINT-7013189: Flot1 (uniprotkb:Q9Z1E1) physically interacts (MI:0218) with Flot2 (uniprotkb:Q9Z2S9) by anti bait coimmunoprecipitation (MI:0006)MINT-7013033: NR2A (uniprotkb:Q00959) physically interacts (MI:0218) with Flot1 (uniprotkb:Q9Z1E1) by two hybrid (MI:0018)MINT-7013178: NR1 (uniprotkb:P35439) physically interacts (MI:0218) with Flot2 (uniprotkb:Q9Z2S9) by anti bait coimmunoprecipitation (MI:0006)MINT-7013197, MINT-7013210: NR2B (uniprotkb:Q00960) and NR2A (uniprotkb:Q00959) physically interact (MI:0218) with Flot2 (uniprotkb:Q9Z2S9) by anti bait coimmunoprecipitation (MI:0006)MINT-7013002: NR2B (uniprotkb:Q00960) physically interacts (MI:0218) with Flot1 (uniprotkb:O08917) by two hybrid (MI:0018)MINT-7013117: Flot1 (uniprotkb:Q9Z1E1), NR2B (uniprotkb:Q00960) and NR2A (uniprotkb:Q00959) colocalize (MI:0403) by fluorescence microscopy (MI:0416)MINT-7013171: NR1 (uniprotkb:P35439) physically interacts (MI:0218) with Flot1 (uniprotkb:Q9Z1E1) by anti bait coimmunoprecipitation (MI:0006)MINT-7013017: NR2A (uniprotkb:Q00959) physically interacts (MI:0218) with Flot1 (uniprotkb:O08917) by two hybrid (MI:0018)MINT-7013054: NR2B (uniprotkb:Q00960) physically interacts (MI:0218) with Flot1 (uniprotkb:Q9Z1E1) by two hybrid (MI:0018)MINT-7013129: Flot1 (uniprotkb:Q9Z1E1) physically interacts (MI:0218) with NR2B (uniprotkb:Q00960) by anti bait coimmunoprecipitation (MI:0006)MINT-7013155: NR1 (uniprotkb:P35439) physically interacts (MI:0218) with NR2B (uniprotkb:Q00960) by anti bait coimmunoprecipitation (MI:0006)MINT-7013074: NR2B (uniprotkb:Q00960) physically interacts (MI:0218) with Flot2 (uniprotkb:Q9Z2S9) by two hybrid (MI:0018)MINT-7013162: NR1 (uniprotkb:P35439) physically interacts (MI:0218) with NR2A (uniprotkb:Q00959) by anti bait coimmunoprecipitation (MI:0006) 相似文献14.
Potyviral helper-component proteinase (HCpro) is a multifunctional protein exerting its cellular functions in interaction with putative host proteins. In this study, cellular protein partners of the HCpro encoded by Potato virus A (PVA) (genus Potyvirus) were screened in a potato leaf cDNA library using a yeast two-hybrid system. Two cellular proteins were obtained that interact specifically with PVA HCpro in yeast and in the two in vitro binding assays used. Both proteins are encoded by single-copy genes in the potato genome. Analysis of the deduced amino acid sequences revealed that one (HIP1) of the two HCpro interactors is a novel RING finger protein. The sequence of the other protein (HIP2) showed no resemblance to the protein sequences available from databanks and has known biological functions. 相似文献
15.
To identify proteins that interact with Huntingtin-interacting protein-2 (Hip-2), a ubiquitin-conjugating enzyme, a yeast two-hybrid screen system was used to isolate five positive clones. Sequence analyses showed that, with one exception, all Hip-2-interacting proteins contained the RING finger motifs. The interaction of Hip-2 with RNF2, one of the clones, was further confirmed through in vitro and in vivo experiments. Mutations in the RING domain of RNF2 prevented the clone from binding to Hip-2, an indication that the RING domain is the binding determinant. RNF2 showed a ubiquitin ligase (E3) activity in the presence of Hip-2, suggesting that a subset of RING finger proteins may have roles as E3s. 相似文献
16.
17.
Borinstein SC Hyatt MA Sykes VW Straub RE Lipkowitz S Boulter J Bogler O 《Cellular signalling》2000,12(11-12):769-779
Expression of the src homology 3 (SH3)-encoding, expressed in tumorigenic astrocytes (SETA) gene is associated with astrocyte transformation in culture and tumors in the adult brain. SETA binds to the apoptosis regulator apoptosis-linked gene 2 (ALG-2) interacting protein 1 (AIP1), and modulates apoptosis in astrocytes. The predicted protein structure of SETA revealed two SH3 domains, while related proteins were reported to have three. Here we report the identification of an additional SH3 domain N-terminal to the previously identified SETA sequence. Yeast two-hybrid screening of a p53(-/-) astrocyte cDNA library with this SH3 domain identified a novel gene, SETA binding protein 1 (SB1), with 55% amino acid identity to the renal tumor antigen, NY-REN-45. In vitro confrontation and co-immunoprecipitation experiments confirmed the binding of SB1 to SETA. Evidence that SETA binds to the CD2 protein, the proto-oncogene c-Cbl, and the signal transduction molecule Grb2, and can dimerize via its C-terminal coiled coil (CC) domain is also presented. 相似文献
18.
19.
Sokolov AV Pulina MO Ageeva KV Runova OL Zakharova ET Vasil'ev VB 《Biochemistry. Biokhimii?a》2007,72(8):872-877
Proteins from leukocytes were investigated for their ability to interact with ceruloplasmin (Cp), a copper-containing glycoprotein of human plasma. Extract from leukocytes was subjected to affinity chromatography on Cp-Sepharose, after which proteins were eluted from the resin with 0.5 M NaCl in Tris-HCl, pH 7.4. SDS-PAGE of the eluate revealed protein bands with molecular weights 78, 57, 40, 30, 16, and 12 kD. Among these, Western blotting detected myeloperoxidase (57, 40, and 12 kD) and lactoferrin (78 kD). Also, the 30-kD component had a sequence (1)I-(2)I/V-(3)G-(4)G-(5)R/H at the N-terminus that is likely to indicate the presence of neutrophilic elastase, cathepsin G, proteinase 3, and azurocidin (CAP 37) - all from the family of serprocidins. Mass spectrometry of tryptic fragments indicated the presence of the 16-kD eosinophilic cationic protein (seven peptides), 27-kD cathepsin G (eleven peptides), 27-kD azurocidin (eight peptides), 29-kD neutrophilic elastase (seven peptides), and 27-kD proteinase 3 (six peptides). Myeloperoxidase was represented by 57-, 40-, and 12-kD fragments (thirteen, ten, and four peptides, respectively). Thus, interaction with Cp of five cationic proteins, i.e. of eosinophilic cationic protein, cathepsin G, neutrophilic elastase, proteinase 3, and azurocidin is reported for the first time. 相似文献
20.
Low Ca2+ extracts of platelets rapidly form an actin gel when warmed to 25 degrees C. The addition of Ca2+ has three effects. At Ca/EGTA = 0.4, the gel begins to contract. Increasing the Ca2+ concentration increases the rate of contraction and reduces the amount of actomyosin gel. Between Ca/EGTA = 0.4 and 0.5, a protease is activated that selectively degrades polypeptides with molecular weight greater than the myosin heavy chain. At Ca/EGTA = 1, about 70% of the total actin is nonsedimentable. Addition of excess EGTA produces the rapid formation of an actomyosin gel, which is not readily solubilized by re-addition of calcium. Using DNAase l-Sepharose chromatography, we have isolated a protein fraction whose binding to actin is Ca2+ -dependent. This fraction contains a major polypeptide with a molecular weight of 90,000. This fraction increases the rate of development of high sheer viscosity, but lowers the final value if Ca2+ is present. This decrease in viscosity is due to the generation of shorter filaments. In the presence of Ca2+, this protein(s) selectively blocks the addition of actin monomers to the barbed end of glutaraldehyde-fixed S1-decorated actin fragments and will nucleate assembly of filaments. We speculate that this protein(s) may serve as a Ca2+ -dependent nucleation site in situ. 相似文献