首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
In vitro methylation at CG dinucleotides (CpGs) in a transfecting plasmid usually greatly inhibits gene expression in mammalian cells. However, we found that in vitro methylation of all CpGs in episomal or non-episomal plasmids containing the SV40 early promoter/enhancer (SV40 Pr/E) driving expression of an antibiotic-resistance gene decreased the formation of antibiotic-resistant colonies by only approximately 30-45% upon stable transfection of HeLa cells. In contrast, when expression of the antibiotic-resistance gene was driven by the Rous sarcoma virus long terminal repeat or the herpes simplex virus thymidine kinase promoter, this methylation decreased the yield of antibiotic-resistant HeLa transfectant colonies approximately 100-fold. The low sensitivity of the SV40 Pr/E to silencing by in vitro methylation was probably due to demethylation upon stable transfection. This demethylation may be targeted to the promoter and extend into the gene. By genomic sequencing, we showed that four out of six of the transfected SV40 Pr/E's adjacent Sp1 sites were hotspots for demethylation in the HeLa transfectants. High frequency demethylation at Sp1 sites was unexpected for a non-embryonal cell line and suggests that DNA demethylation targeted to certain aberrantly methylated regions may function as a repair system for epigenetic mistakes.  相似文献   

3.
4.
5.
6.
Expression of CD44 is repressed in neuroblastoma cells.   总被引:20,自引:2,他引:18       下载免费PDF全文
  相似文献   

7.
8.
Y H Edwards  J Charlton  C Brownson 《Gene》1988,71(2):473-481
A cluster of CpG dinucleotides immediately upstream from exon 1 in the muscle-specific carbonic anhydrase III gene (CAIII) resembles the 'HpaII tiny fragment' (HTF) islands characteristic of mammalian 'housekeeping' genes. Since this CAIII gene shows tissue-specific expression we have carried out a detailed examination of methylation status within the CpG cluster using a polyacrylamide gel/electroblot procedure to extend the range of conventional Southern blotting. None of the clustered CpGs are methylated in DNA from muscle or other somatic tissues or in DNA from spermatozoa although flanking CpGs are methylated. Comparison with a candidate HTF island from the more ubiquitously expressed carbonic anhydrase II gene (CAII) shows that the CAII CpG cluster is markedly more CpG-rich than that from the strictly tissue-specific CAIII gene.  相似文献   

9.
Perforin is a cytotoxic effector molecule expressed in NK cells and a subset of T cells. The mechanisms regulating its expression are incompletely understood. We observed that DNA methylation inhibition could increase perforin expression in T cells, so we examined the methylation pattern and chromatin structure of the human perforin promoter and upstream enhancer in primary CD4(+) and CD8(+) T cells as well as in an NK cell line that expresses perforin, compared with fibroblasts, which do not express perforin. The entire region was nearly completely unmethylated in the NK cell line and largely methylated in fibroblasts. In contrast, only the core promoter was constitutively unmethylated in primary CD4(+) and CD8(+) cells, and expression was associated with hypomethylation of an area residing between the upstream enhancer at -1 kb and the distal promoter at -0.3 kb. Treating T cells with the DNA methyltransferase inhibitor 5-azacytidine selectively demethylated this area and increased perforin expression. Selective methylation of this region suppressed promoter function in transfection assays. Finally, perforin expression and hypomethylation were associated with localized sensitivity of the 5' flank to DNase I digestion, indicating an accessible configuration. These results indicate that DNA methylation and chromatin structure participate in the regulation of perforin expression in T cells.  相似文献   

10.
The Arabidopsis DNA glycosylase/lyase ROS1 participates in active DNA demethylation by a base-excision pathway. ROS1 has been shown to be required for demethylating a transgene promoter. To determine the function of ROS1 in demethylating endogenous loci, we carried out bisulfite-sequencing analysis of several transposons and other genes in the ros1 mutant. In the wild-type, although CpG sites at the majority of these loci are heavily methylated, many of the CpXpG and CpXpX sites have low levels of methylation or are not at all methylated. However, these CpXpG and CpXpX sites become heavily methylated in the ros1 mutant. Associated with this increased DNA methylation, these loci show decreased expression in the ros1 mutant. Our results suggest that active DNA demethylation is important in pruning the methylation patterns of the genome, and even the normally "silent" transposons are under dynamic control by both methylation and demethylation. This dynamic control may be important in keeping the plant epigenome plastic so that it can efficiently respond to developmental and environmental cues.  相似文献   

11.
12.
Here we report the methylation status of the chicken ovalbumin promoter. Genomic DNA of oviduct from immature chickens and laying hens was analyzed through bisulfite genomic sequencing. In the ovalbumin control locus up to the 6 kb upstream region, CpG sites were methylated in immature chickens, except for several sites, and almost all CpGs residing in DNase I hypersensitive sites I, II, and III, but not IV, were selectively unmethylated in ovalbumin expressing chickens. Chromatin immunoprecipitation assays showed that the ovalbumin control region was associated with acetylated histone H3 but not with dimethylated histone H3 at Lys 27. These results demonstrate that DNA demethylation was restricted to short DNA regions of DNase I hypersensitive sites, especially to those which participated in estrogen-responsiveness, even when cells expressed extremely high levels of ovalbumin and these sites were associated with acetylated histones.  相似文献   

13.
《Epigenetics》2013,8(1):38-42
Human tumor development is often associated with a DNA demethylation process. This results in the activation of germline-specific genes, such as MAGE-A1, which rely on DNA methylation for repression in somatic tissues. Here, we searched to identify a cell line possessing ongoing DNA demethylation activity targeted to MAGE-A1. We first assessed MAGE-A1-expressing human tumor cell lines, by evaluating their ability to induce demethylation of MAGE-A1 transgenes that were methylated in vitro before transfection. All cell lines lacked such activity, suggesting that MAGE-A1 hypomethylation in tumors results from a past demethylation event. We then turned to mouse embryonic stem (mES) cells, which are characterized by a high level of methylation plasticity. Interestingly, in vitro methylated MAGE-A1 transgenes became demethylated after transfection into mES cells. Demethylation was targeted to the 5’-region of MAGE-A1, and was strongly reduced at mutated MAGE-A1 transgenes exhibiting impaired promoter activity. Our results indicate that mES cells induce demethylation of MAGE-A1, and represent therefore a valuable system to study this tumor-related process.  相似文献   

14.
15.
IL2RA, a subunit of the high affinity receptor for interleukin-2 (IL2), plays a crucial role in immune homeostasis. Notably, IL2RA expression is induced in CD4+ T cells in response to various stimuli and is constitutive in regulatory T cells (Tregs). We selected for our study 18 CpGs located within cognate regulatory regions of the IL2RA locus and characterized their methylation in naive, regulatory, and memory CD4+ T cells. We found that 5/18 CpGs (notably CpG + 3502) show dynamic, active demethylation during the in vitro activation of naive CD4+ T cells. Demethylation of these CpGs correlates with appearance of IL2RA protein at the cell surface. We found no influence of cis located SNP alleles upon CpG methylation. Treg cells show constitutive demethylation at all studied CpGs. Methylation of 9/18 CpGs, including CpG +3502, decreases with age. Our data thus identify CpG +3502 and a few other CpGs at the IL2RA locus as coordinated epigenetic regulators of IL2RA expression in CD4+ T cells. This may contribute to unravel how the IL2RA locus can be involved in immune physiology and pathology.  相似文献   

16.
Here we report the methylation status of the chicken ovalbumin promoter. Genomic DNA of oviduct from immature chickens and laying hens was analyzed through bisulfite genomic sequencing. In the ovalbumin control locus up to the 6 kb upstream region, CpG sites were methylated in immature chickens, except for several sites, and almost all CpGs residing in DNase I hypersensitive sites I, II, and III, but not IV, were selectively unmethylated in ovalbumin expressing chickens. Chromatin immunoprecipitation assays showed that the ovalbumin control region was associated with acetylated histone H3 but not with dimethylated histone H3 at Lys 27. These results demonstrate that DNA demethylation was restricted to short DNA regions of DNase I hypersensitive sites, especially to those which participated in estrogen-responsiveness, even when cells expressed extremely high levels of ovalbumin and these sites were associated with acetylated histones.  相似文献   

17.
Aberrant DNA methylation is a critical feature of cancer. Epigenetic therapy seeks to reverse these changes to restore normal gene expression. DNA demethylating agents, including 5-aza-2′-deoxycytidine (DAC), are currently used to treat certain leukemias, and can sensitize solid tumors to chemotherapy and immunotherapy. However, it has been difficult to pin the clinical efficacy of these agents to specific demethylation events, and the factors that contribute to the durability of response remain largely unknown. Here we examined the genome-wide kinetics of DAC-induced DNA demethylation and subsequent remethylation after drug withdrawal in breast cancer cells. We find that CpGs differ in both their susceptibility to demethylation and propensity for remethylation after drug removal. DAC-induced demethylation was most apparent at CpGs with higher initial methylation levels and further from CpG islands. Once demethylated, such sites exhibited varied remethylation potentials. The most rapidly remethylating CpGs regained >75% of their starting methylation within a month of drug withdrawal. These sites had higher pretreatment methylation levels, were enriched in gene bodies, marked by H3K36me3, and tended to be methylated in normal breast cells. In contrast, a more resistant class of CpG sites failed to regain even 20% of their initial methylation after 3 months. These sites had lower pretreatment methylation levels, were within or near CpG islands, marked by H3K79me2 or H3K4me2/3, and were overrepresented in sites that become aberrantly hypermethylated in breast cancers. Thus, whereas DAC-induced demethylation affects both endogenous and aberrantly methylated sites, tumor-specific hypermethylation is more slowly regained, even as normal methylation promptly recovers. Taken together, these data suggest that the durability of DAC response is linked to its selective ability to stably reset at least a portion of the cancer methylome.  相似文献   

18.
《Epigenetics》2013,8(7):998-1006
Food allergy is mediated by a combination of genetic and environmental risk factors, potentially mediated by epigenetic mechanisms. CD4+ T-cells are key drivers of the allergic response, and may therefore harbor epigenetic variation in association with the disease phenotype. Here we retrospectively examined genome-wide DNA methylation profiles (~450?000 CpGs) from CD4+ T-cells on a birth cohort of 12 children with IgE-mediated food allergy diagnosed at 12-months, and 12 non-allergic controls. DNA samples were available at two time points, birth and 12-months. Case:control comparisons of CD4+ methylation profiles identified 179 differentially methylated probes (DMP) at 12-months and 136 DMP at birth (FDR-adjusted P value < 0.05, delta β > 0.1). Approximately 30% of DMPs were coincident with previously annotated SNPs. A total of 96 allergy-associated non-SNP DMPs were present at birth when individuals were initially disease-free, potentially implicating these loci in the causal pathway. Pathway analysis of differentially methylated genes identified several MAP kinase signaling molecules. Mass spectrometry was used to validate 15 CpG sites at 3 candidate genes. Combined analysis of differential methylation with gene expression profiles revealed gene expression differences at some but not all allergy associated differentially methylated genes. Thus, dysregulation of DNA methylation at MAPK signaling-associated genes during early CD4+ T-cell development may contribute to suboptimal T-lymphocyte responses in early childhood associated with the development of food allergy.  相似文献   

19.
CD44 is expressed by a variety of cells, including glial and T cells. Furthermore, in the demyelinating lesions of multiple sclerosis, CD44 expression is chronically elevated. In this study, we demonstrate that targeted deletion of CD44 attenuated myelin oligodendrocyte glycoprotein peptide-induced experimental autoimmune encephalitomyelitis (EAE) through novel regulatory mechanisms affecting Th differentiation. Specifically, by developing chimeras and using adoptive transfer experiments, we noted that CD44 deficiency on CD4(+) T cells, but not other cells, conferred protection against EAE induction. CD44 expression played a crucial role in Th differentiation, inasmuch as deletion of CD44 inhibited Th1/Th17 differentiation while simultaneously enhancing Th2/regulatory T cell differentiation. In contrast, expression of CD44 promoted Th1/Th17 differentiation. When osteopontin and hyaluronic acid, the two major ligands of CD44, were tested for their role in Th differentiation, osteopontin, but not hyaluronic acid, promoted Th1/Th17 differentiation. Furthermore, activation of CD44(+) encephalitogenic T cells with myelin oligodendrocyte glycoprotein peptide led to demethylation at the ifnγ/il17a promoter region while displaying hypermethylation at the il4/foxp3 gene promoter. Interestingly, similar activation of CD44-deficient encephalitogenic T cells led to increased hypermethylation of ifnγ/il17a gene and marked demethylation of il4/foxp3 gene promoter. Together, these data suggested that signaling through CD44, in encephalitogenic T cells, plays a crucial role in the differentiation of Th cells through epigenetic regulation, specifically DNA methylation of Th1/Th17 and Th2 cytokine genes. The current study also suggests that molecular targeting of CD44 receptor to promote a switch from Th1/Th17 to Th2/regulatory T cell differentiation may provide a novel treatment modality against EAE.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号