首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The fatty acid transport function of fatty acid-binding proteins   总被引:38,自引:0,他引:38  
The intracellular fatty acid-binding proteins (FABPs) comprise a family of 14-15 kDa proteins which bind long-chain fatty acids. A role for FABPs in fatty acid transport has been hypothesized for several decades, and the accumulated indirect and correlative evidence is largely supportive of this proposed function. In recent years, a number of experimental approaches which more directly examine the transport function of FABPs have been taken. These include molecular level in vitro modeling of fatty acid transfer mechanisms, whole cell studies of fatty acid uptake and intracellular transfer following genetic manipulation of FABP type and amount, and an examination of cells and tissues from animals engineered to lack expression of specific FABPs. Collectively, data from these studies have provided strong support for defining the FABPs as fatty acid transport proteins. Further studies are necessary to elucidate the fundamental mechanisms by which cellular fatty acid trafficking is modulated by the FABPs.  相似文献   

2.
J V Staros  J R Knowles 《Biochemistry》1978,17(16):3321-3325
A dipeptide containing a nitrene precursor, glycyl-4-azido-2-nitro-L-phenylalanine, has been synthesized. This compound is a photoaffinity inhibitor of dipeptide transport in E. coli. In the dark, the dipeptide is a reversible inhibitor of glycylglycine uptake by live E. coli W cells. The 14C-labeled compound is a substrate for the transport system, with a Km of 7 micrometer and V max of 5 x 10(3) molecules cell-1 s-1 (compare 9 micrometer and 1 x 10(4) molecules cell-1 s-1, respectively, for the transport of glycylglycine under the same conditions). When intact E. coli cells are photolyzed at approximately 350 nm in the presence of the photolabile dipeptide, their ability to transport either glycylglycine or unphotolyzed glycyl-4-azido-2-nitro-L-phenylalanine is irreversibly inhibited, but their ability to transport arginine is unaffected. The presence of glycylglycine in the medium during photolysis protects the cells against the light-dependent inactivation of dipeptide transport.  相似文献   

3.
Affinity labeling with palmitic acid was used to identify long chain fatty acid-binding sites of bovine serum albumin. [1-14C]Palmitic acid was activated by esterification with N-ethyl-5-phenyl-isoxazolium-3'-sulfonate (Woodward's Reagent K). The product was purified by chromatography and shown to compete with unesterified fatty acids for binding sites on bovine serum albumin. Activated [14C]palmitic acid coupled covalently to albumin producing [14C]palmitoyl-albumins containing from 0.12 to a maximum of 6.9 mol of attached label per mol of albumin. The presence of the covalently attached affinity label depressed binding of other long chain fatty acids to albumin. Albumin carrying 1 eq. of [14C]palmitate was cleaved using cyanogen bromide, pepsin, and trypsin. Radioactive peptides were isolated by high pressure liquid chromatography. Three peptides accounted for greater than 90% of the label. Residues labeled with [14C]palmitate were identified as Lys-116, Lys-349 and Lys-473, and the relative distribution of label was 10, 45, and 45% respectively, consistent with the presence of two strong binding sites in the COOH-terminal half of albumin and a somewhat weaker site in the NH2-terminal half.  相似文献   

4.
Liposomes of different charge fixed to nitrocellulose filters were used to study the transfer of fatty acids to rat heart or liver mitochondria in the presence of fatty acid-binding protein (FABP) or albumin. [14C]Palmitate oxidation was used as a parameter. Different FABP types and heart FABP mutants were tested. The charge of the liposomes did not influence the solubilization and mitochondrial oxidation of palmitate without FABP and the amount of solubilized palmitate in the presence of FABP. Mitochondria did not show a preference for oxidation of FABP-bound palmitate over their tissue-specific FABP type. All FABP types increased palmitate oxidation by heart and liver mitochondria with neutral, positive and negative liposomes by 2.5-fold, 3.2-fold and twofold, respectively. Ileal lipid-binding protein and H-FABP mutants that do not bind fatty acid had no effect. Other H-FABP mutants had different effects, dependent on the site of mutation. The effect of albumin was similar to, but not dependent on, liposome charge. The ionic strength had only a slight effect. In conclusion, the transfer of palmitate from liposomal membranes to mitochondria was increased by all FABP types to a similar extent. The membrane charge had a large effect in contrast to the origin of the mitochondria.  相似文献   

5.
6.
Identification and characterization of the Na+/Pi co-transporter in the renal brush-border membrane (BBM) has proved to be difficult in part because of the lack of a specific covalent label. NAD is a competitive inhibitor of Na+/Pi co-transport, and we have explored its potential use as a specific label. We describe the synthesis and use of a highly reactive azido derivative of NAD. This derivative (AB-NAD), like the parent NAD molecule, acts as a competitive inhibitor of Na+/Pi co-transport by isolated BBM vesicles. After photoirradiation, the inhibition changes to noncompetitive, as would be expected if the label was bound covalently. This was confirmed by use of [3H]AB-NAD. Photoirradiation produced a 4-fold increase in acid-stable incorporation of 3H into BBM vesicles compared to controls which were not exposed to light. Polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate revealed that photoirradiation with [32P]AB-NAD produced labeling of several different protein bands, but almost one-half of the 32P was recovered in two bands corresponding to molecular masses of 97 and 70 kDa. Labeling of these bands was markedly reduced in the presence of Na+ and phosphonoformic acid, a specific inhibitor of Na+/Pi co-transport. Chromatography of solubilized BBM proteins indicated that the protein fraction which is photolabeled by AB-NAD is co-eluted with the protein fraction which exhibits Na(+)-dependent binding of phosphonoformic acid. The 97- and 70-kDa polypeptide bands may contain components of the intact Na+/Pi co-transport system.  相似文献   

7.
Photoaffinity labeling of soluble auxin-binding proteins.   总被引:6,自引:0,他引:6  
The photoaffinity labeling agent azido-IAA (5-N3-[7-3H]indole-3-acetic acid), a biologically active analogue of the endogenous auxin indole-3-acetic acid, was used to search for auxin-binding proteins in the soluble fraction of Hyoscyamus muticus cells. Azido-IAA became covalently attached to three polypeptides with a high specific activity. The labeling was specific for IAA and not due to random tagging. Two polypeptides with molecular masses of 31 and 24 kDa in the 0-30% ammonium sulfate fraction were labeled after UV photolysis at 0 degree C but not at -196 degrees C, and appeared to have a high affinity indole-binding site(s) for which active, non-indole auxins were not good ligands. A third polypeptide with a molecular mass of 25 kDa present in the 50-60% ammonium sulfate fraction labeled exclusively at -196 degrees C and had a significant affinity for active auxins but not for inactive indoles. The azido-IAA labeling pattern, pI, competition results, and immunoprecipitation all indicate that the 31- and 24-kDa polypeptides are related to the basic form of endo-1,3-beta-glucanase (EC 3.2.1.39). Azido-IAA labeling polypeptides equivalent to the 31- and 24-kDa species were apparently also present in the cell wall. The low pH optimum for binding of azido-IAA to the 25-kDa polypeptide suggests the location of the active protein in a compartment such as the vacuole or a transport vesicle rather than in the cytosol.  相似文献   

8.
Photoaffinity labeling of serotonin-binding proteins   总被引:5,自引:0,他引:5  
S H Cheng  J C Shih 《Life sciences》1979,25(26):2197-2203
A photosensitive arylazide derivative of serotonin (nitroaryl-azidophenyl serotonin, NAP-serotonin) has been synthesized for use in studying the biochemical nature of serotonin binding sites. [3H]-NAP-serotonin possesses a similar ability to bind to the crude membranes of rat brains does [3H]-serotonin and therefore seems suitable for use as a photoaffinity labeling probe for serotonin binding sites. Upon irradiation with ultraviolet light, [3H]-NAP-serotonin covalently attaches to protein components of the brain homogenate. Several distinct radioactively labeled proteins have been separated by sodium dodecyl sulfate polyacrylamide gel electro-phoresis. Their apparent molecular weights were 80,000, 49,000, and 38,000 (±5%). When 1 μM of unlabeled serotonin or d-lysergic acid diethylamide (d-LSD) was added prior to photolysis, the incorporation of [3H]-NAP-serotonin into these proteins was inhibited significantly. No inhibitory effect was observed when dopamine was used. These observations suggest that the photoaffinity labeled proteins are specific for serotonin binding.  相似文献   

9.
We report the purification and localization of the fadL gene product (FLP), an essential component of the long-chain fatty acid transport machinery in Escherichia coli. FLP was extracted from total membranes by differential extraction with the nonionic detergents Tween 20 and Triton X-100. This protein was further purified from a Tween 20-insoluble-Triton X-100-soluble extract by salt fractionation, gel filtration chromatography, and hydrophobic interaction chromatography. This regime results in a 95-fold purification of FLP from total membranes. The purified protein preparation was homogeneous based on silver staining and gave the characteristic behavior established for the fadL gene product in the presence of sodium dodecyl sulfate at different temperatures prior to sodium dodecyl sulfate-polyacrylamide gel electrophoresis (Mr of 33,000 when heated at 25 degrees C and Mr of 43,000 when heated at 100 degrees C) and on two-dimensional polyacrylamide gels (pI of 4.6 and a Mr of 33,000). Purified FLP was rich in hydrophobic residues accounting for approximately 45% of the total amino acid composition. To localize FLP, antisera were raised against the purified protein and were used to probe differentially fractionated membranes by Western immunoblotting. This procedure demonstrated the presence of this protein only in the outer membrane fraction of fadL+ strains. We confirmed the outer membrane localization of FLP by measuring long-chain fatty acid transport in fadL+ and fadL strains treated with EDTA to alter outer membrane permeability and in spheroplasts generated from fadL+ and fadL strains. Both EDTA-treated cells and spheroplasts transported long-chain fatty acids at essentially the same rate regardless of whether they contained a wild-type or mutant fadL gene. These data imply that FLP is a protein in the outer membrane which is specifically involved in long-chain fatty acid transport.  相似文献   

10.
11.
Spin-labeled stearic acid is shown to exhibit the same beta-oxidation kinetics as normal stearic acid. ESR spectra recorded in conditions allowing beta-oxidation indicate that membrane-bound fatty acids can be directly beta-oxidized and that the rate of this reaction depends on the concentration of albumin in the medium. The regulating function of albumin and pool role of the lipidic phase of the mitochondrial membranes are discussed.  相似文献   

12.
13.
14.
A novel gene of Escherichia coli, rhtB, has been characterized. Amplification of this gene provides resistance to homoserine and homoserine lactone. Another E. coli gene, rhtC, provides resistance to threonine. The homologues of RhtB are widely distributed among various eubacteria and archaea, from one to 12 copies of family members that differ in their primary structure were found in the genomes. Most of them are genes that encode hypothetical transmembrane proteins. Experimental data that indicate participation of the rhtB product in the excretion of homoserine have been obtained.  相似文献   

15.
Enterocytes in the small intestinal mucosa contain abundant quantities of two homologous cytosolic proteins known as intestinal and liver fatty acid-binding proteins (I- and L-FABP, respectively). To elucidate structure-function relationships for these proteins, the interactions between 13C-enriched palmitate and oleate and Escherichia coli-expressed rat I- and L-FABP were systematically compared using 13C NMR spectroscopy. NMR spectra of samples containing fatty acids (FA) and I-FABP at different molar ratios (all at pH 7.2 and 37 degrees C) exhibited a single carboxyl resonance corresponding to FA bound to I-FABP (181.4 ppm, peak I) and an additional carboxyl resonance corresponding to unbound FA in a bilayer phase (179.6 ppm). Peak I reached a maximum intensity corresponding to 1 mol of bound FA/mol of I-FABP under all sample conditions examined. NMR spectra for samples containing FA and L-FABP also exhibited a single carboxyl resonance corresponding to FA bound to L-FABP but at a different chemical shift value (182.2 ppm, peak L). Its maximum intensity varied depending on the physical state of the unbound FA (liquid crystalline or crystalline), the FA used (palmitate or oleate), and the sample pH. In the presence of a liquid crystalline (bilayer) phase, up to 1 (oleate) or 2 (palmitate) mol of FA were bound/mol of L-FABP, but in the presence of a crystalline phase (1:1 acid-soap), up to 3 mol of palmitate were bound/mol of L-FABP (all at pH 7.2). Peak I exhibited little or no ionization shift over a wide pH range (pH 3.0-11.0), and its chemical shift was unaffected by the ionization of Lys and His residues. Hence, the carboxylate group of FA bound to I-FABP was solvent inaccessible and most likely involved in an ion-pair electrostatic interaction with the delta-guanidinium moiety of an Arg residue. In contrast, peak L exhibited an ionization shift and an estimated apparent pKa value similar to that obtained for monomeric FA in water, suggesting that the carboxylate groups of FA bound to L-FABP were solvent accessible and located at or near the protein solvent interface. With decreasing pH, FA dissociated from L-FABP but not I-FABP, as monitored by NMR peak intensities. Concurrently, a large decrease in circular dichroism molar ellipticity was observed with L-FABP but not I-FABP. In conclusion, I-FABP and L-FABP are distinct with regards to their FA-binding stoichiometries, binding mechanisms, and sensitivity to pH.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
The interaction of thrombin and platelets was studied with a heterobifunctional photoactivable crosslinking agent. Radiolabeled thrombin that was modified with ethyl-N-5-azido-2-nitrobenzoylaminoacetimidate formed two types of complex with platelet proteins; platelet-associated complexes and supernatant complexes. The platelet-associated complexes formed within 20 s. Autoradiography after electrophoresis with sodium dodecyl sulfate indicated that these complexes had apparent masses of 210, 185, 155 and 125 kDa. Formation of the complexes was blocked by hirudin; this is consistent with crosslinking that was a direct consequences of the binding of thrombin to a specific receptor, since hirudin blocks thrombin-induced platelet activation and the saturable binding of thrombin to platelets. The labeled supernatant complex had an apparent mass of about 490 kDa. It also formed in the supernatant solution of platelets after activation with a divalent cation ionophore, suggesting a complex of thrombin with a secreted protein. The supernatant complex did not involve fibrinogen or α2-macroglobulin, but a similar complex was formed with partially purified secreted glycoprotein G (thrombin-sensitive protein, thrombospondin). Formation of the complex was blocked by hirudin. A similar complex was formed after prolonged (1 h) incubation without photoactivation. It is concluded that thrombin forms high-affinity, hirudin-sensitive complexes with secreted glycoprotein G, as well as with platelet surface proteins.  相似文献   

17.
18.
Escherichia coli fatty acid cyclopropane synthase (CFAS) was overproduced and purified as a His6-tagged protein. This recombinant enzyme is as active as the native enzyme with a Km of 90 microm for S-AdoMet and a specific activity of 5 x 10(-2) micromol.min(-1).mg(-1). The enzyme is devoid of organic or metal cofactors and is unable to catalyze the wash-out of the methyl protons of S-AdoMet to the solvent, data that do not support the ylide mechanism. Inactivation of the enzyme by 5,5'-dithiobis-(2-nitrobenzoic acid) (DTNB), a pseudo first-order process with a rate constant of 1.2 m(-1).s(-1), is not protected by substrates. Graphical analysis of the inactivation by DTNB revealed that only one cysteine is responsible for the inactivation of the enzyme. The three strictly conserved Cys residues among cyclopropane synthases, C139, C176 and C354 of the E. coli enzyme, were mutated to serine. The relative catalytic efficiency of the mutants were 16% for C139S, 150% for C176S and 63% for C354S. The three mutants were inactivated by DTNB at a rate comparable to the rate of inactivation of the His6-tagged wild-type enzyme, indicating that the Cys responsible for the loss of activity is not one of the conserved residues. Therefore, none of the conserved Cys residues is essential for catalysis and cannot be involved in covalent catalysis or general base catalysis. The inactivation is probably the result of steric hindrance, a phenomenon irrelevant to catalysis. It is very likely that E. coli CFAS operates via a carbocation mechanism, but the base and nucleophile remain to be identified.  相似文献   

19.
Summary The coding part of the cDNA of cardiac fatty acid-binding protein (cFABP) from bovine heart was cloned into the vector pKK233-2. After induction with isopropyl--d-thiogalactopyranoside cFABP was found in a soluble form in the cytosol of plasmid transformed E. coli amounting up to 5.7% of the soluble protein. cFABP was detected after SDS-polyacrylamide gelelectrophoresis and/or isoelectric focusing and Western blot by immuno-staining and was determined quantitatively by a solid phase enzyme-linked immuno sorbent assay. The cFABP produced by bacteria binds oleic acid with high affinity as shown by comigration of protein and ligand in both gelfiltration and isoelectric focusing. cFABP was purified from bacterial lysates to near homogeneity and resolved into four isoproteins.  相似文献   

20.
Amino acid selective isotope labeling is a useful approach to simplification of nuclear magnetic resonance (NMR) spectra of large proteins. Cell-free protein synthesis offers essentially unlimited flexibility of labeling patterns but is labor-intensive and expensive. In vivo labeling is simple in principle but generally requires auxotrophic strains, inhibitors of amino acid synthesis, or complex media formulations. We describe a simple procedure for amino acid selective labeling of proteins expressed in prototrophic Escherichia coli strains. Excellent labeling selectivity was achieved for histidine, lysine, methionine, and alanine. Simplicity and robustness of this protocol make it a useful tool for protein NMR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号