首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Y C Lee  J A Ball  D Reece  S R Bloom 《FEBS letters》1987,220(1):243-246
The distribution of neuromedin N and its structurally related peptide, neurotensin, was investigated in the rat and found to be remarkably similar with highest concentrations in the ileum. However, neuromedin N but not neurotensin was found in the kidney. Chromatographic analysis of immunoreactive neuromedin N demonstrated a single peak of immunoreactivity which was distinguishable from the single peak of immunoreactive neurotensin. Neuromedin N is likely to be a naturally occurring peptide and is distinct from neurotensin in rat peripheral tissues.  相似文献   

2.
Using antisera towards the bioactive peptides, neurotensin and neuromedin N, as well as towards the N-terminal and C-terminal regions of their shared 170-residue precursor, peptides representing various portions of the precursor were isolated from extracts of canine ileum. In total, seven peptides were isolated, two of which had not been previously identified. One was the C-terminal tail of the precursor (Gly-Ser-Tyr-Tyr-Tyr) and the other was the tail peptide extended N-terminally to include neurotensin (Glp-Leu-Tyr-Glu-Asn-Lys-Pro-Arg-Arg-Pro-Tyr-Ile-Leu-Lys-Arg-Gly-Ser-Tyr-Tyr-Tyr). By comparing the measured concentrations for each of the identified peptides, it was established that processing at the three Lys-Arg cleavage sites within the precursor did not occur to the same extent. Cleavage at the N-terminus of neuromedin N was 10% complete, that between neurotensin and the tail was 90% complete, and that between neuromedin N and neurotensin was 95% complete. Three immunoreactive proteins were also identified by immunochemical and chromatographic analyses: N-terminally extended neuromedin N (125 residues), N-terminally extended neurotensin (140 residues), and the entire 147-residue precursor. It was concluded that neurotensin, tail and large molecular neuromedin N were the primary products of processing for this precursor in canine ileum, while minor products included neuromedin N, neurotensin tail, and large molecular neurotensin.  相似文献   

3.
Abstract: Neurotensin and neuromedin N are two structurally related peptides that are synthesized by a common precursor. The purpose of the present work was to characterize neuromedin N receptors in rat and mouse brain and to compare these receptors with those of neurotensin. A radiolabeled analogue of neuromedin N has been prepared by acylation of the N-terminal amino group of the peptide with the 125I-labeled Bolton-Hunter reagent. This 125I-labeled derivative of neuromedin N bound to newborn mouse brain homogenate with high affinity (K d = 0.5 n M ). Cross-competition experiments between radiolabeled and unlabeled neurotensin and neuromedin N indicated that each peptide was able to displace completely and specifically the other peptide from its interaction with its receptor. Independently of the radioligand used, the affinity of neurotensin was always better than that of neuromedin N. Quantitative radioautographic studies demonstrated that the ratio of labeling intensities obtained with 125I-labeled analogues of neurotensin and neuromedin N remained constant in all the brain areas. Our results do not support the existence of a specific neuromedin N receptor in rat and mouse brain and can be explained by the presence of a common receptor for both peptides.  相似文献   

4.
Neuromedin K: a novel mammalian tachykinin identified in porcine spinal cord   总被引:21,自引:0,他引:21  
A new peptide, designated "neuromedin K" has been discovered and isolated from porcine spinal cord by using bioassays for a tachykinin-like effect on the contractility of smooth muscle preparation from guinea-pig ileum. Porcine neuromedin K has been identified by microsequencing as: Asp-Met-His-Asp-Phe-Phe-Val-Gly-Leu-Met-NH2. The sequence thus determined has been confirmed by synthesis. Neuromedin K has been found to have not only a remarkable sequence homology to kassinin and substance P, but also a prompt stimulant activity on guinea-pig ileum in a manner similar to that of substance P, suggesting that neuromedin K may be involved in neural transmission.  相似文献   

5.
The action of neurotensin and related peptides has not been yet studied on lymphocytes, although there are studies indicating the stimulative action of neurotensin, a peptide first isolated from bovine hypothalamus, on different functions of phagocytic immune cells. The present study demonstrates that neurotensin and a related peptide, neuromedin N, increased significantly the adherence and chemotaxis capacity of murine peritoneal lymphocytes, when they were incubated in the presence of neuropeptide concentrations between 10(-9) M and 10(-12) M. With respect to their adherence capacity, neuromedin N showed a slightly higher stimulation than neurotensin at a shorter time. However, both neuropeptides stimulated the chemotaxis capacity in a similar percentage. The study of the action mechanisms of these neuropeptides showed that intracellular cAMP levels were not modified by neurotensin or neuromedin N, but using an extracellular calcium chelator, EGTA (1 mM), and a blocker of calcium channels in endoplasmic reticulum, ryanodine (0.5 mM), we observed that neurotensin and neuromedin N could produce their effects through an augmentation of the intracellular Ca2+ concentration. As adherence and chemotaxis are initial processes of immune response, the results show that both neuropeptides may be physiological modulators of the lymphocyte function.  相似文献   

6.
A multidimensional chromatographic regimen has been used to isolate and purify a peptide showing immunoreactivity for neuromedin U from guinea pig small intestine. Microsequence Edman N-terminal analysis and C-terminal analysis by enzymatic digestion showed this peptide to be a nonapeptide with the following sequence: H-Gly-Tyr-Phe-Leu-Phe-Arg-Pro-Arg-Asn-NH2. The C-terminal octapeptide of this sequence is the same as porcine NMU-8, and the C-terminal heptapeptide is identical to rat NMU(17-23).  相似文献   

7.
Processing of the precursor to neurotensin/neuromedin-N was studied in brain and intestine from four mammalian species (dog, cat, guinea pig and rat) using previously characterized immunoassays for neurotensin and neuromedin-N, as well as newly developed assays towards the 35-44 sequence (P1) and the 70-85 sequence (P2) of the canine precursor. While neurotensin was the major product (approximately 98%) with neurotensin immunoreactivity in brain and ileum, a large molecular form of neuromedin-N was found to comprise 55-91% of the neuromedin-N activity in the ileum of these species and only 2-8% that in brain. Large neuromedin-N, which behaved as a single substance during multiple chromatographic steps, was found to cross-react in the assays for P1 and P2, indicating that this molecule extended at least from residues 40-148, neuromedin-N being located at its C-terminus. Western blots confirmed the results obtained by immunoassay. Partially purified preparations of large neuromedin-N from dog, cat and rat were also found to contract the isolated guinea pig ileum, exhibiting potencies near to that of neuromedin-N. These results indicate that tissue-specific storage of large neuromedin-N, a biologically active molecule with greater than 100 amino acids, occurs in these four mammals.  相似文献   

8.
The primary structure of gastrin-releasing peptide from the guinea pig stomach has been determined by automated Edman degradation and shown to be identical to porcine gastrin-releasing peptide. Extracts of guinea pig brain and small intestine contained both gastrin-releasing peptide and its COOH-terminal decapeptide (neuromedin C) but the stomach extracts contained only gastrin-releasing peptide. Within the small intestine, highest concentrations of gastrin-releasing peptide-like immunoreactivity were found in extracts of the circular and longitudinal smooth muscle layers.  相似文献   

9.
Rat neuromedin U was isolated from the small intestine using mainly immunoaffinity chromatography and radioimmunoassay for pig neuromedin U-8. The amino acid sequence of rat neuromedin U was determined by microsequence analysis to be Tyr-Lys-Val-Asn-Glu-Tyr-Gln-Gly-Pro-Val-Ala-Pro-Ser-Gly-Gly- Phe-Phe-Leu-Phe-Arg-Pro-Arg-Asn-NH2, and this structure was confirmed by synthesis. Although the C-terminal heptapeptide amide structure of pig neuromedin U is completely conserved in rat neuromedin U, the remainder of the peptide reveals nine amino acid replacements and two amino acid deletions when compared to pig neuromedin U-25. Rat neuromedin U exerts two-fold potent uterus stimulant activity as compared to pig neuromedin U-25.  相似文献   

10.
A novel and highly specific radioimmunoassay for the tachykinin peptide neuromedin K (NMK, also known as neurokinin beta, neurokinin B) has been developed and used to determine the distribution of this peptide in extracts of guinea pig tissues. In addition to immunoreactive components coeluting with the 3 mammalian tachykinins, substance P (SP), substance K (SK) and NMK, analyses using reverse-phase HPLC revealed immunoreactive peaks coeluting with the C-terminal octapeptide of SK (SK-(3-10], an N-terminally extended form of SK (gamma-preprotachykinin-(72-92)amide), and a yet unidentified peak eluting before NMK in the extracts of guinea pig brain and spinal cord. In contrast to the other tachykinins, SP and SK, which were present in high concentrations in extracts of all peripheral and central tissues examined, NMK-like immunoreactivity was detected only in extracts of central tissues. NMK-like immunoreactivity was not detected in extracts of terminal ileum and urinary bladder.  相似文献   

11.
A peptidase that inactivated neurotensin by cleaving the peptide at the Pro10-Tyr11 bond, generating the biologically inactive fragments neurotensin(1-10) and neurotensin(11-13) was purified from whole rat ileum homogenate. The purified enzyme behaved as a 70-75-kDa monomer as determined by SDS-PAGE analysis in reducing or non-reducing conditions and gel permeation on Ultrogel AcA34. The peptidase was insensitive to thiol-blocking agents and acidic and serine protease inhibitors but could be strongly inhibited by 1,10-phenanthroline, EDTA, dithiothreitol and heavy metal ions such as zinc, copper and cobalt. Zinc was the only divalent cation able potently to reactivate the apoenzyme. This enzyme could be distinguished from endopeptidases EC 3.4.24.15 and EC 3.4.24.11, angiotensin-converting enzyme, proline endopeptidase, aminopeptidase and pyroglutamyl-peptide hydrolase since it was not affected by micromolar concentrations of their specific inhibitors. The peptidase displayed a high affinity for neurotensin (1.6 microM). Studies concerning the specificity of the enzyme towards the sequence of neurotensin established the following. (a) Neurotensin(9-13) was the shortest partial sequence that fully inhibited tritiated neurotensin degradation; shortening the C-terminal part of the neurotensin molecule led to inactive fragments. (b) Amidation of the C-terminal end of the peptide did not prevent the recognition by the peptidase. (c) There existed a strong stereospecificity of the peptidase for the residues in positions 8, 9 and 11 of the neurotensin molecule. (d) Pro-Xaa dipeptides (where Xaa represented aromatic or hydrophobic residues) were the most potent inhibitors of tritiated neurotensin degradation while all the Xaa-Pro dipeptides tested were totally ineffective. (e) The neurotensin-related peptides: neuromedin N, xenopsin and [Lys8-Asn9]neurotensin(8-13), as well as angiotensins I and II and dynorphins(1-8) and (1-13) were as potent as neurotensin in inhibiting [3H]neurotensin hydrolysis.  相似文献   

12.
A pituitary endorphin with novel properties.   总被引:4,自引:0,他引:4  
We describe the further purification of an opioid peptide from a porcine pituitary concentrate. The peptide has typical naloxone-reversible opioid activity in the guinea pig ileum myenteric-plexus preparation and mouse vas deferens, and it inhibits stereospecific binding at opiate receptors. It is distinguished from β-endorphin and the enkephalins by its apparent molecular weight, its slow reversal with washing in the guinea pig ileum preparation, and the resistance of its biologic activity to cyanogen bromide treatment. In beef pituitary, slow-reversing, cyanogen bromide resistant activity is found principally in neurointermediate lobe.  相似文献   

13.
Posttranslational processing of the neurotensin/neuromedin N (NT/NN) precursor has been investigated in mouse brain and small intestine by means of region-specific radioimmunoassays coupled to chromatographic fractionations. In brain, total NT/NN immunoreactivity measured with a common C-terminal antiserum was 15.72 pmol/g. NT measured with an N-terminal antiserum was 9.74 pmol/g and NN measured with an N-terminal antiserum was 5.98 pmol/g. In small intestine, combined NT/NN immunoreactivity was 108.55 pmol/g, consisting of 66.37 pmol/g NT but only 0.96 pmol/g NN. Gel permeation chromatography and reverse phase HPLC revealed that the large discrepancy in the NT and NN values obtained in small intestinal extracts was due to the presence of a high molecular weight, hydrophobic peptide, which was reactive only with the common C-terminally directed antiserum. Pepsinization of this generated an immunoreactive peptide with similar chromatographic characteristics to NN. In mouse intestine, NN is only partially cleaved from the common NT/NN precursor, resulting in the presence of an N-terminally extended molecular species. This novel molecular species of neuromedin N may be the physiological mediator of certain peripheral biological effects hitherto attributed to neurotensin or neuromedin N.  相似文献   

14.
In this second paper on the synthesis of neurotensin analogues as precursors for radiolabelling, solid phase synthesis of two polyunsaturated peptides, [Dah6, delta Pro7,10]-neurotensin and acetyl-[delta Pro10]-neurotensin-(8-13), are described. The first one contains one triple bond and two double bonds susceptible to tritiation in the same molecule, the second one contains one double bond in the shortest sequence having neurotensin activity. The C-terminal residue, Boc-Leu, was esterified on the chloromethyl-resin by its cesium salt. For the other amino acids a double coupling was carried out, the first one with dicyclohexylcarbodimide and the second one with the amino acid hydroxybenzotriazole ester. Acylation of the second amino acid, on the resin, presented some difficulties to achieve completeness and several acetylations and benzoylations had to be performed in order to block the last 4 per cent of free amines. It seems that these difficulties are related to some batches of chloromethyl-resin. Incorporation of both acetylenic lysine, N alpha-Boc-N epsilon-Z-L-2,6-diamino-4-hexynoic acid, whose synthesis is described, and N alpha-Boc-L-3,4-dehydroproline was without problems in this synthesis. After cleavage by hydrofluoric acid the crude peptides were purified by gel filtration on Bio-Gel P2 and ion exchange chromatography on carboxymethylcellulose (CM 52). [Dah6, delta Pro7,10]-neurotensin so obtained (51 per cent compared to starting Boc-Leu-resin) was in homogeneous form as characterized by amino acid analysis, thin layer chromatography in different systems and high performance liquid chromatography. The hydrogenation or tritiation product was identical with native neurotensin. Unsaturated derivative and neurotensin obtained after catalytic hydrogenation were as active as native neurotensin in inhibition of 125I-[Trp11]-neurotensin binding to rat brain synaptic membranes and in guinea pig ileum contractility test. Substitution of proline and lysine by their dehydro-derivatives did not affect the biological properties of neurotensin. The tritiated neurotensin (160-180 Ci/mmol) should be a good agent for biological characterization of neurotensin receptors and for investigation of the peptide metabolism.  相似文献   

15.
The mechanisms by which prohormone precursors are sorted to the regulated secretory pathway in neuroendocrine cells remain poorly understood. Here, we investigated the presence of sorting signal(s) in proneurotensin/neuromedin N. The precursor sequence starts with a long N-terminal domain followed by a Lys-Arg-(neuromedin N)-Lys-Arg-(neurotensin)-Lys-Arg- sequence and a short C-terminal tail. An additional Arg-Arg dibasic is contained within the neurotensin sequence. Mutated precursors were expressed in endocrine insulinoma cells and analyzed for their regulated secretion. Deletion mutants revealed that the N-terminal domain and the Lys-Arg-(C-terminal tail) sequence were not critical for precursor sorting to secretory granules. In contrast, the Lys-Arg-(neuromedin N)-Lys-Arg-(neurotensin) sequence contained essential sorting information. Point mutation of all three dibasic sites within this sequence abolished regulated secretion. However, keeping intact any one of the three dibasic sequences was sufficient to maintain regulated secretion. Finally, fusing the dibasic-containing C-terminal domain of the precursor to the C terminus of beta-lactamase, a bacterial enzyme that is constitutively secreted when expressed in neuroendocrine cells, resulted in efficient sorting of the fusion protein to secretory granules in insulinoma cells. We conclude that dibasic motifs within the neuropeptide domain of proneurotensin/neuromedin N constitute a necessary and sufficient signal for sorting proteins to the regulated secretory pathway.  相似文献   

16.
Neurotensin induced significant antinociceptive activity as measured in a variety of nociceptive tests 10 and 30 min following intracerebroventricular (i.c.v.) injection in mice. The lowest effective peptide doses were 25 ng in the writhing test, 25–50 ng in the tail-flick test, 50–100 ng in the hot-plate test and 2000 ng in the tail electrical stimulation test. The neurotensin related hexapeptide neuromedin N also displayed antinociceptive properties but only in the writhing and tail-flick tests. Furthermore, as compared to neurotensin, the neuromedin effects required higher doses. ED50's for neurotensin and neuromedin in the writhing test were 70 ng and 1070 ng, respectively. Separate or combined injections of the endopeptidase 24.11 (enkephalinase) inhibitor thiorphan (l0μg) and the aminopeptidase inhibitor bestatin (50μg) did not affect tail-flick latencies. In contrast, i.c.v. injection of thiorphan together with an ineffective dose of neurotensin (25 ng) resulted in a significant antinociceptive effect. Bestatin did not modify tail-flick latencies in neurotensin-treated mice whether in the absence or presence of thiorphan. On the contrary, each of these peptidase inhibitors promoted antinociceptive effects of subthreshold doses of neuromedin (lμg) in the tail-flick test. Maximal antinociception was obtained by combining both inhibitors, thus conferring antinociceptive effects to neuromedin doses that were as low as 10 ng. Naloxone (0.5–2 mg/kg, s.c.) did not significantly reduced the antinociceptive effects of combinations of neurotensin and thiorphan and of neuromedin, thiorphan and bestatin. The data show that both neurotensin and neuromedin elicit analgesia in mice through an opiate independent mechanism. Furthermore, like enkephalin, neuromedin is readily degraded by brain endopeptidase 24.11 and bestatin sensitive aminopeptidase(s), whereas the resistance of neurotensin to aminopeptidase attack confers to this peptide a broader spectrum and longer duration of action than its congener neuromedin.  相似文献   

17.
The venom of V. cincta contains acetylcholine (ACh), histamine and 5-hydroxytryptamine (5-HT). Blockers of these agonists did not block completely the hypotensive and smooth muscle contractile activity of venom. On smooth muscle, there was a residual slow contraction. The active substance which produced this slow contraction was separated by solvent extraction, gel filtration and TLC. The purified material (which has been provisionally designated "Vecikinin") lowered cat, rat and guinea pig blood pressure, increased amplitude of cardiac contraction, and increased capillary permeability. Vecikinin contracted several smooth muscle preparations (rat uterus, rat ascending colon, guinea pig ileum, guinea pig colon and rat ileum), while relaxing rat duodenum. Its contractile activity was not lost on boiling, but acid or alkali-boiling reduced its contractile activity. It was inactivated on incubation with chymotrypsin and carboxypeptidase but not with trypsin, pepsin or leucine aminopeptidase. It is a peptide, appears to be of low molecular weight, and could be distinguished from substance P, angiotensin, bradykinin and hornet or wasp kinin.  相似文献   

18.
虎纹捕鸟蛛毒素—I(HWTX—I)对豚鼠回肠的作用机制研究   总被引:8,自引:1,他引:7  
虎纹捕鸟蛛毒素HWTX-I(5mg/L)对电刺激豚鼠回肠引起的一过性收缩有非常明显的抑制作用.HWTX-I的抑制作用发生后,乙酰胆碱(ACh)诱发的回肠收缩幅度与使用HWTX-I前无明显差异.在使用酚妥拉明后,HWTX-I仍能抑制豚鼠回肠的一过性收缩.HWTX-I对豚鼠回肠的抑制作用主要是抑制ACh释放或影响ACh释放之前的过程  相似文献   

19.
Whole homogenates and membrane-bound and cytosoluble fractions prepared from rat ventral tegmental area (VTA) and nucleus accumbens were examined for their content of peptidasic activities and for their ability to metabolize neurotensin and its natural related hexapeptide neuromedin N. No qualitative differences were observed between these two brain regions concerning the presence and the subcellular distribution of a series of activities able to hydrolyze various specific fluorimetric enzymatic substrates. However, aminopeptidase B, endopeptidase 24-15, and endopeptidase 24-11 were significantly lower in the VTA than in the nucleus accumbens membrane preparations, while proline endopeptidase was detected in significantly higher amount only in the cytosolic fraction prepared from nucleus accumbens. Both neurotensin and neuromedin N were metabolized more rapidly in the nucleus accumbens than in the VTA. Furthermore, the degradation rate of neuromedin N was considerably faster than that of neurotensin whatever the cerebral area examined. Studies carried out with highly specific peptidase inhibitors revealed that endopeptidase 24-15 mainly contributed to the catabolism of neurotensin in homogenates and membrane-bound preparations of nucleus accumbens and VTA, while aminopeptidase B appeared predominantly responsible for the rapid disappearance of neuromedin N in both cerebral tissues. The possibility that the different metabolic processes of the two peptide congeners could explain their distinct pharmacological profiles observed after their microinjection in the nucleus accumbens and in the VTA is discussed.  相似文献   

20.
The brain peptide Tyr-MIF-1 (Tyr-Pro-Leu-Gly-NH2) was tested for its effects on electrically stimulated contractions in the guinea pig ileum assay. Tyr-MIF-1 acted as an opiate agonist in reducing these contractions. Its IC50 was about 9 microM, and its effects were reversed by naloxone and CTOP. The ability of Tyr-MIF-1 also to antagonize the inhibitory effects of opiates on electrically stimulated contractions was more evident in the ileum removed from a guinea pig tolerant to morphine or after partial inactivation of opiate receptors with beta-CNA. Similar results were observed with hemorphin. The endogenous peptide Tyr-MIF-1 and the blood-derived peptide hemorphin, therefore, can act as agonists as well as antagonists in the guinea pig ileum. The effects as antagonists are best observed in preparations of ileum with reduced receptor reserve (tolerant or beta-CNA treated) and are consistent with the idea that properties of endogenous peptides as opiate antagonists are enhanced in the tolerant state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号