首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
Recent studies suggest that the synthesis of protein-bound ADP-ribose polymers catalyzed by poly(ADP-ribose) polymerase-1 (PARP-1) regulates eucaryotic gene expression, including the NF-kappaB-dependent pathway. Here, we report the molecular mechanism by which PARP-1 activates the sequence-specific binding of NF-kappaB to its oligodeoxynucleotide. We co-incubated pure recombinant human PARP-1 and the p50 subunit of NF-kappaB (NF-kappaB-p50) in the presence or absence of betaNAD+ in vitro. Electrophoretic mobility shift assays showed that, when PARP-1 was present, NF-kappaB-p50 DNA binding was dependent on the presence of betaNAD+. DNA binding by NF-kappaB-p50 was not efficient in the absence of betaNAD+. In fact, the binding was not efficient in the presence of 3-aminobenzamide (3-AB) either. Thus, we conclude that NF-kappaB-p50 DNA binding is protein-poly(ADP-ribosyl)ation dependent. Co-immunoprecipitation and immunoblot analysis revealed that PARP-1 physically interacts with NF-kappaB-p50 with high specificity in the absence of betaNAD+. Because NF-kB-p50 was not an efficient covalent target for poly(ADP-ribosyl)ation, our results are consistent with the conclusion that the auto-poly(ADP-ribosyl)ation reaction catalyzed by PARP-1 facilitates the binding of NF-kappaB-p50 to its DNA by inhibiting the specific protein.protein interactions between NF-kappaB-p50 and PARP-1. We also report the activation of NF-kappaB DNA binding by the automodification reaction of PARP-1 in cultured HeLa cells following exposure to H(2)O(2). In these experiments, preincubation of HeLa cells with 3-AB, prior to oxidative damage, strongly inhibited NF-kappaB activation in vivo as well.  相似文献   

9.
10.
11.
Chronic hypoxia and inflammatory cytokines are hallmarks of inflammatory joint diseases like rheumatoid arthritis (RA), suggesting a link between this microenvironment and central pathological events. Because TACE/ADAM17 is the predominant protease catalyzing the release of tumor necrosis factor alpha (TNFalpha), a cytokine that triggers a cascade of events leading to RA, we examined the regulation of this metalloprotease in response to hypoxia and TNFalpha itself. We report that low oxygen concentrations and TNFalpha enhance TACE mRNA levels in synovial cells through direct binding of hypoxia-inducible factor-1 (HIF-1) to the 5' promoter region. This is associated with elevated TACE activity as shown by the increase in TNFalpha shedding rate. By the use of HIF-1-deficient cells and by obliterating NF-kappaB activation, it was determined that the hypoxic TACE response is mediated by HIF-1 signaling, whereas the regulation by TNFalpha also requires NF-kappaB activation. As a support for the in vivo relevance of the HIF-1 axis for TACE regulation, immunohistological analysis of TACE and HIF-1 expression in RA synovium indicates that TACE is up-regulated in both fibroblast- and macrophage-like synovial cells where it localizes with elevated expression of both HIF-1 and TNFalpha. These findings suggest a mechanism by which TACE is increased in RA-affected joints. They also provide novel mechanistic clues on the influence of the hypoxic and inflammatory microenvironment on joint diseases.  相似文献   

12.
13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号