首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
The effect of co-infection by maize streak virus (MSV) and maize stripe virus (MStV) on plant growth and grain yield was investigated in a susceptible variety of maize (Zea mays), ZS 5206, in Mauritius. Under natural conditions MSV, transmitted by the leafhopper Cicadulina mbila, was normally established before MStV, which is vectored by the planthopper Peregrinus maidis; as a result, MStV symptoms were often partially or completely masked by those of MSV, making MStV detection by symptomatology very unreliable. MSV and MStV were diagnosed by ELISA and MStV by a novel method of detecting the MStV-coded non-capsid protein. The maize hybrid ZS 5206 was inoculated with either MSV, MStV or both, at two stages in the growth cycle (3–5 or 7–10 leaf stage). A greater reduction in plant growth was observed in plants inoculated singly with MStV (80% and 29% for first and second stage, respectively) than with MSV (50% and 23%, respectively). No cobs were produced by plants singly infected with MStV at the first stage, or co-infected with MSV and MStV at both stages; however, marginal grain production was recorded in plants singly infected with MSV at the first stage (91% reduction), or infected either with MSV or MStV, at the second stage (65% and 80% reduction, respectively). In maize hybrid ZS 5206, MStV is more virulent than MSV; co-infection by both viruses causes greater reductions in plant growth and grain yield than single infection by either virus at a given stage of plant development. In the event of co-infection by MSV and MStV, yield losses can be erroneously attributed to MSV only if the symptoms of MStV are masked by those of the former and if adequate methods for MStV detection are not used.  相似文献   

2.
RNA and protein components of maize streak and cassava latent viruses   总被引:3,自引:0,他引:3  
Polyacrylamide gel electrophoresis indicated that maize streak (MSV) and cassava latent (CLV) viruses each contain one species of protein and two of RNA. The estimated protein mol. wt is 28000 for MSV and 34000 for CLV. The mol. wts obtained for the two RNA species using formamide-containing gels were the same for the two viruses: 17×108 and 1–3 × 106. It is suggested that the viruses have a two-part genome and that the tendency of their nucleoprotein particles to form pairs favours the delivery of complete genomes to sites of infection.  相似文献   

3.
Maize lethal necrosis disease (MLND) is a devastating viral disease of maize caused by double infection with Maize chlorotic mottle virus (MCMV) and any one of the Potyviridae family members. Management of MLND requires effective resistance screening and surveillance tools. In this study, we report the use of small RNA (sRNA) profiling to detect MLND causal viruses and further the development of alternative detection markers for use in routine surveillance of the disease-causing viruses. Small RNAs (sRNAs) originating from five viruses namely MCMV, Sugarcane mosaic virus (SCMV), Maize streak virus (MSV), Maize-associated totivirus (MATV) and Maize yellow mosaic virus (MYMV) were assembled from infected maize samples collected from MLND hot spots in Kenya. The expression of the identified viral domains was further validated using quantitative real-time PCR. New markers for the detection of some of the MLND causal viruses were also developed from the highly expressed domains and used to detect the MLND-causative viruses in maize and alternative hosts. These findings further demonstrate the potential of using sRNAs especially from highly expressed viral motifs in the detection of MLND causal viruses. We report the validation of new sets of primers for use in detection of the most common MLND causal viruses MCMV and SCMV in East Africa.  相似文献   

4.
As previously reported, narcissus latent virus (NLV) has flexuous filamentous particles measuring c. 650 nm × 13 nm, is manually transmissible to Nicotiana clevelandii and Tetragonia expansa, and is transmitted by the aphid Myzus persicae following brief acquisition access periods. In contrast to previous reports the virus particle protein has an apparent mol. wt of c. 45 kD. Moreover, infected cells in N. clevelandii leaves contain cytoplasmic inclusion bodies resembling those of potyviruses. In vitro translation of NLV RNA produced only one major product (mol. wt c. 25 kD) which was not precipitated by antisera to virus particle protein or to cytoplasmic inclusion protein. Antisera to 12 potyviruses and nine carlaviruses failed to react with sap containing NLV particles. Similarly antiserum to NLV particles did not react with particles of seven potyviruses or four carlaviruses. A weak reaction was detected between NLV particles and antiserum to particles of maclura mosaic virus (MMV), a virus which resembles NLV in particle morphology and particle-protein size, and in inducing pinwheel inclusions. The cytoplasmic inclusion proteins (CIPs) of NLV, MMV and from narcissus plants with yellow stripe symptoms were serologically inter-related. These proteins were also serologically related to, and had mol. wt similar to, the CIP of members of the potyvirus group. Particles with the size and antigenic specificity of those of NLV were found consistently in narcissus plants with yellow stripe disease. Narcissus latent and narcissus yellow stripe viruses therefore seem to be synonymous and, together with MMV, have properties distinct from those of any previously described virus group.  相似文献   

5.
Flexuous thread‐like virus particles c. 650–700 nm in length were isolated from brusca (Senna pallida) plants showing stunting, mosaic, vein yellowing and leaf malformation. The virus was mechanically transmitted to healthy Senna pallida, Cassia obovata and Cassia emarginata L. plant species. Virus particles sedimented in sucrose density gradients as one component, with a bouyant density of 1.2 g cm?3 in caesium chloride equilibrium gradients. Virions contained a molecule of ssRNA with an apparent size of 6.4 kb. The dsRNA pattern showed one main band of about 12 kb, and two subgenomic dsRNA of c. 10 and c. 5.4 kb. Analyses of purified virus preparations by sodium dodecyl sulfate‐polyacrylamide gel electrophoresis (SDS‐PAGE) resolved two coat protein subunits, with mol. wt of c. 28 000 and 26 000 daltons. In Western blotting the virus coat proteins reacted with an homologous polyclonal antiserum and with an antiserum to Lettuce infectious yellow virus. Electron microscopic observations of cells from infected plants showed the accumulation of cytoplasmic vesiculate inclusion bodies and crystalline aggregates of virus particles within phloem tissue. Some of the physicochemical and ultrastructural properties of this virus resemble those of a Closterovirus; however, differences show it to be sufficiently distinct from any previously reported viruses. We proposed the name of Senna chlorotic stunt (SeCSV) for this virus.  相似文献   

6.
A virus causing sunken veins on ‘Georgia Jet’ sweet potato, and yellow brittle leaves and stunting on Ipomoea setosa, was purified and a specific antiserum was prepared. Flexuous particles with a normal length of 850 nm and a diameter of 12 nm with an open helical structure typical of closteroviruses were observed. The virus particle protein has an apparent mol. wt of c. 34 kD. Double-stranded RNA isolated from SPSVV-infected I. setosa and subjected to electrophoresis in agarose consisted of one major band with an estimated Mr of 10.5 kbp and two minor bands with Mr of 9.0 and 5.0 kbp. Fibril-containing vesicles in phloem cells were observed in ultrathin sections of infected leaf tissues. The virus was transmitted by the whitefly Bemisia tabaci in a semi-persistent manner and by grafting, but not mechanically. The virus could be transmitted to various Ipomoea species, to Nicotiana clevelandii, N. benthamiana and Amaranthus palmeri. The virus did not react with an antiserum to lettuce infectious yellows virus. Based on particle morphology, serology and symptom expression, the virus appears unique and different from all other reported whitefly-transmitted closteroviruses. We propose it be named “sweet potato sunken vein virus” (SPSVV).  相似文献   

7.
Leaves of maize infected with the Iranian maize mosaic rhabdovirus (IMMRV) were homogenized in 0.1 M citrate-0.04 M Na2SO3 buffer, pH 5.4, containing 10 % sucrose and the extract was subjected to low speed and high speed centrifugation followed by resuspension in 0.05 M potassium phosphate buffer, pH 7.2, containing 10 % sucrose. Partially purified preparation was obtained by density-gradient centrifugation, removal of the virus zones and their concentration by high speed centrifugation. Two virus specific bands were observed in density-gradient columns. An antiserum with a titer of 128 was prepared by injecting partially purified virus into rabbits. In agar-gel-diffusion tests, the antiserum produced one or two precipitin lines against diseased maize extract but none against healthy maize extract. IMMRV was not related to barley yellow striate mosaic (BYSMV), cereal chlorotic mottle (CCMV), Cynodon chlorotic streak (CCSV), Festuca leaf streak, and maize mosaic (MMV) viruses as well as to two unidentified rhabdoviruses occurring in wheat and Bermuda grass in the vicinity of Shiraz, when these viruses were tested against IMMRV antiserum in agar-gel-diffusion and enzyme-linked immunosorbent assay. Likewise, IMMRV did not react with antisera to BYSMV, CCMV, CCSV and MMV in agar-gel-diffusion tests. IMMRV appears to be different from most reported rhabdoviruses of cereals.  相似文献   

8.
Maize streak virus (MSV) was purified by homogenising infected leaf tissue in 0·01 m pH 3·9 phosphate buffer and clarifying the extract with n-butanol (7 ml/100 ml extract). Purified preparations contained particles 20 nm in diameter, some occurring singly, but most occurring in pairs, forming structures of 30 × 20 nm. The sedimentation coefficients of single and paired particles were 54 and 76 S respectively. When centrifuged in sucrose density gradients preparations made by extracting leaves at pH 3·9 gave a single intense light-scattering zone containing paired particles. Preparations made at pH 5·9 or 7·9 gave one or two additional upper zones containing single particles and fragmented material. Preparations treated with 0·05 or 0·1 m ethylene diamine tetra-acetic acid, disodium salt, (EDTA) contained no paired particles, few single particles and much fragmented material. In immunoelectrophoresis, the major component in preparations without EDTA migrated to the cathode whereas that in EDTA-treated preparations migrated to the anode. Virus isolates from streak-diseased sugarcane and guinea grass (Panicum maximum) were serologically related to MSV and had similar particles with identical sedimentation coefficients. No such particles were seen in purified preparations of healthy maize, sugarcane, or guinea grass. The viruses from sugarcane and guinea grass are probably host-adapted and are referred to correctly as the sugarcane and guinea grass strains of MSV. MSV probably contains single-stranded RNA, and the cryptogram is (R)/1:*/*:S/S:S/Au.  相似文献   

9.
Maize streak virus (MSV; Genus Mastrevirus, Family Geminiviridae) occurs throughout Africa, where it causes what is probably the most serious viral crop disease on the continent. It is obligately transmitted by as many as six leafhopper species in the Genus Cicadulina, but mainly by C. mbila Naudé and C. storeyi. In addition to maize, it can infect over 80 other species in the Family Poaceae. Whereas 11 strains of MSV are currently known, only the MSV‐A strain is known to cause economically significant streak disease in maize. Severe maize streak disease (MSD) manifests as pronounced, continuous parallel chlorotic streaks on leaves, with severe stunting of the affected plant and, usuallly, a failure to produce complete cobs or seed. Natural resistance to MSV in maize, and/or maize infections caused by non‐maize‐adapted MSV strains, can result in narrow, interrupted streaks and no obvious yield losses. MSV epidemiology is primarily governed by environmental influences on its vector species, resulting in erratic epidemics every 3–10 years. Even in epidemic years, disease incidences can vary from a few infected plants per field, with little associated yield loss, to 100% infection rates and complete yield loss. Taxonomy: The only virus species known to cause MSD is MSV, the type member of the Genus Mastrevirus in the Family Geminiviridae. In addition to the MSV‐A strain, which causes the most severe form of streak disease in maize, 10 other MSV strains (MSV‐B to MSV‐K) are known to infect barley, wheat, oats, rye, sugarcane, millet and many wild, mostly annual, grass species. Seven other mastrevirus species, many with host and geographical ranges partially overlapping those of MSV, appear to infect primarily perennial grasses. Physical properties: MSV and all related grass mastreviruses have single‐component, circular, single‐stranded DNA genomes of approximately 2700 bases, encapsidated in 22 × 38‐nm geminate particles comprising two incomplete T = 1 icosahedra, with 22 pentameric capsomers composed of a single 32‐kDa capsid protein. Particles are generally stable in buffers of pH 4–8. Disease symptoms: In infected maize plants, streak disease initially manifests as minute, pale, circular spots on the lowest exposed portion of the youngest leaves. The only leaves that develop symptoms are those formed after infection, with older leaves remaining healthy. As the disease progresses, newer leaves emerge containing streaks up to several millimetres in length along the leaf veins, with primary veins being less affected than secondary or tertiary veins. The streaks are often fused laterally, appearing as narrow, broken, chlorotic stripes, which may extend over the entire length of severely affected leaves. Lesion colour generally varies from white to yellow, with some virus strains causing red pigmentation on maize leaves and abnormal shoot and flower bunching in grasses. Reduced photosynthesis and increased respiration usually lead to a reduction in leaf length and plant height; thus, maize plants infected at an early stage become severely stunted, producing undersized, misshapen cobs or giving no yield at all. Yield loss in susceptible maize is directly related to the time of infection: infected seedlings produce no yield or are killed, whereas plants infected at later times are proportionately less affected. Disease control: Disease avoidance can be practised by only planting maize during the early season when viral inoculum loads are lowest. Leafhopper vectors can also be controlled with insecticides such as carbofuran. However, the development and use of streak‐resistant cultivars is probably the most effective and economically viable means of preventing streak epidemics. Naturally occurring tolerance to MSV (meaning that, although plants become systemically infected, they do not suffer serious yield losses) has been found, which has primarily been attributed to a single gene, msv‐1. However, other MSV resistance genes also exist and improved resistance has been achieved by concentrating these within individual maize genotypes. Whereas true MSV immunity (meaning that plants cannot be symptomatically infected by the virus) has been achieved in lines that include multiple small‐effect resistance genes together with msv‐1, it has proven difficult to transfer this immunity into commercial maize genotypes. An alternative resistance strategy using genetic engineering is currently being investigated in South Africa. Useful websites: 〈 http://www.mcb.uct.ac.za/MSV/mastrevirus.htm 〉; 〈 http://www.danforthcenter.org/iltab/geminiviridae/geminiaccess/mastrevirus/Mastrevirus.htm 〉.  相似文献   

10.
A leaf disease of sorghum (Sorghum bicolor) characterised by fine discontinuous chlorotic streaks between the veins, was observed on sorghum grown during the 1987/88 post-rainy season in peninsular India. Early-infected plants were stunted, had shortened internodes, and produced poorly developed panicles. The virus was transmitted by the delphacid planthopper, Peregrinus maidis. Negatively stained leaf dip preparations contained bullet-shaped virus particles (208 ± 4.4 × 66 ± 1.0 nm) resembling those of rhabdoviruses. In ultrathin sections, the particles budded through the inner nuclear membrane and were present in the cytoplasm within membrane-bound vesicles that were apparently contiguous with the distended outer nuclear membrane. A method for purifying the virus was developed utilising polyethylene glycol (PEG) precipitation, Celite filtration and sucrose densitygradient centrifugation. An antiserum was produced in rabbits with a titre of 1/2650 in the precipitin ring interphase test. The virus could be detected in infected sorghum leaf tissues using a direct antigen coating form of enzyme-linked immunosorbent assay (DAC-ELISA). In immuno-double diffusion tests, the virus reacted positively with antisera to maize mosaic virus (MMV) from Reunion (MMV-RN) and Hawaii (MMV-HI), but not with antisera to barley yellow striate mosaic (BYSMV), cereal chlorotic mottle (CCMV), and cynodon chlorotic streak (CCSV) viruses. Thus, the virus isolated from sorghum is designated the MMV-S isolate. In DAC-ELISA tests, MMV-S reacted positively with antisera to MMV-R, MMV-HI, MMV-Florida isolate, CCSV, and CCMV, and weakly with antiserum to BYSMV. SDS-polyacrylamide gel electrophoresis revealed four major proteins of relative mass Mr 70 000, 59 000, 32 000 and 28 000. In electro-blot immunoassay, MMV and CCSV antisera detected the G and N proteins. These data suggest that MMV-S should be placed in the sonchus yellow net virus subgroup of plant rhabdoviruses.  相似文献   

11.
Two batches of Cicadulina mbila were given two distinct acquisition access periods (AAP) (3 h and 50 h) on maize plants infected with maize streak virus (MSV). Infectivity assays on susceptible maize were carried out 1, 3, 10, 17, 26 and 35 days after the AAP. Transmission efficiency was significantly higher for C. mbila subjected to the 50-h AAP. At the same time as the infectivity assays, the amount of MSV in each leafhopper was determined by an indirect double antibody sandwich (IDAS) ELISA. There were more ELISA-positive insects after the 50-h AAP than after the 3-h AAP. In the group given a 3-h AAP, only 7% of the insects tested between day 1 and 35 were found to be positive by ELISA. In contrast, after the 50-h AAP, the majority of C. mbila were positive, yet a decrease in ELISA-positive insects was noticed from day 17 onwards. Using a calibration curve obtained with purified virus, as little as 0.15 ng of MSV per insect could be measured by the IDAS-ELISA. A mean value of 0.36 ng of MSV per C. mbila was found 3 days after the 50–h acquisition, whereas 14 days later there was only 0.20 ng of virus per insect. For comparison, when leafhoppers were kept on infected maize, they displayed substantial accumulation of MSV up to an average of 3.83 ng of MSV per insect after 35 days of continuous acquisition. The amount of virus per insect detected in females was usually greater than the amount detected in males. Our results suggest that MSV does not multiply in C. mbila and contribute to the understanding of the persistence of transmission efficiency in the absence of virus multiplication.  相似文献   

12.
Parameters affecting the efficiency of agroinfection of maize streak virus (MSV) in maize have been determined. Monomeric units, cloned at a number of sites in the MSV genome were not infectious but multimeric units containing partial duplications were equally as infectious as complete tandem dimeric clones. Inoculation of tandem dimeric units conjugated into different strains of Agrobacterium showed that both A. tumefaciens and A. rhizogenes were able to transfer DNA to maize and this ability was Ti (or Ri) plasmid-specific. Nopaline strains of A. tumefaciens and both agropine and mannopine A. rhizogenes strains efficiently transferred MSV DNA to maize. A number of strains were capable of MSV DNA transfer to other members of the Gramineae, providing information which may be essential for Agrobacterium-mediated transformation of monocotyledonous plants.  相似文献   

13.
A destructive virus, causing top paralysis to peanut, was discovered in the wild germplasm collection growing in the USDA-ARS greenhouses, Stillwater, Oklahoma, USA. The symptoms observed on the wild plant were restricted to a few leaves as green batches in a light green to yellow background with some leaflets having lost most of the basal part of the laminae leaving the top portion rolling upwards forming a cone. The virus was mechanically transmitted to cultivated peanut ( Arachis hypogaea L,.) where it caused more severe and destructive symptoms including stunting, severe malformation of leaves and partial or complete disappearance of leaflet laminae. This virus differed in symptomology, host range, and/or serological reactivity from allpeanut viruses reported in the literature, particularly those causing leaf malformation and stunting. The virus induced necrotic local lesions on Phaseolus vulgaris L. cv. "Topcrop" and chlorotic local lesions with necrotic centres bordered withvery bright intense red color on Chenopodium amaranticolor. In both passive indirect enzyme-linked immunosorbent assay (PAS-ELISA) and Ouchterlony double immunodiffusion test, the virus did not react with antisera against brome mosaic, bean yellow mosaic, peanut stripe, potato Y, tobacco mosaic, watermelon mosaic 1, watermelon mosaic 2, wheat soilborne mosaic, wheat streak mosaic, and zucchini yellow mosaic viruses.
However, in reciprocal cross reactions the virus seemed to share a common antigenic determinant with a peanut mottle virus isolate from Oklahoma (PMV-OK). The virus had flexuous filamentous particles with a length of 750–850 nm, falling within the range reported for the potyvirus group. The virus was successfully purified and the molecular weight of its protein subunit was found to be 30000 d. A polyclonal antiserum was raised in rabbits against the virus and used for reciprocal serological tests.  相似文献   

14.
The rhabdovirus causing maize mosaic in Shiraz, Iran, is transmitted by Ribautodelphax notabilis Logvinenko (Homoptera, Delphacidae). Average size of bullet-shaped virus particles in negatively stained leaf-dip preparations of naturally or experimentally infected plants was 81 × 179 nm. The virus is transmitted to wheat and barley causing mosaic and severe stunting. Similar virus particles have been observed in leaf-dip preparations of naturally infected wheat, barley and Sudangrass. This is believed to be the first record of the involvement of R. notabilis in virus transmission. The relationship of the described isolate with similar viruses infecting gramineous plants is discussed.  相似文献   

15.
A virus found in cassava from the north-west of the Ivory Coast was transmitted by inoculation with sap extracts to herbaceous species in six plant families. Chenopodium quinoa was used as a propagation host and C. murale was used for local lesion assays. The virus particles are bacilliform, c. 18 nm in diameter, with predominant lengths of 42,49 and 76 nm and a structure apparently similar to that found in alfalfa mosaic virus. Purified preparations of virus particles had A260/A280 of 1.7 ±0.05, contained one protein of Mrc. 22 000, and yielded three species of RNA with Mr (× 10-6) of c. 0.7, 0.8 and 1.2. Although the virus particles were poorly immunogenic, an antiserum was produced and the virus was detected by enzyme-linked immunosorbent assay (DAS-ELISA) in leaf extracts at concentrations down to c. 6 ng/ml. Four other field isolates were also detected, including a strain which caused only mild systemic symptoms in C. quinoa instead of necrosis. The naturally infected cassava source plants were also infected with African cassava mosaic virus (ACMV) but when the new virus was cultured in Nicotiana benthamiana, either separately or together with ACMV, its concentration was the same. The new virus did not react with antisera to several plant viruses with small bacilliform or quasi-bacilliform particles, and alfalfa mosaic virus reacted only weakly and inconsistently with antiserum to the cassava virus. The new virus, for which the name cassava Ivorian bacilliform virus is proposed, is tentatively classified as the second member of the alfalfa mosaic virus group.  相似文献   

16.
Particles resembling those of geminiviruses were found by immunosorbent electron microscopy in extracts of plants infected in India with bhendi yellow vein mosaic, croton yellow vein mosaic, dolichos yellow mosaic, horsegram yellow mosaic, Indian cassava mosaic and tomato leaf curl viruses. All these viruses were transmitted by Bemisia tabaci whiteflies, all reacted with at least one out of ten monoclonal antibodies to African cassava mosaic virus (ACMV), and all reacted with a probe for ACMV DNA-1, but scarcely or not at all with a full-length probe for ACMV DNA-2. Most of the viruses were distinguished by their host ranges when transmitted by whiteflies, and the rest could be distinguished by their pattern of reactions with the panel of monoclonal antibodies. Horsegram yellow mosaic virus was distinguished from Thailand mung bean yellow mosaic virus by its lack of sap transmissibility, ability to infect Arachis hypogaea, failure to react strongly with the probe for ACMV DNA-2 and its pattern of reactions with the monoclonal antibodies. Structures resembling a ‘string of pearls’, but not geminate particles, were found in leaf extracts containing malvastrum yellow vein mosaic virus. Such extracts reacted with two of the monoclonal antibodies, suggesting that this whitefly-transmitted virus too is a geminivirus. All seven viruses from India can therefore be considered whitefly-transmitted geminiviruses.  相似文献   

17.
The Indian cassava mosaic virus (ICMV) was transmitted by the whitefly Bemisia tabaci and sap inoculation. ICMV was purified from cassava and from systemically infected Nicotiana benthamiana leaves. Geminate particles of 16–18 × 30 nm in size were observed by electron microscopy. The particles contained a single major protein of an estimated molecular weight of 34,000. Specific antiserum trapped geminate particles from the extracts of infected cassava and N. benthamiana plants in ISEM test. The virus was detected in crude extracts of infected cassava, ceara rubber, TV. benthamiana and N. tabacum cv. Jayasri plants by ELISA. ICMV appeared serologically related to the gemini viruses of Acalypha yellow mosaic, bhendi yellow vein mosaic, Croton yellow vein mosaic, Dolichos yellow mosaic, horsegram yellow mosaic, Malvastrum yellow vein mosaic and tobacco leaf curl.  相似文献   

18.
Carrot red leaf virus (CRLV) was purified from infected chervil by centrifuging whole plant extracts at low speed and incubating the resuspended pellets with Driselase; the digest was then treated with 1% (v/v) Triton X-100 and the virus concentrated by centrifugation twice at high speed through a layer of 20% sucrose. The preparations (about 1 μg virus/g tissue) contained isometric particles c. 25 nm in diameter which formed a single u.v.-absorbing component in sucrose density gradients. Chervil seedlings exposed to aphids (Cavariella aegopodii) that had been injected with or had fed on fractions from the u.v.-absorbing zone developed typical symptoms of infection with CRLV. CRLV particles had a sedimentation coefficient (s20,w) of 104 S, buoyant density in CsCl of 1.403 g/cm3 and A260/A280 of 1.62. Antiserum with a gel-diffusion titre of 1/512 was obtained from a rabbit injected intradermally with 100 μg purified virus. CRLV was detected by immunosorbent electron microscopy and enzyme-linked immunosorbent assay in extracts of the petioles and leaf midribs of infected chervil and in groups of five to 20 viruliferous C. aegopodii. Analysis of antiserum/virus reactions by density gradient centrifugation showed that CRLV is distantly related to all luteoviruses tested; its relationships were closest to barley yellow dwarf virus (RPV strain), and perhaps also to beet western yellows virus, more distant to tobacco necrotic dwarf, potato leafroll and bean leafroll viruses, and very distant to barley yellow dwarf (MAV strain) and soybean dwarf viruses. Some of these relationships were detected by double diffusion in agarose gels and by electron microscopy of antiserum/virus mixtures. Immunosorbent electron microscopy detected all these relationships but suggested that CRLV was more closely related to tobacco necrotic dwarf and potato leafroll viruses than to barley yellow dwarf virus (RPV strain). The results show that CRLV should be considered a definitive member of the luteovirus group, and provide confirmation of recent evidence that potato leafroll virus is a luteovirus.  相似文献   

19.
A disease of chickpea in India, characterised by chlorosis, severe stunting and phloem browning, was shown to be caused by a geminivirus. This virus was transmitted by the leafhopper Orosius orientalis from chickpea to chickpea and several other plant species. A method for purification of this virus was devised and a polyclonal antiserum produced. The majority of the purified particles were geminate. The size of the coat protein was shown to be 32 kD and the nucleic acid was shown to be circular ssDNA of 2900 nucleotides. By immunosorbent electron microscopy this virus was shown to be unrelated to the leafhopper-transmitted geminiviruses known to infect dicotyledons such as beet curly top, bean summer death and tobacco yellow dwarf viruses. On the basis of particle morphology, leafhopper transmission, host range and serology this virus was considered to be a new, hitherto undescribed, geminivirus and was named chickpea chlorotic dwarf virus.  相似文献   

20.
The entire genome of single component geminiviruses such as maize streak virus (MSV) consists of a single-stranded circular DNA of ~2.7 kb. Although this size is sufficient to encode only three average sized proteins, the virus is capable of causing severe disease of many monocots with symptoms of chlorosis and stunting. We have identified viral gene functions essential for systemic spread and symptom development during MSV infection. Deletions and gene replacement mutants were created by site-directed mutagenesis and insertion between flanking MSV or reporter gene sequences contained in Agrobacterium T-DNA derived vectors. Following Agrobacterium-mediated inoculation of maize seedlings, the mutated MSV DNAs were excised from these binary vectors by homologous recombination within the flanking sequences. Our analyses show that the capsid gene of MSV, while not required for replication, is essential for systemic spread and subsequent disease development. The `+' strand open reading frame (ORF) located immediately upstream from the capsid ORF and predicted to encode a 10.9 kd protein was also found to be dispensable for replication but essential for systemic spread. By this analysis, MSV sequences that support autonomous replication were localized to a 1.7 kb segment containing the two viral intergenic regions and two overlapping complementary `-' strand ORFs. Despite the inability of the gene replacement mutants to spread systemically, both inoculated and newly developed leaves displayed chlorotic patterns similar to the phenotype observed in certain developmental mutants of maize. The similarity of the MSV mutant phenotype to these developmental mutants is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号