首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The structures of bovine papillomavirus type 1 (BPV-1) and human papillomavirus type 1 (HPV-1) were determined at 2.5 nm resolution by cryoelectron microscopy and three dimensional image reconstruction techniques. As expected, the reconstructions showed that both viruses consist of a T = 7 icosahedral capsid (approximately 60 nm in diameter) which surrounds a nucleohistone core. The capsid morphologies of the two viruses are nearly indistinguishable. Each capsid consists of a shell layer (approximately 2 nm thick) of nearly continuous density from which capsomers project radially to a maximum height of approximately 5.8 nm. The five-coordinate (pentavalent) and six-coordinate (hexavalent) capsomers both exhibit distinct five-fold axial symmetry as was observed for SV40 and polyoma viruses. Thus, both genera (papilloma and polyoma) of the papovavirus family have now been shown to have the characteristic "all-pentamer" capsid construction. BPV-1 and HPV-1 capsomers consist of a thick (8.6 nm diameter) trunk that broadens distally to form a regular five-pointed, star-shaped head, and proximally to create the shell layer where capsomers associate. A cylindrical channel (approximately 2.8 nm diameter) extends along the axis of each capsomer from the interior of the virus to a point approximately half way to the capsomer surface. Computationally sectioned views of individual capsomers displayed at decreasing radii show that each of the five capsomer subunits (in both pentavalent and hexavalent capsomers) makes a pronounced (30 degrees) left-handed twist just above the outer surface of the capsid shell. Similar views of the reconstructions also clarify the morphology of intercapsomer contacts. For example, they show how hexavalent capsomers coordinate six neighboring capsomers despite the fact that they contain only five subunits. The system of intercapsomer contacts is indistinguishable in BPV-1 and HPV-1, but quite different from that reported for polyoma virus capsids assembled in vitro from the major capsid protein, VP1 (D. M. Salunke, D. L. D. Caspar, and R. L. Garcea. 1989. Biophys. J. 56:887-900). Thus, because both polyoma and papilloma viruses have all-pentamer capsids, it appears that intracapsomer subunit-subunit interactions which stabilize pentameric capsomers are better preserved evolutionarily than those involved in capsomer-capsomer contacts.  相似文献   

2.
The satellite bacteriophage P4 does not have genes coding for any major structural proteins, but assembles a capsid from the gene products of bacteriophage P2. The capsid assembled under control of P4 is smaller (45 nm) than the normal P2 capsid (60 nm). The low resolution (4.5 nm) structures of P2 and P4 capsids were determined by cryo-electron microscopy and image processing. The capsid of P2 shows T = 7 symmetry with most of the mass clustered as 12 pentamers and 60 hexamers. The P4 capsid has T = 4 symmetry with a similar distribution of mass to P2, but the hexamer geometry has changed. The major capsid protein has a two-domain structure. The major domains form the capsomers proper, while connecting domains form trivalent contacts between the capsomers. The size determination by P4 appears to function by altering hexamer geometry rather than by affecting the interdomain angle alone.  相似文献   

3.
The L1 major capsid protein of human papillomavirus type 11 (HPV-11) was expressed in Escherichia coli, and the soluble recombinant protein was purified to near homogeneity. The recombinant L1 protein bound DNA as determined by the Southwestern assay method, and recombinant mutant L1 proteins localized the DNA-binding domain to the carboxy-terminal 11 amino acids of L1. Trypsin digestion of the full-length L1 protein yielded a discrete 42-kDa product (trpL1), determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, resulting from cleavage at R415, 86 amino acids from the L1 carboxy terminus. Sucrose gradient sedimentation analysis demonstrated that trpL1 sedimented at 11S, while L1 proteins with amino-terminal deletions of 29 and 61 residues sedimented at 4S. Electron microscopy showed that the full-length L1 protein appeared as pentameric capsomeres which self-assembled into capsid-like particles. The trpL1 protein also had a pentameric morphology but was unable to assemble further. In an enzyme-linked immunosorbent assay, the trpL1 and L1 capsids reacted indistinguishably from virus-like particles purified after expression of HPV-11 L1 in insect cells. The carboxy terminus of L1 therefore constitutes the interpentamer linker arm responsible for HPV-11 capsid formation, much like the carboxy-terminal domain of the polyomavirus VP1 protein. The trypsin susceptibility of HPV-11 L1 capsids suggests a possible mechanism for virion disassembly.  相似文献   

4.
Vaccinia virus vectors were used to express the major (L1) and minor (L2) capsid proteins of human papillomavirus type 1 (HPV-1) with the vaccinia virus early (p7.5K) or late (pSynth, p11K) promoters. All constructs expressed the appropriate-sized HPV proteins, and both L1 and L2, singly or in combination, localized to the nucleus. Capsids were purified by cesium chloride density gradient centrifugation from nuclei of cells infected with a vaccinia virus-L1 (vac-L1) recombinant or a vac-L1-L2 recombinant but not from vac-L2-infected cells. Electron microscopy showed that the particles were 55 nm in diameter and had icosahedral symmetry. Immunogold-labeled antibodies confirmed the presence of the L1 and L2 proteins in the HPV-1 capsids. Capsids containing L1 alone were fewer and more variable in size and shape than capsids containing the L1 and L2 proteins. The L1-plus-L2 capsids were indistinguishable in appearance from HPV-1 virions obtained from plantar warts. The ability to produce HPV capsids in vitro will be useful in many studies of HPV pathogenicity.  相似文献   

5.
The vesivirus feline calicivirus (FCV) is a positive strand RNA virus encapsidated by an icosahedral T=3 shell formed by the viral VP1 protein. Upon its expression in the insect cell - baculovirus system in the context of vaccine development, two types of virus-like particles (VLPs) were formed, a majority built of 60 subunits (T=1) and a minority probably built of 180 subunits (T=3). The structure of the small particles was determined by x-ray crystallography at 0.8 nm resolution helped by cryo-electron microscopy in order to understand their formation. Cubic crystals belonged to space group P213. Their self-rotation function showed the presence of an octahedral pseudo-symmetry similar to the one described previously by Agerbandje and co-workers for human parvovirus VLPs. The crystal structure could be solved starting from the published VP1 structure in the context of the T=3 viral capsid. In contrast to viral capsids, where the capsomers are interlocked by the exchange of the N-terminal arm (NTA) domain, this domain is disordered in the T=1 capsid of the VLPs. Furthermore it is prone to proteolytic cleavage. The relative orientation of P (protrusion) and S (shell) domains is alerted so as to fit VP1 to the smaller T=1 particle whereas the intermolecular contacts around 2-fold, 3-fold and 5-fold axes are conserved. By consequence the surface of the VLP is very similar compared to the viral capsid and suggests a similar antigenicity. The knowledge of the structure of the VLPs will help to improve their stability, in respect to a use for vaccination.  相似文献   

6.
We have used differential scanning calorimetry in conjunction with cryo-electron microscopy to investigate the conformational transitions undergone by the maturing capsid of phage T4. Its precursor shell is composed primarily of gp23 (521 residues): cleavage of gp23 to gp23* (residues 66 to 521) facilitates a concerted conformational change in which the particle expands substantially, and is greatly stabilized. We have now characterized the intermediate states of capsid maturation; namely, the cleaved/unexpanded, state, which denatures at tm = 60 degrees C, and the uncleaved/expanded state, for which tm = 70 degrees C. When compared with the precursor uncleaved/unexpanded state (tm = 65 degrees C), and the mature cleaved/expanded state (tm = 83 degrees C, if complete cleavage precedes expansion), it follows that expansion of the cleaved precursor (delta tm approximately +23 degrees C) is the major stabilizing event in capsid maturation. These observations also suggest an advantage conferred by capsid protein cleavage (some other phage capsids expand without cleavage): if the gp23-delta domains (residues 1 to 65) are not removed by proteolysis, they impede formation of the stablest possible bonding arrangement when expansion occurs, most likely by becoming trapped at the interface between neighboring subunits or capsomers. Icosahedral capsids denature at essentially the same temperatures as tubular polymorphic variants (polyheads) for the same state of the surface lattice. However, the thermal transitions of capsids are considerably sharper, i.e. more co-operative, than those of polyheads, which we attribute to capsids being closed, not open-ended. In both cases, binding of the accessory protein soc around the threefold sites on the outer surface of the expanded surface lattice results in a substantial further stabilization (delta tm = +5 degrees C). The interfaces between capsomers appear to be relatively weak points that are reinforced by clamp-like binding of soc. These results imply that the "triplex" proteins of other viruses (their structural counterparts of soc) are likely also to be involved in capsid stabilization. Cryo-electron microscopy was used to make conclusive interpretations of endotherms in terms of denaturation events. These data also revealed that the cleaved/unexpanded capsid has an angular polyhedral morphology and has a pronounced relief on its outer surface. Moreover, it is 14% smaller in linear dimensions than the cleaved/expanded capsid, and its shell is commensurately thicker.  相似文献   

7.
We have used viruslike particles (VLPs) of human papillomaviruses to study the structure and assembly of the viral capsid. We demonstrate that mutation of either of two highly conserved cysteines of the major capsid protein L1 to serine completely prevents the assembly of VLPs but not of capsomers, whereas mutation of all other cysteines leaves VLP assembly unaffected. These two cysteines form intercapsomeric disulfides yielding an L1 trimer. Trimerization comprises about half of the L1 molecules in VLPs but all L1 molecules in complete virions. We suggest that trimerization of L1 is indispensable for the stabilization of intercapsomeric contacts in papillomavirus capsids.  相似文献   

8.
Infectious bursal disease virus (IBDV), a member of the Birnaviridae family, is a double-stranded RNA virus. The IBDV capsid is formed by two major structural proteins, VP2 and VP3, which assemble to form a T=13 markedly nonspherical capsid. During viral infection, VP2 is initially synthesized as a precursor, called VPX, whose C end is proteolytically processed to the mature form during capsid assembly. We have computed three-dimensional maps of IBDV capsid and virus-like particles built up by VP2 alone by using electron cryomicroscopy and image-processing techniques. The IBDV single-shelled capsid is characterized by the presence of 260 protruding trimers on the outer surface. Five classes of trimers can be distinguished according to their different local environments. When VP2 is expressed alone in insect cells, dodecahedral particles form spontaneously; these may be assembled into larger, fragile icosahedral capsids built up by 12 dodecahedral capsids. Each dodecahedral capsid is an empty T=1 shell composed of 20 trimeric clusters of VP2. Structural comparison between IBDV capsids and capsids consisting of VP2 alone allowed the determination of the major capsid protein locations and the interactions between them. Whereas VP2 forms the outer protruding trimers, VP3 is found as trimers on the inner surface and may be responsible for stabilizing functions. Since elimination of the C-terminal region of VPX is correlated with the assembly of T=1 capsids, this domain might be involved (either alone or in cooperation with VP3) in the induction of different conformations of VP2 during capsid morphogenesis.  相似文献   

9.
The aim of this study was to produce gene transfer vectors consisting of plasmid DNA packaged into virus-like particles (VLPs) with different cell tropisms. For this purpose, we have fused the N-terminally truncated VP60 capsid protein of the rabbit hemorrhagic disease virus (RHDV) with sequences which are expected to be sufficient to confer DNA packaging and gene transfer properties to the chimeric VLPs. Each of the two putative DNA-binding sequences of major L1 and minor L2 capsid proteins of human papillomavirus type 16 (HPV-16) were fused at the N terminus of the truncated VP60 protein. The two recombinant chimeric proteins expressed in insect cells self-assembled into VLPs similar in size and appearance to authentic RHDV virions. The chimeric proteins had acquired the ability to bind DNA. The two chimeric VLPs were therefore able to package plasmid DNA. However, only the chimeric VLPs containing the DNA packaging signal of the L1 protein were able efficiently to transfer genes into Cos-7 cells at a rate similar to that observed with papillomavirus L1 VLPs. It was possible to transfect only a very limited number of RK13 rabbit cells with the chimeric RHDV capsids containing the L2-binding sequence. The chimeric RHDV capsids containing the L1-binding sequence transfer genes into rabbit and hare cells at a higher rate than do HPV-16 L1 VLPs. However, no gene transfer was observed in human cell lines. The findings of this study demonstrate that the insertion of a DNA packaging sequence into a VLP which is not able to encapsidate DNA transforms this capsid into an artificial virus that could be used as a gene transfer vector. This possibility opens the way to designing new vectors with different cell tropisms by inserting such DNA packaging sequences into the major capsid proteins of other viruses.  相似文献   

10.
New experimental approaches are required to detect the elusive transient intermediates predicted by simulations of virus assembly or disassembly. Here, an atomic force microscope (AFM) was used to mechanically induce partial disassembly of single icosahedral T=1 capsids and virions of the minute virus of mice. The kinetic intermediates formed were imaged by AFM. The results revealed that induced disassembly of single minute-virus-of-mice particles is frequently initiated by loss of one of the 20 equivalent capsomers (trimers of capsid protein subunits) leading to a stable, nearly complete particle that does not readily lose further capsomers. With lower frequency, a fairly stable, three-fourths-complete capsid lacking one pentamer of capsomers and a free, stable pentamer were obtained. The intermediates most frequently identified (capsids missing one capsomer, capsids missing one pentamer of capsomers, and free pentamers of capsomers) had been predicted in theoretical studies of reversible capsid assembly based on thermodynamic-kinetic models, molecular dynamics, or oligomerization energies. We conclude that mechanical manipulation and imaging of simple virus particles by AFM can be used to experimentally identify kinetic intermediates predicted by simulations of assembly or disassembly.  相似文献   

11.
In polyomaviruses the pentameric capsomers are interlinked by the long C-terminal arm of the structural protein VP1. The T=7 icosahedral structure of these viruses is possible due to an intriguing adaptability of this linker arm to the different local environments in the capsid. To explore the assembly process, we have compared the structure of two virus-like particles (VLPs) formed, as we found, in a calcium-dependent manner by the VP1 protein of human polyomavirus BK. The structures were determined using electron cryomicroscopy (cryo-EM), and the three-dimensional reconstructions were interpreted by atomic modeling. In the small VP1 particle, 26.4 nm in diameter, the pentameric capsomers form an icosahedral T=1 surface lattice with meeting densities at the threefold axes that interlinked three capsomers. In the larger particle, 50.6 nm in diameter, the capsomers form a T=7 icosahedral shell with three unique contacts. A folding model of the BKV VP1 protein was obtained by alignment with the VP1 protein of simian virus 40 (SV40). The model fitted well into the cryo-EM density of the T=7 particle. However, residues 297 to 362 of the C-terminal arm had to be remodeled to accommodate the higher curvature of the T=1 particle. The loops, before and after the C-terminal short helix, were shown to provide the hinges that allowed curvature variation in the particle shell. The meeting densities seen at the threefold axes in the T=1 particle were consistent with the triple-helix interlinking contact at the local threefold axes in the T=7 structure.  相似文献   

12.
The prophylactic papillomavirus vaccines currently in clinical trials are composed of viral L1 capsid protein that is synthesized in eukaryotic expression systems and purified in the form of virus-like particles (VLPs). To evaluate whether VLPs are necessary for effective vaccination, we expressed the L1 protein as a glutathione S-transferase (GST) fusion protein in Escherichia coli and assayed its immunogenic activity in an established canine oral papillomavirus (COPV) model that previously validated the efficacy of VLP vaccines. The GST-COPV L1 fusion protein formed pentamers, but these capsomere-like structures did not assemble into VLPs. Despite the lack of VLP formation, the GST-COPV L1 protein retained its native conformation as determined by reactivity with conformation-specific anti-COPV antibodies. Most importantly, the GST-COPV L1 pentamers completely protected dogs from high-dose viral infection of their oral mucosa. L1 fusion proteins expressed in bacteria represent an economical alternative to VLPs as a human papillomavirus vaccine.  相似文献   

13.
Cryoelectron microscopy and three-dimensional computer reconstruction techniques have been used to compare the structures of two types of DNA-free capsids of equine herpesvirus 1 at a resolution of 4.5 nm. "Light" capsids are abortive, whereas "intermediate" capsids are related to maturable intracellular precursors. Their T = 16 icosahedral outer shells, approximately 125 nm in diameter, are indistinguishable and may be described in terms of three layers of density, totalling 15 nm in thickness. The outermost layer consists of protruding portions of both the hexon and the penton capsomers, rising approximately 5 nm above a midlayer of density. The innermost layer, or "floor," is a 4-nm-thick sheet of virtually continuous density except for the orifices of the channels that traverse each capsomer. Hexon protrusions are distinctly hexagonal in shape, and penton protrusions are pentagonal. The structures of the three kinds of hexons (distinguished according to their positions on the surface lattice) are closely similar but differ somewhat in their respective orientations and in the shapes of their channels. The most prominent features of the midlayer are threefold nodules ("triplexes") at the trigonal lattice points. By analogy with other viral capsids, the triplexes may represent trimers of another capsid protein, possibly VP23 (36 kilodaltons [kDa]) or VP26 (12 kDa). Intermediate capsids differ from light capsids, which are empty, in having one or more internal components. In individual images from which the shell structure has been filtered away, these components are seen to have dimensions of 20 to 30 nm but to lack a visible substructure. This material--which is smeared out in the reconstruction, implying that its distribution is not icosahedrally symmetric or necessarily consistent from particle to particle--consists of aggregates of VP22 (46 kDa). From several lines of evidence, we conclude that this protein is located entirely within the capsid shell. These aggregates may be the remnants of morphogenetic cores retained in capsids interrupted in the process of DNA packaging.  相似文献   

14.
Maturation of papillomavirus capsids   总被引:7,自引:3,他引:4       下载免费PDF全文
The papillomavirus capsid is a nonenveloped icosahedral shell formed by the viral major structural protein, L1. It is known that disulfide bonds between neighboring L1 molecules help to stabilize the capsid. However, the kinetics of inter-L1 disulfide bond formation during particle morphogenesis have not previously been examined. We have recently described a system for producing high-titer papillomavirus-based gene transfer vectors (also known as pseudoviruses) in mammalian cells. Here we show that papillomavirus capsids produced using this system undergo a maturation process in which the formation of inter-L1 disulfide bonds drives condensation and stabilization of the capsid. Fully mature capsids exhibit improved regularity and resistance to proteolytic digestion. Although capsid maturation for other virus types has been reported to occur in seconds or minutes, papillomavirus capsid maturation requires overnight incubation. Maturation of the capsids of human papillomavirus types 16 and 18 proceeds through an ordered accumulation of dimeric and trimeric L1 species, whereas the capsid of bovine papillomavirus type 1 matures into more extensively cross-linked forms. The presence of encapsidated DNA or the minor capsid protein, L2, did not have major effects on the kinetics or extent of capsid maturation. Immature capsids and capsids formed from L1 mutants with impaired disulfide bond formation are infectious but physically fragile. Consequently, capsid maturation is essential for efficient purification of papillomavirus-based gene transfer vectors. Despite their obvious morphological differences, mature and immature capsids are similarly neutralizable by various L1- and L2-specific antibodies.  相似文献   

15.
Viruses need only one or a few structural capsid proteins to build an infectious particle. This is possible through the extensive use of symmetry and the conformational polymorphism of the structural proteins. Using virus-like particles (VLP) from rabbit hemorrhagic disease virus (RHDV) as a model, we addressed the basis of calicivirus capsid assembly and their application in vaccine design. The RHDV capsid is based on a T=3 lattice containing 180 identical subunits (VP1). We determined the structure of RHDV VLP to 8.0-Å resolution by three-dimensional cryoelectron microscopy; in addition, we used San Miguel sea lion virus (SMSV) and feline calicivirus (FCV) capsid subunit structures to establish the backbone structure of VP1 by homology modeling and flexible docking analysis. Based on the three-domain VP1 model, several insertion mutants were designed to validate the VP1 pseudoatomic model, and foreign epitopes were placed at the N- or C-terminal end, as well as in an exposed loop on the capsid surface. We selected a set of T and B cell epitopes of various lengths derived from viral and eukaryotic origins. Structural analysis of these chimeric capsids further validates the VP1 model to design new chimeras. Whereas most insertions are well tolerated, VP1 with an FCV capsid protein-neutralizing epitope at the N terminus assembled into mixtures of T=3 and larger T=4 capsids. The calicivirus capsid protein, and perhaps that of many other viruses, thus can encode polymorphism modulators that are not anticipated from the plane sequence, with important implications for understanding virus assembly and evolution.  相似文献   

16.
Despite the discovery of Epstein-Barr virus more than 35 years ago, a thorough understanding of gammaherpesvirus capsid composition and structure has remained elusive. We approached this problem by purifying capsids from Kaposi's sarcoma-associated herpesvirus (KSHV), the only other known human gammaherpesvirus. The results from our biochemical and imaging analyses demonstrate that KSHV capsids possess a typical herpesvirus icosahedral capsid shell composed of four structural proteins. The hexameric and pentameric capsomers are composed of the major capsid protein (MCP) encoded by open reading frame 25. The heterotrimeric complexes, forming the capsid floor between the hexons and pentons, are each composed of one molecule of ORF62 and two molecules of ORF26. Each of these proteins has significant amino acid sequence homology to capsid proteins in alpha- and betaherpesviruses. In contrast, the fourth protein, ORF65, lacks significant sequence homology to its structural counterparts from the other subfamilies. Nevertheless, this small, basic, and highly antigenic protein decorates the surface of the capsids, as does, for example, the even smaller basic capsid protein VP26 of herpes simplex virus type 1. We have also found that, as with the alpha- and betaherpesviruses, lytic replication of KSHV leads to the formation of at least three capsid species, A, B, and C, with masses of approximately 200, 230, and 300 MDa, respectively. A capsids are empty, B capsids contain an inner array of a fifth structural protein, ORF17.5, and C capsids contain the viral genome.  相似文献   

17.
Using human papillomavirus (HPV) as a subunit vaccine and its manipulation of surface loops is current trending research. Since the atomic model of L1 protein conformations were deciphered, their manipulations of epitopes bring multivalent vaccines. Here, in the present study, we have manipulated antigenic loops of HPV 6b L1 capsid proteins in the amino acid regions 174 ~ 175 (L1:174EGFP) and 348 ~ 349 (L1:348EGFP) with whole enhanced green fluorescent protein(EGFP), expressed in the silkworm larva using Bombyx mori nucleopolyhedrovirus (BmNPV) bacmid technology. The expressed proteins were partially purified using sucrose density-gradient centrifugation and size-exclusion chromatography (SEC). The display of EGFP in virus-like particles (VLPs) was confirmed by immuno-fluorescence microscopy, Western blots and immune-transmission electron microscopy (immuno-TEM). There was higher expression of EGFP incorporated L1:174EGFP than L1:348EGFP. Hydrodynamic diameter of VLPs was corroborated by dynamic light scattering, confirming the size of expected range of around 160 nm and substantiating the incorporation of EGFP. From immuno-TEM, each L1:EGFP VLP formed small particles, suggesting that small particles of L1:EGFP fusion protein were aggregated. Our study illustrates that incorporation of whole protein can efficiently form chimeric VLPs, without hindering the conformation. HPV L1 protein accommodated a whole protein on its antigenic loop as a small particle, but an inserted whole protein was unstable.  相似文献   

18.
L1 major capsid proteins of human papillomaviruses (HPVs) enter the nuclei of host cells at two times during the viral life cycle: 1) after infection and 2) later during the productive phase, when they assemble the replicated HPV genomic DNA into infectious virions. L1 proteins are stable in two oligomeric configurations: as homopentameric capsomers, and as capsids composed of 72 capsomers. We found that intact L1 capsids of HPV type 11 cannot enter the nucleus, suggesting that capsid disassembly may be required for HPV11 L1 nuclear import. We established that HPV11 L1 is imported in a receptor-mediated manner into the nuclei of digitonin-permeabilized HeLa cells. HPV11 L1 docked at the nuclear pore complexes via karyopherin alpha2beta1 heterodimers. Anti-karyopherin-beta1 and anti-karyopherin alpha2 antibodies specifically inhibited nuclear import of HPV11 L1. Moreover, nuclear import of HPV11 L1 could be reconstituted using karyopherin alpha2, beta1, RanGDP and p10. In agreement with the docking and import data, we found that HPV11 L1 binds to karyopherin alpha2 and that this interaction is inhibited by a peptide representing the classical nuclear localization signal of SV40 T antigen. These results strongly suggest that HPV11 L1 enters the nucleus of the infected host cell via the karyopherin alpha2beta1 pathway.  相似文献   

19.
Papillomaviruses are a family of nonenveloped DNA tumor viruses. Some sexually transmitted human papillomavirus (HPV) types, including HPV type 16 (HPV16), cause cancer of the uterine cervix. Papillomaviruses encode two capsid proteins, L1 and L2. The major capsid protein, L1, can assemble spontaneously into a 72-pentamer icosahedral structure that closely resembles native virions. Although the minor capsid protein, L2, is not required for capsid formation, it is thought to participate in encapsidation of the viral genome and plays a number of essential roles in the viral infectious entry pathway. The abundance of L2 and its arrangement within the virion remain unclear. To address these questions, we developed methods for serial propagation of infectious HPV16 capsids (pseudoviruses) in cultured human cell lines. Biochemical analysis of capsid preparations produced using various methods showed that up to 72 molecules of L2 can be incorporated per capsid. Cryoelectron microscopy and image reconstruction analysis of purified capsids revealed an icosahedrally ordered L2-specific density beneath the axial lumen of each L1 capsomer. The relatively close proximity of these L2 density buttons to one another raised the possibility of homotypic L2 interactions within assembled virions. The concept that the N and C termini of neighboring L2 molecules can be closely apposed within the capsid was supported using bimolecular fluorescence complementation or "split GFP" technology. This structural information should facilitate investigation of L2 function during the assembly and entry phases of the papillomavirus life cycle.  相似文献   

20.
Cervical cancer is the second most prevalent cancer in women worldwide. It is linked to infection with human papillomavirus (HPV). As the virus cannot be propagated in culture, vaccines based on virus-like particles have been developed and recently marketed. However, their high costs constitute an important drawback for widespread use in developing countries, where the incidence of cervical cancer is highest. In a search for alternative production systems, the major structural protein of the HPV-16 capsid, L1, was expressed in tobacco chloroplasts. A very high yield of production was achieved in mature plants (approximately 3 mg L1/g fresh weight; equivalent to 24% of total soluble protein). This is the highest expression level of HPV L1 protein reported in plants. A single mature plant synthesized approximately 240 mg of L1. The chloroplast-derived L1 protein displayed conformation-specific epitopes and assembled into virus-like particles, visible by transmission electron microscopy. Furthermore, leaf protein extracts from L1 transgenic plants were highly immunogenic in mice after intraperitoneal injection, and neutralizing antibodies were detected. Taken together, these results predict a promising future for the development of a plant-based vaccine against HPV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号