首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel physico-chemical mechanism of the Watson-Crick DNA base pair Gua.Cyt tautomerization Gua.Cyt*<---->Gua.Cyt<---->Gua*.Cyt (mutagenic tautomers of bases are marked by asterisks) have been revealed and realized in a pathway of single proton transfer through two mutual isoenergetic transition states with Gibbs free energy of activation 30.4 and 30.6 kcal/mol and they are ion pairs stabilized by three (N2H...N3, N1H...N4- and O6+H...N4-) and five (N2H...O2, N1H...O2, N1H...N3, O6+H...N4- and 06+H...N4-) H-bonds accordingly. Stable base pairs Gua-Cyt* and Gua*.Cyt which dissociate comparably easy into monomers have acceptable relative Gibbs energies--12.9 and 14.3 kcal/mol--for the explanation of the nature of the spontaneous transitions of DNA replication. Results are obtained at the MP2/6-311++G(2df,pd)//B3LYP/6-31 1++G(d,p) level of theory in vacuum approach.  相似文献   

2.
By 1H NMR, UV and IR spectroscopies in anhydrous DMSO and quantum-chemical calculations by MNDO/H in vacuum specific interactions of isocytosine with neutral and deprotonated carboxylic groups of amino acids were investigated. In vacuum interaction with carboxylate ion provokes in isoCyt transition from the ground-state enolic form to the high energy N3H-keto tautomer. In DMSO keto tautomer N3H of isoCyt is stabilized but interactions with carboxylate ion essentially shifts equilibrium to enolic form. Neutral carboxylic group forms the most stable complex with the ground-state enolic tautomer in vacuum but in DMSO it proves to shift the keto(N3H)-enolic equilibrium to the right.  相似文献   

3.
In order to gain deeper insight into structure, charge distribution, and energies of A-T base pairs, we have performed quantum chemical ab initio and density functional calculations at the HF (Hartree-Fock) and B3LYP levels with 3-21G*, 6-31G*, 6-31G**, and 6-31++G** basis sets. The calculated donor-acceptor atom distances in the Watson-Crick A-T base pair are in good agreement with the experimental mean values obtained from an analysis of 21 high resolution DNA structures. In addition, for further correction of interaction energies between adenine and thymine, the basis set superposition error (BSSE) associated with the hydrogen bond energy has been computed via the counterpoise method using the individual bases as fragments. In the Watson-Crick A-T base pair there is a good agreement between theory and experimental results. The distances for (N2...H23-N19), (N8-H13...O24), and (C1...O18) are 2.84, 2.94, and 3.63 A, respectively, at B3LYP/6-31G** level, which is in good agreement with experimental results (2.82, 2.98, and 3.52 A). Interaction energy of the Watson-Crick A-T base pair is -13.90 and -10.24 kcal/mol at B3LYP/6-31G** and HF/6-31G** levels, respectively. The interaction energy of model (9) A-T base pair is larger than others, -18.28 and -17.26 kcal/mol, and for model (2) is the smallest value, -13.53 and -13.03 kcal/mol, at B3LYP/6-31G** and B3LYP/6-31++G** levels, respectively. The computed B3LYP/6-31G** bond enthalpies for Watson-Crick A-T pairs of -14.4 kcal/mol agree well with the experimental results of -12.1 kcal/mol deviating by as little as -2.3 kcal/mol. The BSSE of some cases is large (9.85 kcal/mol) and some is quite small (0.6 kcal/mol).  相似文献   

4.
A DFT study with QST3 approach method is used to calculate kinetic, thermodynamic, spectral and structural data of tautomers and transition state structures of some N-hydroxy amidines. All tautomers and transition states are optimized at the B3LYP/6-311++g** and B3LYP/aug-cc-pvtz level, with good agreement in energetic result with energies obtained from CBS-QB3, a complete basis set composite energy method. The result shows that the tautomer a (amide oxime) is more stable than the tautomer b (imino hydroxylamine) as is reported in the literature. In addition, our finding shows that, the energy difference between two tautomers is only in about 4–10 kcal/mol but the barrier energy found in traversing each tautomer to another one is in the range of 33–71 kcal/mol. Therefore, it is impossible to convert these two tautomers to each other at room temperature. Additionally, transition state theory is applied to estimate the barrier energy and reaction rate constants of the hydrogen exchange between tautomers in presence of 1–3 molecules of water. The computed activation barrier shows us that the barrier energy of solvent assisted tautomerism is about 9–20 kcal/mol and lower than simple tautomerism and this water-assisted tautomerism is much faster than simple tautomerism, especially with the assisting two molecules of water.  相似文献   

5.
A number of nucleic acid base pairs and complexes between the bases and the amide group of acrylamide have been studied experimentally by using mass spectrometry and theoretically by the method of atom-atom potential function calculations. It has been found from temperature dependencies of peak intensities in mass spectra of m2.2.9(3) Gua.m1Ura, m9 Ade.m1Cyt, m2.2.9(3) Gua.m1Gua.m1Cyt pairs that enthalpy values, delta H, of the complex formation are equal to 14.2 +/- 1.1, 13.5 +/- 1.3 and 16.4 +/- 1.4 kcal/M, respectively, and those of acrylamide with m1.3(2) Ura and m1Thy corresponds to 9.7 +/- 1.0 and 6.8 +/- 0.6 kcal/M. There is a good agreement of the experimental data with calculations when taking into account both the amino-oxo and the amino-hydroxy tautomeric forms of guanine. A combined use of the data allows us to determine the energy, the modes of interaction and the structure of the complexes. The results are discussed in connection with the modelling of molecular structure of biopolymers by the method of classical potential functions, protein-nucleic acids recognition and fidelity of nucleic acids biosynthesis.  相似文献   

6.
Using the simplest molecular models at the MP2/6-311++G(2df,pd)//B3LYP/6-311++G(d,p) level of the theory it has been shown for the first time that in addition to traditional incorporational errors caused by facilitated (compared with the canonical DNA bases cytosine (Cyt)) tautomerization of 6-(2-deoxy-beta-D-ribofuranosyl)-3,4-dihydro-6H,8H-pyrimido[4,5-c][1,2]oxazin-7-one (DCyt), this mutagen causes the replication errors, increasing one million times the population of mispair Gua.DCyt* (asterisk marked mutagenic tautomer) as compared with mispair Gua.Cyt*. It is also proved that DCyt in addition to traditional incorporational errors also induces similar errors by an additional mechanism - due to a facilitated tautomerization of the wobble base pair Ade.DCyt (compared to the same pair Ade.Cyt) to a mispair Ade.DCyt* which is quasirisomorphic Watson-Crick base pair. Moreover, the obtained results allowed interpreting non-inconsistently the existing experimental NMR data.  相似文献   

7.
The pyramidal inversion mechanisms of the 6‐methoxy and the 5‐methoxy tautomers of (S)‐omeprazole were studied, employing ab initio and DFT methods. The conformational space of the model molecule (S)‐2‐[(3‐methyl‐2‐pyridinyl)methyl]sulfinyl‐1H‐benzimidazole was calculated, with respect to rotations around single bonds, at the B3LYP/6‐311G(d,p) level. All of the resulting conformations were used as starting points for full optimizations of (S)‐omeprazole, at B3LYP/6‐31G(d), B3LYP/6‐311G(d,p), B3LYP/6‐311++G(d,p), B3LYP/6‐311G(2df,2pd), MP2/6‐31G(d), and MP2/6‐311G(d,p) levels. Four distinct pathways were found for enantiomerization via the pyramidal inversion mechanism for each of the tautomers of (S)‐omeprazole. Each transition state, in which the sulfur, the oxygen and the two carbon atoms connected directly to the sulfur are in one plane, connects two diastereomeric minima. The enantiomerization is completed by free rotation around the sulfur–methylene bond, and around the methylene–pyridine ring bond. The effective Gibbs' free energy barrier for racemization ΔG of the two tautomers of (S)‐omeprazole are 39.8 kcal/mol (5‐methoxy tautomer) and 40.0 kcal/mol (6‐methoxy tautomer), indicating that the enantiomers of omeprazole are stable at room temperature (in the gas phase). The 5‐methoxy tautomer of (S)‐omeprazole was found to be slightly more stable than the 6‐methoxy tautomer, in the gas phase. The energy barrier (ΔG?) for the(S,M) (S,P) diastereomerization of (S)‐omeprazole due to the rotation around the pyridine chiral axis was very low, 5.8 kcal/mole at B3LYP/6‐311G(d,p). Chirality 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

8.
The conformational behavior of 1-halovinyl azides CH2=CX-NNN (X=F, Cl and Br) were investigated by DFT-B3LYP and ab initio MP2 calculations with the 6-311++G** basis set. The molecules were predicted to exist predominantly in the trans (the vinyl CH2=CH- and the azide -NNN groups are trans to each other) conformation. The relative energy between cis and trans were calculated to decrease in order: bromide>chloride>fluoride. Full optimization was performed at the ground and transition states in the molecule at both MP2 and B3LYP levels. The barrier to internal rotation around the C-N single bond in the three molecules was calculated to be about 4-5 kcal mol(-1). The vibrational frequencies were computed at the DFT-B3LYP level and the calculated infrared and Raman spectra of the cis- trans mixture of the three molecules were plotted. Complete vibrational assignments were made on the basis of normal coordinate calculations for both stable conformers of the three molecules.  相似文献   

9.
Zhang X  Bruice TC 《Biochemistry》2007,46(18):5505-5514
Molecular dynamics (MD) simulations and hybrid quantum mechanics/molecular mechanics (QM/MM) calculations have been carried out in an investigation of Rubisco large subunit methyltransferase (LSMT). It was found that the appearance of a water channel is required for the stepwise methylation by S-adenosylmethionine (AdoMet). The water channel appears in the presence of AdoMet (LSMT.Lys-NH3+.AdoMet), but is not present immediately after methyl transfer (LSMT.Lys-N(Me)H2+.AdoHcy). The water channel allows proton dissociation from both LSMT.AdoMet.Lys-NH3+ and LSMT.AdoMet.Lys-N(Me)H2+. The water channel does not appear for proton dissociation from LSMT.AdoMet.Lys-N(Me)2H+, and a third methyl transfer does not occur. By QM/MM, the calculated free energy barrier of the first methyl transfer reaction catalyzed by LSMT (Lys-NH2 + AdoMet --> Lys-N(Me)H2+ + AdoHcy) is DeltaG++ = 22.8 +/- 3.3 kcal/mol. This DeltaG++ is in remarkable agreement with the value 23.0 kcal/mol calculated from the experimental rate constant (6.2 x 10-5 s-1). The calculated DeltaG++ of the second methyl transfer reaction (AdoMet + Lys-N(Me)H --> AdoHcy + Lys-N(Me)2H+) at the QM/MM level is 20.5 +/- 3.6 kcal/mol, which is in agreement with the value 22.0 kcal/mol calculated from the experimental rate constant (2.5 x 10-4 s-1). The third methyl transfer (Lys-N(Me)2 + AdoMet --> Lys-N(Me)3+ + AdoHcy) is associated with an allowed DeltaG++ of 25.9 +/- 3.2 kcal/mol. However, this reaction does not occur because a water channel does not form to allow the proton dissociation of Lys-N(Me)2H+. Future studies will determine whether the product specificity of lysine (mono, di, and tri) methyltransferases is determined by the formation of water channels.  相似文献   

10.
Geometry optimization and energy calculations have been performed at the density functional B3LYP/LANL2DZ level on hydrogen sulfide (HS-), dihydrogensulfide (H2S), thiomethanolate (CH3S-), thiomethanol (CH3SH), thiophenolate (C6H5S-), methoxyde (CH3O-), methanol (CH3OH), formiate (HCOO-), acetate (CH3COO-), carbonate (CO3(2-)), hydrogen carbonate (HCO3-), iminomethane (NH=CH2), [ZnS], [ZnS2]2-, [Zn(HS)]+, [Zn(H2S)]2+, [Zn(HS)4]2-, [Zn(CH3S)]+, [Zn(CH3S)2], [Zn(CH3S)3]-, [Zn(CH3S)4]2-, [Zn(CH3SH)]2+, [Zn(CH3SCH3)]2+, [Zn(C6H5S)]+, [Zn(C6H5S)2], [Zn(C6H5S)3]-, [Zn(HS)(NH=CH2)2]+, [Zn(HS)2(NH=CH2)2], [Zn(HS)(H2O)]+, [Zn(HS)(HCOO)], [Zn(HS)2(HCOO)]-, [Zn(CH3O)]+, [Zn(CH3O)2], [Zn(CH3O)3]-, [Zn(CH3O)4]2, [Zn(CH3OH)]2+, [Zn(HCOO)]+, [Zn(CH3COO)]+, [Zn(CH3COO)2], [Zn(CH3COO)3]-, [Zn(CO3)], [Zn(HCO3)]+, and [Zn(HCO3)(Imz)]+ (Imz, 1,3-imidazole). The computed Zn-S bond distances are 2.174A for [ZnS], 2.274 for [Zn(HS)]+, 2.283 for [Zn(CH3S)]+, and 2.271 for [Zn(C6H5S)]+, showing that sulfide anion forms stronger bonds than substituted sulfides. The nature of the substituents on sulfur influences only slightly the Zn-S distance. The optimized tetra-coordinate [Zn(HS)2(NH=CH2)2] molecules has computed Zn-S and Zn-N bond distances of 2.392 and 2.154A which compare well with the experimental values at the solid state obtained via X-ray diffraction for a number of complex molecules. The computed Zn-O bond distances for chelating carboxylate derivatives like [Zn(HOCOO)]+ (1.998A), [Zn(HCOO)]+ (2.021), and [Zn(CH3COO)]+ (2.001) shows that the strength of the bond is not much influenced by the substituent on carboxylic carbon atom and that CH3- and HO- groups have very similar effects. The DFT analysis shows also that the carboxylate Ligand has a preference for the bidentate mode instead of the monodentate one, at least when the coordination number is small.  相似文献   

11.
The structural stability of halocarbonyl azides CXO-NNN (X=F, Cl and Br) was investigated by DFT and MP2 calculations using the 6-311++G** basis set. From the calculations, the molecules were found to have an s-cis<--> s-trans conformational equilibrium with cis being the lower -energy form. Full energy optimizations were carried out for the transition states and the minima at the B3LYP/6 -311++G** and MP2/6 -311++G** levels, from which the rotational barriers were calculated to be of the order 8-10 kcal x mol(-1). The vibrational frequencies were computed at the DFT -B3LYP level and the vibrational assignments for the normal modes of the stable conformers were made on the basis of normal coordinate calculations.  相似文献   

12.
A possible mechanistic pathway related to an enzyme-catalyzed [4+2] cycloaddition reac-tion was studied by theoretical calculations at density functional (B3LYP, O3LYP, M062X) and semiempirical levels (PM6-DH2, PM6) performed on a model system. The calculations were carried out for the key [4+2] cycloaddition step considering enzyme-catalyzed biosynthesis of Spinosyn A in a model reaction, where a reliable example of a biological Diels-Alder reaction was reported experimentally. In the present study it was demonstrated that the [4+2] cycloaddition reaction may benefit from moving along the energetically balanced reaction coordinate, which enabled the catalytic rate enhancement of the [4+2] cycloaddition pathway involving a single transition state. Modeling of such a system with coordination of three amino acids indicated a reliable decrease of activation energy by ~18.0 kcal/mol as compared to a non-catalytic transformation.  相似文献   

13.
Zhang X  Bruice TC 《Biochemistry》2007,46(51):14838-14844
Molecular dynamics (MD) simulations and hybrid quantum mechanics/molecular mechanics (QM/MM) calculations have been carried out in an investigation of histone lysine methyltransferase (SET7/9). Proton dissociation (SET7/9.Lys4-NH3+.AdoMet --> SET7/9.Lys4-NH2.AdoMet + H+) must be prior to the methylation by S-adenosylmethionine (AdoMet). We find that a water channel is formed to allow escape of the proton to solvent. The water channel appears in the presence of AdoMet, but is not present in the species SET7/9.Lys4-NH3+ or SET7/9.Lys4-N(Me)H2+.AdoHcy. A water channel is not formed in the ground state of SET7/9.Lys4-N(Me)H2+.AdoMet, and the second methyl transfer does not occur. The structure of SET7/9.Lys4-N(Me)H2+.AdoMet includes a greater distance (6.1 +/- 0.3 A) between Cgamma(AdoMet) and N(MeLys4) than is present in SET7/9.Lys4-NH3+.AdoMet (5.7 +/- 0.2 A). The electrostatic interactions between the positive charges on AdoMet and SET7/9.Lys4-NH3+ decrease the pKa of the latter from 10.9 +/- 0.4 to 8.2 +/- 0.6, and this is not seen in the SET7/9.Lys4-N(Me)H2+.AdoMet species. The formation, or not, of a water channel, the distance between Sdelta(AdoMet) and N(Lys4), and the angle Sdelta(AdoMet)-Cgamma(AdoMet)-N(Lys4) determine whether methyl transfer can occur. By QM/MM, the calculated free energy barrier of the methyl transfer reaction in the SET7/9 [Lys4-NH2 + AdoMet --> Lys4-N(Me)H2+ + AdoHcy] complex is DeltaG++ = 19.0 +/- 1.6 kcal/mol. This DeltaG++ is in agreement with the value of 20.9 kcal/mol calculated from the experimental rate constant (0.24 min(-1)).  相似文献   

14.
Gas-phase metal ion (Li+, Na+, Cu+) affinities of glycine and alanine   总被引:1,自引:0,他引:1  
The gas-phase metal affinities of glycine and alanine for Li+, Na+ and Cu+ ions have been determined theoretically employing the hybrid B3LYP exchange-correlation functional and using extended basis sets. All computations indicate that the metal ion affinity (MIA) decreases on going from Cu+ to Li+ and Na+ for both the considered amino acids. The absolute MIA values are close to the experimental counterparts with the exception of lithium for which a deviation of about 7 kcal/mol at the B3LYP level is obtained. The optimized structures indicate that Li+, Na+ and Cu+ prefer a bidentate coordination, bonding with both nitrogen and oxygen atoms of amino acids.  相似文献   

15.
One hundred and two conformations of alpha- and beta-D-allopyranose, the C-3 substituted epimer of glucopyranose, were geometry optimized using the density functional, B3LYP, and the basis set, 6-311++G **. Full geometry optimization was performed on different ring geometries and on the hydroxymethyl rotamers (gg/gt/tg). Analytically derived Hessians were used to calculate zero point energy, enthalpy, and entropy. The lowest energy and free energy conformation found is the alpha-tg(g-)-4C1-c conformation, which is only slightly higher in electronic (approximately 0.2 kcal/mol) and free energy than the lowest energy alpha-D-glucopyranose. The in vacuo calculations showed a small (approximately 0.3 kcal/mol) energetic preference for the alpha- over the beta-anomer for allopyranose in the 4C1 conformation, whereas in the 1C4 conformation a considerable (approximately 1.6 kcal/mol) energetic preference for the beta- over the alpha-anomer for allopyranose was encountered. The results are compared to previous aldohexose calculations in vacuo. Boat and skew forms were found that remained stable upon gradient optimization although many starting boat conformations moved to other skew forms upon optimization. As found for glucose, mannose, and galactose the orientation and interaction of the hydroxyl groups make the most significant contributions to the conformation/energy relationship in vacuo. A comparison of different basis sets and density functionals is made in the Discussion section, confirming the appropriateness of the level of theory used here.  相似文献   

16.
Thymidylate synthase (TS), 5-fluorodeoxyuridylate (FdUMP), and 5,10-methylenetetrahydrofolate (CH2-H4folate) form a covalent complex in which a Cys thiol of TS is attached to the 6-position of FdUMP and the one-carbon unit of the cofactor is attached to the 5-position. The kinetics of formation of this covalent complex have been determined at several temperatures by semirapid quench methods. Together with previously reported data the results permit calculation of every rate and equilibrium constant in the interaction. Conversion of the noncovalent ternary complex to the corresponding covalent complex proceeds at a rate of 0.6 s-1 at 25 degrees C, and the dissociation constant for loss of CH2-H4folate from the noncovalent ternary complex is approximately 1 microM. Activation parameters for the formation of the covalent complex were shown to be Ea = 20 kcal/mol, delta G+ = 17.9 kcal/mol, delta H+ = 19.3 kcal/mol, and delta S+ = 0.005 kcal/(mol.deg). The equilibrium constant between the noncovalent and covalent ternary complexes is approximately 2 X 10(4), and the overall dissociation constant of CH2-H4folate from the covalent complex is approximately 10(-11) M. The conversion of the noncovalent ternary complex to the covalent adduct is about 12-fold slower than kcat in the normal enzymic reaction. However, because the dissociation constant for CH2-H4folate from the noncovalent ternary complex is about 10-fold lower than that from the TS-dUMP-CH2-H4folate Michaelis complex, the terms corresponding to kcat/Km are nearly equal. We propose that some of the intrinsic binding energy of CH2-H4folate may be used to facilitate formation of a 5-iminium ion intermediate.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
U Ryde 《Biophysical journal》1999,77(5):2777-2787
The relative energies of different coordination modes (bidentate, monodentate, syn, and anti) of a carboxylate group bound to a zinc ion have been studied by the density functional method B3LYP with large basis sets on realistic models of the active site of several zinc proteins. In positively charged four-coordinate complexes, the mono- and bidentate coordination modes have almost the same energy (within 10 kJ/mol). However, if there are negatively charged ligands other than the carboxylate group, the monodentate binding mode is favored. In general, the energy difference between monodentate and bidentate coordination is small, 4-24 kJ/mol, and it is determined more by hydrogen-bond interactions with other ligands or second-sphere groups than by the zinc-carboxylate interaction. Similarly, the activation energy for the conversion between the two coordination modes is small, approximately 6 kJ/mol, indicating a very flat Zn-O potential surface. The energy difference between syn and anti binding modes of the monodentate carboxylate group is larger, 70-100 kJ/mol, but this figure again strongly depends on interactions with second-sphere molecules. Our results also indicate that the pK(a) of the zinc-bound water ligand in carboxypeptidase and thermolysin is 8-9.  相似文献   

18.
Tulub AA 《Biofizika》2002,47(1):20-26
Quantum chemistry methods [RHF/UHF + MP4(FULL), DFT:B3LYP] with the 6-311+ +G**(p,d) basis set were used to elucidate the properties of six coordinated Mg2+ complexes with water, glutamic acid and ATP/GTP in singlet (S) and triplet (T) states. In the triplet state, the magnesium complex concentrates its spin density on a coordinated water molecule (inner or outer coordination shell). Within the molecule, a redox reaction occurs, and one of the hydrogen atoms is pushed out of the complex at a speed of approximately 125 m/s. In water solution, the energy of the triplet state is higher than that of the singlet state. In a mixed environment composed of water, amino acids and ATP/GTR, the energy of the magnesium complex in the triplet state is lower than that in the singlet state by 1.5-2.0 kcal/mol. A little difference in T and S states allows the Mg(2+)-ATP/GTP complex to switch easily between two reaction mechanisms.  相似文献   

19.
Hybrid quantum mechanical/molecular mechanical (QM/MM) calculations using restricted and unrestricted Hartree-Fock and B3LYP ab initio (QM) and Amber force field (MM), respectively, have been applied to study the catalytic site of papain in both free and substrate bonded forms. Ab initio geometry optimizations have been performed for the active site of papain and the N-methyl-acetamide (NMA)-papain complex within the molecular mechanical treatment of the protein environment. A covalent tetrahedral intermediate structure could be obtained only when the amide N atom of the substrate molecule was protonated through a proton transfer from the His-159 in the catalytic site. Our results support the previous assumption that a proton transfer from His-159 to the amide N atom of the substrate occurs prior to or concerted with the nucleophilic attack of the Cys-25 sulfur atom to the carbonyl group of the substrate. The electron correlation effect will reduce the proton transfer barrier. Therefore, this proton transfer can be easily observed in the B3LYP/6-31G* calculations. The HF/6-31G* method overestimates the reaction barrier against this proton transfer. The sulfur atom of Cys-25 and the imidazole ring of His-159 are found to be coplanar in the free form of the enzyme. However, the rotation of the imidazole ring of His-159 was observed during the formation of the tetrahedral intermediate. Without the papain environment, the coplanar thiolate-imidazolium ion pair RS-...ImH+ is much less stable than the neutral form of RSH....Im. Within the protein environment, however, the thiolate-imidazolium ion pair becomes more stable than its neutral form by 4.1 and 0.4 kcal/mol in HF/6-31G* and B3LYP/6-31G* calculations, respectively. The barrier of proton transfer from S-H group of Cys-25 to the imidazole ring of His-159 was reduced from 22.0 kcal/mol to 15.2 kcal/mol by the protein environment in HF/6-31G* calculations. This barrier is found to be much smaller (2.5 kcal/mol) in B3LYP/6-31G* calculations.  相似文献   

20.
Ab initio (RHF, MP2) and Density Functional Theory (DFT) methods have been used to examine six isomers of the N15m cluster with the 6-31+G* basis set. Different from the known odd-numbered anionic N7m, N9m, and N11m clusters, in which the open-chain structures are the most stable species, the most stable N15m isomer is structure 1 (C1), which may be considered as a complex between the fragments cyclic N5m (D5h) and staggered N10 (D2d). The decomposition pathways of structure 2 (CS), containing two aromatic N5 rings connected by a N5 chain, and the open-chain structure 3 (C2v) were studied at the B3LYP/6-31+G* level of theory. Relative energies were refined at the level of B3LYP/6-311+G(3df,2p)//B3LYP/6-31+G*+ZPE (B3LYP/6-31+G*). The barriers for N2 and N5m (D5h) fission reactions for structure 2 are predicted to be 18.2 and 14.2 kcal x mol(-1), respectively. The corresponding N2+N3m fission barrier for structure 3 is predicted to be 11.2 kcal x mol(-1). Supplementary material is available for this article if you access the article at http://dx.doi.org/10.1007/s00894-003-0118-0. A link in the frame on the left on that page takes you directly to the supplementary material. Figure Structure 1 of the N15m cluster, showing bond distances in A and bond angles in degrees  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号