首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The spatio-temporal distribution of phototrophic communities of the hypersaline photosynthetic Camarguc microbial mat (Salins-de-Giraud, France) was investigated over a diel cycle by combining microscopic and molecular approaches. Microcoleus chthonoplastes and Halomicronema excentricum, the dominant cyanobacteria of this oxyphotrophic community, were observed with confocal laser scanning microscopy to determine their biomass profiles. Both bacteria have similar vertical distributions, varying from a homogenous distribution through the mat during the night, to a specific localization in the upper oxic zone of 1.5 mm during the day. Terminal restriction fragment length polymorphism of PCR-amplified pufM gene fragments revealed three groups of anoxyphototrophic populations, which varied according to the two opposite periods of the diel cycle under study. They were either specifically detected in only one period, or homogenously distributed through the mat in all periods, or located in specific zones of the mat depending on the period considered. Oxygen concentrations, pH and biomass of the major filamentous cyanobacteria were the determinative factors in the distribution of these anoxyphototrophs across the mat. Thus, vertical migration, cell-cell aggregate formation and metabolic switches were the most evident defence of the photosynthetic populations against the adverse effects of sulfide and oxygen fluxes during a diel cycle.  相似文献   

2.
Sulphate-reducing bacteria (SRB) were enumerated in 40 faecal samples obtained from two different human populations in the United Kingdom and rural South Africa. Species able to metabolize acetate, lactate, propionate, butyrate, H2/CO2, succinate, pyruvate, valerate, ethanol and a glutamate/serine/alanine mixture were found in faeces from both populations. Although a variety of nutritionally and morphologically distinct species of SRB belonging to the genera Desulfotomaculum, Desulfobacter, Desulfomonas and Desulfobulbus were identified, Desulfovibrio types always predominated. Significant numbers of SRB were present only in faecal samples from subjects whose breath methane excretion was low or undetectable. Reduced or absent methanogenesis in the presence of SRB was confirmed in fermentation studies with faecal slurries. Fourteen of 20 (70%) British faecal samples contained SRB and the remainder produced methane. The reverse was the case with 20 rural black South Africans, where only three (15%) of the samples had significant levels of SRB; the remaining 85% produced methane. These results suggest that to a large extent, dissimilatory sulphate reduction and methanogenesis are mutually exclusive in the human large gut.  相似文献   

3.
Sulphate-reducing bacteria (SRB) were enumerated in 40 faecal samples obtained from two different human populations in the United Kingdom and rural South Africa. Species able to metabolize acetate, lactate, propionate, butyrate, H2/CO2, succinate, pyruvate, valerate, ethanol and a glutamate/serine/alanine mixture were found in faeces from both populations. Although a variety of nutritionally and morphologically distinct species of SRB belonging to the genera Desulfotomaculum, Desulfobacter, Desulfomonas and Desulfobulbus were identified, Desulfovibrio types always predominated. Significant numbers of SRB were present only in faecal samples from subjects whose breath methane excretion was low or undetectable. Reduced or absent methanogenesis in the presence of SRB was confirmed in fermentation studies with faecal slurrries. Fourteen of 20 (70%) British faecal samples contained SRB and the remainder produced methane. The reverse was the case with 20 rural black South Africans, where only three (15%) of the samples had significant levels of SRB; the remaining 85% produced methane. These results suggest that to a large extent, dissimilatory sulphate reduction and methanogenesis are mutually exclusive in the human large gut.  相似文献   

4.
5.
The distribution and abundance of sulfate-reducing bacteria (SRB) and eukaryotes within the upper 4 mm of a hypersaline cyanobacterial mat community were characterized at high resolution with group-specific hybridization probes to quantify 16S rRNA extracted from 100-microm depth intervals. This revealed a preferential localization of SRB within the region defined by the oxygen chemocline. Among the different groups of SRB quantified, including members of the provisional families "Desulfovibrionaceae" and "Desulfobacteriaceae," Desulfonema-like populations dominated and accounted for up to 30% of total rRNA extracted from certain depth intervals of the chemocline. These data suggest that recognized genera of SRB are not necessarily restricted by high levels of oxygen in this mat community and the possibility of significant sulfur cycling within the chemocline. In marked contrast, eukaryotic populations in this community demonstrated a preference for regions of anoxia.  相似文献   

6.
Abstract In the shallow lagoon of Prévost (43°30'N, 3°54'E; French Mediterranean coast), red waters occurring periodically during warm summers are a consequence of a succession of ecological events beginning in the early spring with a bloom of algae ( Ulva lactuca ). In summer 1977, a red water was analyzed; in the early summer, the water turned anoxic and became rich in sulfide which originated from sulfate reduction in the first 10 cm of the sediment. Numbers of both phototrophic and sulfate-reducing bacteria (SRB) increased during spring and summer, and the genera in the prevailing populations did not change: Thiocapsa (80%) among the phototrophic bacteria and Desulfovibrio and Desulfobacter among the SRB. They were also dominant during the period of red waters. A few Chromatium and Thiocystis species were also identified. During red water periods, these bacteria grew very actively, removing all the sulfide produced by SRB, and accumulated in the whole water column. Consequently, the sulfate level increased to 5 mmol·1−1 higher than the theoretical sulfate level calculated from salinity, showing the active oxidation of sulfide by phototrophic bacteria. After the dystrophic crisis, oxic conditions were reestablished and the phototrophic bacterial biomass was partly grazed by zoobenthos organisms which densely populated the sediment surface.  相似文献   

7.
We describe the combined application of microsensors and molecular techniques to investigate the development of sulfate reduction and of sulfate-reducing bacterial populations in an aerobic bacterial biofilm. Microsensor measurements for oxygen showed that anaerobic zones developed in the biofilm within 1 week and that oxygen was depleted in the top 200 to 400 μm during all stages of biofilm development. Sulfate reduction was first detected after 6 weeks of growth, although favorable conditions for growth of sulfate-reducing bacteria (SRB) were present from the first week. In situ hybridization with a 16S rRNA probe for SRB revealed that sulfate reducers were present in high numbers (approximately 108 SRB/ml) in all stages of development, both in the oxic and anoxic zones of the biofilm. Denaturing gradient gel electrophoresis (DGGE) showed that the genetic diversity of the microbial community increased during the development of the biofilm. Hybridization analysis of the DGGE profiles with taxon-specific oligonucleotide probes showed that Desulfobulbus and Desulfovibrio were the main sulfate-reducing bacteria in all biofilm samples as well as in the bulk activated sludge. However, different Desulfobulbus and Desulfovibrio species were found in the 6th and 8th weeks of incubation, respectively, coinciding with the development of sulfate reduction. Our data indicate that not all SRB detected by molecular analysis were sulfidogenically active in the biofilm.  相似文献   

8.
We present an analysis of isozyme variability in natural populations of the plant species Hippocrepis valentina (Leguminosae), which is endemic to the eastern Mediterranean coast of Spain and currently has endangered species status. Our results, obtained by starch-gel electrophoresis of 15 loci, show normal levels of variability for species with similar biology. The comparison with the patterns of genetic variability of two closely related species, H. balearica and H. grosii, confirms the taxonomic status of H. valentina as a proper species, independent of H. balearica, as previously suggested. The analysis of population subdivision shows that substantial variation among populations is present, and a hierarchical analysis demonstrates that when zones are defined according to their geographic location, a higher differentiation among populations within zones than among zones is found. Indirect estimates of gene flow indicate that levels of migration per generation are relatively low, except for a group composed of four populations, three of which are in close proximity. For the remaining populations, there is evidence of substantial differentiation. These results have implications for the design of a conservation strategy for this species.  相似文献   

9.
Diel variations in N(2) fixation (acetylene reduction), CO(2) fixation, and oxygen concentrations were measured, on three separate occasions, in a marine microbial mat located on Shackleford Banks, North Carolina. Nitrogenase activity (NA) was found to be inversely correlated with CO(2) fixation and, in two of the three diel periods studied, was higher at night than during the day. Oxygen concentrations within the top 3 mm of the mat ranged from 0 to 400 muM on a diel cycle; anaerobic conditions generally persisted below 4 mm. NA in the mat was profoundly affected by naturally occurring oxygen concentrations. Experimentally elevated oxygen concentrations resulted in a significant depression of NA, whereas the addition of the Photosystem II inhibitor 3(3,4-dichlorophenyl)-1,1-dimethylurea decreased oxygen concentrations within the mat and resulted in a significant short-term enhancement of NA. Mat N(2)-fixing microorganisms include cyanobacteria and heterotrophic, photoautotrophic, and chemolithotrophic eubacteria. Measured (whole-mat) NA is probably due to a combination of the NA of each of these groups of organisms. The relative contributions of each group to whole-mat NA probably varied during diel and seasonal (successional) cycles. Reduced compounds derived from photosynthetic CO(2) fixation appeared to be an important source of energy for NA during the day, whereas heterotrophic or chemolithotrophic utilization of reduced compounds appeared to be an important source of energy for NA at night, under reduced ambient oxygen concentrations. Previous estimates of N(2) fixation calculated on the basis of daytime measurements may have seriously underestimated diel and seasonal nitrogen inputs in mat systems.  相似文献   

10.
The distribution and abundance of sulfate-reducing bacteria (SRB) and eukaryotes within the upper 4 mm of a hypersaline cyanobacterial mat community were characterized at high resolution with group-specific hybridization probes to quantify 16S rRNA extracted from 100-μm depth intervals. This revealed a preferential localization of SRB within the region defined by the oxygen chemocline. Among the different groups of SRB quantified, including members of the provisional families “Desulfovibrionaceae” and “Desulfobacteriaceae,” Desulfonema-like populations dominated and accounted for up to 30% of total rRNA extracted from certain depth intervals of the chemocline. These data suggest that recognized genera of SRB are not necessarily restricted by high levels of oxygen in this mat community and the possibility of significant sulfur cycling within the chemocline. In marked contrast, eukaryotic populations in this community demonstrated a preference for regions of anoxia.  相似文献   

11.
The vertical distribution of sulfate-reducing bacteria (SRB) in photosynthetic biofilms from the trickling filter of a sewage treatment plant was investigated with oligonucleotide probes binding to 16S rRNA. To demonstrate the effect of daylight and photosynthesis and thereby of increased oxygen penetration, we incubated two 4-mm-thick biofilm samples in darkness or exposed to light at natural intensity. Gradients of O2, H2S, and pH were examined with microelectrodes during incubation. The samples were subsequently frozen with liquid nitrogen and sliced on a cryomicrotome in 20-microns vertical slices. Fluorescent-dye-conjugated oligonucleotides were used as "phylogenetic" probes to identify single cells in the slices. Oligonucleotide sequences were selected which were complementary to short sequence elements (16 to 20 nucleotides) within the 16S rRNA of sulfate-reducing bacteria. The probes were labeled with fluorescein or rhodamine derivatives for subsequent visualization by epifluorescence microscopy. Five probes were synthesized for eukaryotes, eubacteria, SRB (including most species of the delta group of purple bacteria), Desulfobacter spp., and a nonhybridizing control. The SRB were unevenly distributed in the biofilm, being present in all states from single scattered cells to dense clusters of several thousand cells. To quantify the vertical distribution of SRB, we counted cells along vertical transects through the biofilm. This was done in a blind experiment to ascertain the reliability of the staining. A negative correlation between the vertical distribution of positively stained SRB cells and the measured O2 profiles was found. The distribution differed in light- and dark-incubated samples presumably because of the different extensions of the oxic surface layer. In both cases the SRB were largely restricted to anoxic layers.  相似文献   

12.
候鸟春季迁徙时间与其能否顺利完成迁徙过程,以及对繁殖地的成功选择和繁殖成效密切相关,通过对大天鹅越冬地和停歇地的春季迁徙时间选择原因及其影响因素进行分析,有助于深入理解候鸟春季迁徙时间策略和栖息地保护状况。2015年2月和12月,在河南三门峡湿地捕捉了60只越冬大天鹅并佩戴卫星跟踪器,获取了详细的大天鹅在越冬地和停歇地的春季迁徙时间等信息,并进一步分析了春季迁徙时间与气候因子的相关性。结果表明,大天鹅主要在夜间22:00-0:00和0:00-1:59迁离越冬地。大天鹅迁离越冬地的日期与温度呈显著性正相关,迁离时多选择顺风且风速较小的天气。大天鹅迁离越冬地后主要是在夜间飞行,而迁离停歇地后主要是在日间飞行。越冬地的温度越高,越有利于植物的生长,大天鹅可以快速地积累能量,提前开始春季迁徙。野外调查表明,内蒙古黄河中上游作为迁徙的重要停歇地,春季两岸捕鱼、农耕和放牧等为活动较多,因此大天鹅多选择在夜间觅食补充能量,在日间迁离。最后,针对黄河流域大天鹅栖息地的保护现状,提出了禁止经济开发项目、建立保护区和开展宣传教育等保护建议。  相似文献   

13.
New primer-enzyme combinations for terminal restriction fragment length polymorphism (T-RFLP) targeting of the 16S rRNA gene were constructed by using the T-RFLP analysis program (designated TAP T-RFLP) located at the Ribosomal Database Project website, and their performance was examined empirically. By using the fluorescently labeled 516f primer (Escherichia coli positions 516 to 532) and 1510r primer (positions 1510 to 1492), the 16S rRNA gene was amplified from human fecal DNA. The resulting amplified product was digested with RsaI plus BfaI or with BslI. When the T-RFLP was carried out with fecal DNAs from eight individuals, eight predominant operational taxonomic units (OTUs) were detected with RsaI and BfaI digestion and 14 predominant OTUs were detected with BslI digestion. The distribution of the OTUs was consistent with the results of the computer simulations with TAP T-RFLP. The T-RFLP analyses of the fecal DNAs from individuals gave characteristic profiles, while the variability of the T-RFLP profiles between duplicate DNA preparations from the same samples were minimal. This new T-RFLP method made it easy to predict what kind of intestinal bacterial group corresponded to each OTU on the basis of the terminal restriction fragment length compared with the conventional T-RFLP and, moreover, made it possible to identify the bacterial species that an OTU represents by cloning and sequencing.  相似文献   

14.
Kinlan  B.P. 《Journal of phycology》2003,39(S1):29-29
Benthic populations of Euglena viridis exhibit vertical migration behavior on high energy intertidal beaches and along the sand banks of freshwater streams. This study examines similarities and differences in the migratory behavior and cell morphology of populations of E. viridis inhabiting Scripps Beach, La Jolla, California and Coble Brook, Burlington, North Carolina. The timing of migration was measured by counting the number of cells in samples collected from the sediment surface throughout the day. Sediment cores were extracted and sectioned to determine the vertical distribution of the population. Neutral density filters and opaque canisters were used to shade the substratum to 56%, 22%, 2%, and 0% of incident irradiance (Io) to examine the effect of light on cell morphology and migratory behavior. On intertidal beaches, E. viridis exhibited a tidal rhythm in vertical migration with cells migrating below the sediment surface at night (>15 cm) and during daytime high tides. In this habitat, the upward migration response was enhanced at irradiances lower than 100% Io but cell morphology was not altered by shading. On the banks of freshwater streams, E. viridis exhibited a diurnal migratory rhythm with both tear-drop and spherical morphologies observed throughout the day. The population was most concentrated at the surface around solar noon and at night it was located between 1 and 2 cm below the surface. Shading did not enhance upward migration but it did affect cell morphology. These results will be interpreted in the context of the dominant selection pressures in each environment.  相似文献   

15.
New primer-enzyme combinations for terminal restriction fragment length polymorphism (T-RFLP) targeting of the 16S rRNA gene were constructed by using the T-RFLP analysis program (designated TAP T-RFLP) located at the Ribosomal Database Project website, and their performance was examined empirically. By using the fluorescently labeled 516f primer (Escherichia coli positions 516 to 532) and 1510r primer (positions 1510 to 1492), the 16S rRNA gene was amplified from human fecal DNA. The resulting amplified product was digested with RsaI plus BfaI or with BslI. When the T-RFLP was carried out with fecal DNAs from eight individuals, eight predominant operational taxonomic units (OTUs) were detected with RsaI and BfaI digestion and 14 predominant OTUs were detected with BslI digestion. The distribution of the OTUs was consistent with the results of the computer simulations with TAP T-RFLP. The T-RFLP analyses of the fecal DNAs from individuals gave characteristic profiles, while the variability of the T-RFLP profiles between duplicate DNA preparations from the same samples were minimal. This new T-RFLP method made it easy to predict what kind of intestinal bacterial group corresponded to each OTU on the basis of the terminal restriction fragment length compared with the conventional T-RFLP and, moreover, made it possible to identify the bacterial species that an OTU represents by cloning and sequencing.  相似文献   

16.
The effect of growth temperature on the cellular fatty acid composition of sulphate-reducing bacteria (SRB) was studied in 12 species belonging to eight genera including psychrophiles and mesophiles. Most of these species were of marine origin. The investigated SRB with the exception of four Desulfobacter species exhibited only a minor increase in the proportion of cis-unsaturated fatty acids (by < or = 5% per 10 degrees C) when the growth temperature was decreased; psychrophiles maintained their typically high content of cis-unsaturated fatty acids (around 75% of total fatty acids) nearly constant. The four Desulfobacter species, however, increased the proportion of cis-unsaturated among total fatty acids significantly (by > or =14% per 10 degrees C; measured in late growth phase) with decreasing growth temperature. The ratio between unsaturated and saturated fatty acids in Desulfobacter species changed not only with the growth temperature, but also with the growth state in batch cultures at constant temperature. Changes of cellular fatty acids were studied in detail with D. hydrogenophilus, the most psychrotolerant (growth range 0-35 degrees C) among the mesophilic SRB examined. Desulfobacter hydrogenophilus also formed cis-9,10-methylenehexadecanoic acid (a cyclopropane fatty acid) and 10-methylhexadecanoic acid. At low growth temperature (12 degrees C), the relative amount of these fatty acids was at least threefold lower; this questions the usefulness of 10-methylhexadecanoic acid as a reliable biomarker of Desulfobacter in cold sediments.  相似文献   

17.
We studied the diel migrations of several species of microorganisms in a hypersaline, layered microbial mat. The migrations were quantified by repeated coring of the mat with glass capillary tubes. The resulting minicores were microscopically analyzed by using bright-field and epifluorescence (visible and infrared) microscopy to determine depths of coherent layers and were later dissected to determine direct microscopic counts of microorganisms. Microelectrode measurements of oxygen concentration, fiber optic microprobe measurements of light penetration within the mat, and incident irradiance measurements accompanied the minicore sampling. In addition, pigment content, photosynthesis and irradiance responses, the capacity for anoxygenic photosynthesis, and gliding speeds were determined for the migrating cyanobacteria. Heavily pigmented Oscillatoria sp. and Spirulina cf. subsalsa migrated downward into the mat during the early morning and remained deep until dusk, when upward migration occurred. The mean depth of the migration (not more than 0.4 to 0.5 mm) was directly correlated with the incident irradiance over the mat surface. We estimated that light intensity at the upper boundary of the migrating cyanobacteria was attenuated to such an extent that photoinhibition was effectively avoided but that intensities which saturated photosynthesis were maintained through most of the daylight hours. Light was a cue of paramount importance in triggering and modulating the migration of the cyanobacteria, even though the migrating phenomenon could not be explained solely in terms of a light response. We failed to detect diel migration patterns for other cyanobacterial species and filamentous anoxyphotobacteria. The sulfide-oxidizing bacterium Beggiatoa sp. migrated as a band that followed low oxygen concentrations within the mat during daylight hours. During the nighttime, part of this population migrated toward the mat surface, but a significant proportion remained deep.  相似文献   

18.
Seasonal variations in anaerobic respiration pathways were investigated at three saltmarsh sites using chemical data, sulfate reduction rate measurements, enumerations of culturable populations of anaerobic iron-reducing bacteria (FeRB), and quantification of in situ 16S rRNA hybridization signals targeted for sulfate-reducing bacteria (SRB). Bacterial sulfate reduction in the sediments followed seasonal changes in temperature and primary production of the saltmarsh, with activity levels lowest in winter and highest in summer. In contrast, a dramatic decrease in the FeRB population size was observed during summer at all sites. The collapse of FeRB populations during summer was ascribed to high rates of sulfide production by SRB, resulting in abiotic reduction of bioavailable Fe(III) (hydr)oxides. To test this hypothesis, sediment slurry incubations at 10, 20 and 30 °C were carried out. Increases in temperature and labile organic carbon availability (acetate or lactate additions) increased rates of sulfate reduction while decreasing the abundance of culturable anaerobic FeRB. These trends were not reversed by the addition of amorphous Fe(III) (hydr)oxides to the slurries. However, when sulfate reduction was inhibited by molybdate, no decline in FeRB growth was observed with increasing temperature. Addition of dissolved sulfide adversely impacted propagation of FeRB whether molybdate was added or not. Both field and laboratory data therefore support a sulfide-mediated limitation of microbial iron respiration by SRB. When total sediment respiration rates reach their highest levels during summer, SRB force a decline in the FeRB populations. As sulfate reduction activity slows down after the summer, the FeRB are able to recover.  相似文献   

19.
The cranial morphology of 28 specimens of night monkeys (genus Aotus) was examined using three-dimensional geometrical morphometrics. New results of the morphological differences between two populations of Aotus infulatus from both banks of the Rio Tocantins are proposed. These morphological results totally agree with the genetic distinction of these populations proposed by Schneider -- and Sampaio --, and probably point out recent rapid evolutive changes for this species. Our morphometric results can be used for taxonomic, but also for medical research, as the susceptibility to malaria of night monkeys is variable between species.  相似文献   

20.
Diel variations in N2 fixation (acetylene reduction), CO2 fixation, and oxygen concentrations were measured, on three separate occasions, in a marine microbial mat located on Shackleford Banks, North Carolina. Nitrogenase activity (NA) was found to be inversely correlated with CO2 fixation and, in two of the three diel periods studied, was higher at night than during the day. Oxygen concentrations within the top 3 mm of the mat ranged from 0 to 400 μM on a diel cycle; anaerobic conditions generally persisted below 4 mm. NA in the mat was profoundly affected by naturally occurring oxygen concentrations. Experimentally elevated oxygen concentrations resulted in a significant depression of NA, whereas the addition of the Photosystem II inhibitor 3(3,4-dichlorophenyl)-1,1-dimethylurea decreased oxygen concentrations within the mat and resulted in a significant short-term enhancement of NA. Mat N2-fixing microorganisms include cyanobacteria and heterotrophic, photoautotrophic, and chemolithotrophic eubacteria. Measured (whole-mat) NA is probably due to a combination of the NA of each of these groups of organisms. The relative contributions of each group to whole-mat NA probably varied during diel and seasonal (successional) cycles. Reduced compounds derived from photosynthetic CO2 fixation appeared to be an important source of energy for NA during the day, whereas heterotrophic or chemolithotrophic utilization of reduced compounds appeared to be an important source of energy for NA at night, under reduced ambient oxygen concentrations. Previous estimates of N2 fixation calculated on the basis of daytime measurements may have seriously underestimated diel and seasonal nitrogen inputs in mat systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号