首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A protocol for the extraction of DNA from ancient skeletal material was developed. Bone specimen samples (powder or slice), buffer, pretreatment, and extraction methodologies were compared to investigate the best conditions yielding the highest concentration of DNA. The degree of extract contamination by polymerase chain reaction (PCR) inhibitors was compared as well. Pretreatment was carried out using agitation in an incubator shaker and microwave digestion. Subsequently, DNA from bones was isolated by the classical organic phenol–chloroform extraction and silica-based spin columns. Decalcification buffer for total demineralization was required as well as lysis buffer for cell lysis to obtain DNA, whereas microwave-assisted digestion proved to be very rapid, with an incubation time of 2 min instead of 24 h at an incubator shaker without using lysis buffer. The correction of isolated DNA was detected using real-time PCR with melt curve analysis, which was 82.8 ± 0.2 °C for highly repetitive α-satellite gene region specific for human chromosome 17 (locus D17Z1). Consequently, microwave-based DNA digestion followed by silica column yielded a high-purity DNA with a concentration of 19.40 ng/μl and proved to be a superior alternative to the phenol–chloroform method, presenting an environmentally friendly and efficient technique for DNA extraction.  相似文献   

2.
Summary The present study utilized biochemical and immuno-and lectin-histochemical methods to demonstrate solubility and retention of mineral-binding non-collagenous proteins in rat midshaft subperiosteal bone during EDTA demineralization. A monoclonal antibody (9-A-2) specific for chondroitin 4-sulphate and dermatan sulphate and wheat germ agglutinin (WGA) specific forN-acetyl-d-glucosamine,N-acetylneuraminic acid, andN-acetyl-d-galactosamine were used. Bone proteins were extracted from fresh unfixed or aldehyde-fixed specimens with a three step extraction procedure, 4 M guanidine HCl (GdnCl), aqueous EDTA without GdnCl, followed by GdnCl. For comparison with the second extraction step, ethanolic trimethylammonium EDTA (ethanolic EDTA) was substituted for aqueous EDTA. Based on protein staining and Western blot analysis of SDS-polyacrylamide gel electrophoresis of each extract using 9-A-2 and WGA, retention of mineral-binding proteins extractable from fresh specimens with aqueous EDTA was greatly increased in tissue when ethanolic EDTA was used. Their retention was even greater with prior aldehyde fixation. Maximum retention with no detectable solubility of 9-A-2 and WGA reactive proteins was obtained after ethanolic EDTA extraction of aldehyde-fixed specimens, which concomitantly provided the strongest immuno- and lectin staining. These results indicate that this combined method dramatically improves retention of PGs and glycoproteins during demineralization of bone tissues and provides the best method for localizing these glycoconjugates.  相似文献   

3.
Summary The rate of calcium extraction with EDTA (ethylenediamine tetraacetic acid) from thin bone slices (300 m-2mm thick) was determined by aid of an atomic absorption spectrophotometer. A 0.5 mm thick bone slice was completely decalcified with 15% (0.40 M), 8% (0.22 M), and 4% (0.11 M) EDTA in 24 h, 3 days, and 5 days, respectively (vol. 15 ml, temp. 4° C, pH 7.4). At 37 and 60° C the speed of demineralization was slightly increased as compared with that at 20° C, while no difference was observed between 4 and 20° C. Bone slices with a thickness of 0.3, 0.5, 1 and 2 mm were decalcified-in the same order-in 24 h, 2, 3, and 5 days (8% EDTA, 4° C, pH 7.4). At pH 7.4, the decalcification rate was a little slower than at pH 5.0 and 8.5. Agitation did not affect the decalcifying velocity, nor did the volume of the agent, except when the volume was very small. The demineralization of ordinary bone, containing both compact and spongy bone, was found to be more rapid than that of homogeneous bone reported earlier. The acidic buffers and New Decalc®, which served as reference substances, exerted a more vigorous decalcifying effect than EDTA. K formate/formic acid buffer, pH 3.15, demineralized a 1 mm thick bone slice in 24 h, and 2 days was needed with Na lactate/lactic acid buffer, pH 3.70. With New Decalc®, pH 0.9, the corresponding demineralization was accomplished in 1.5 h. Atomic absorption spectrophotometer proved to be a useful tool in the evaluation of calcium extraction velocity from bone slices.  相似文献   

4.
We investigated whether a combination of recently introduced methods, total demineralization and ion‐exchange columns, would increase DNA recovery from old bone. Ten bone samples taken after a burial period of ∼60 years were used in this study. Bone powder was digested using total or incomplete demineralization. DNA was extracted by the standard organic method. The DNA extract was purified with ion‐exchange columns or QIAquick® spin columns. The efficiency of different DNA extraction methods was compared in terms of DNA concentration, inhibitors generated by real‐time PCR, and conventional STR typing results. The mean DNA concentration using the total demineralization method is ∼3 times higher than that using the incomplete demineralization method. For DNA purification, the method using QIAquick® spin columns appeared to yield approximately double the DNA than the method using ion‐exchange columns. Furthermore, 2 out of 10 samples showed higher levels of inhibition with CT values of IPC ≥30 cycles when using only ion‐exchange columns. In STR results, total demineralization yielded more locus profiles by 4.2 loci than incomplete demineralization, and QIAquick® spin columns also yielded more locus profiles by 3.5 loci than ion‐exchange columns. Total demineralization of bone powder significantly increased DNA yield and improved STR typing results. However, the use of ion‐exchange columns was not efficient when compared with the method using QIAquick® spin columns. It is suggested that the combination of total demineralization and QIAquick® spin columns lead to greatly improved STR typing results. Am J Phys Anthropol 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

5.
OBJECTIVE: The aim of this study was to compare and evaluate three methods of DNA extraction for the amplification of Chlamydia trachomatis in uterine cervical samples collected in PreservCyt solution. ThinPrep is the trade name for the slide preparation. METHODS: Thirty-eight samples collected in LCx buffer medium, which were identified as C. trachomatis infected by ligase chain reaction (LCR), were selected for this study. DNA from the PreservCyt samples was extracted by three methods: (i) QIAamp kit, (ii) boiling in Tris-EDTA buffer with Chelex purification, and (iii) Proteinase K digestion with Chelex purification. Sample DNA was tested for the presence of C. trachomatis by PCR using cryptic plasmid research (CTP) primers and major outer membrane protein research momp gene (MOMP) primers. Real-time (LightCycler) PCR for relative C. trachomatis quantification following DNA extraction was performed using primers (Hsp 60) for the 60 kDa heat-shock protein hsp60 gene. RESULTS: Amplification using CTP primers was the most successful with each of the extraction protocols. Boiling in buffer was the least successful extraction method. QIAamp was the best extraction method, yielding the most positives with both the CTP and MOMP primers. Proteinase K-Chelex extraction gave similar sensitivity to QIAamp extraction with CTP primers but lower for MOMP primers. CONCLUSIONS: The DNA extraction method must be carefully selected to ensure that larger PCR amplicons can be successfully produced by PCR and to ensure high sensitivity of detection of C. trachomatis. In this study it was found that the QIAamp extraction method followed by PCR with the CTP primers was the most successful for amplification of C. trachomatis DNA.  相似文献   

6.
Ancient DNA extraction from bones and teeth   总被引:1,自引:0,他引:1  
This method is designed to maximize recovery of PCR-amplifiable DNA from ancient bone and teeth specimens and at the same time to minimize co-extraction of substances that inhibit PCR. This is achieved by a combination of DNA extraction from bone powder using a buffer consisting solely of EDTA and proteinase K, and purification of the DNA by binding to silica in the presence of high concentrations of guanidinium thiocyanate. All steps are performed at room temperature (20-23 degrees C), thereby reducing further degradation of the already damaged and fragile ancient DNA and providing an optimal trade-off between DNA release and degradation. Furthermore, the purification step removes most of the various types of PCR inhibitors present in ancient bone samples, thereby optimizing the amount of ancient DNA available for subsequent enzymatic manipulation, such as PCR amplification. The protocol presented here allows DNA extraction from ancient bone and teeth with a minimum of working steps and equipment and yields DNA extracts within 2 working days.  相似文献   

7.
The study of ancient DNA plays an important role in archaeological and palaeontological research as well as in pathology and forensics. Here, we present a new tool for ancient DNA analysis, which overcomes contamination problems, DNA degradation, and the negative effects of PCR inhibitors while reducing the amount of starting target material in the picogram range. Ancient bone samples from four Egyptian mummies were examined by combining laser microdissection, conventional DNA extraction, and low‐volume PCR. Initially, several bone particles (osteons) in the micrometer range were extracted by laser microdissection. Subsequently, ancient DNA amplification was performed to verify our extraction method. Amelogenin and β‐actin gene specific fragments were amplified via low‐volume PCR in a total reaction volume of 1 μl. Results of microdissected mummy DNA samples were compared to mummy DNA, which was extracted using a standard DNA extraction method based on pulverization of bone material. Our results highlight the combination of laser microdissection and low‐volume PCR as a promising new technique in ancient DNA analysis. Am J Phys Anthropol, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

8.
We describe a simple and efficient method for genomic DNA extraction from woody fruit crops containing high polysaccharide levels. This method involves a modified CTAB or SDS procedure employing a purification step to remove polysaccharides by using water-saturated ether and 1.25 M NaCl. Precipitation with an equal volume of isopropanol caused a DNA pellet to form. After being washed with 70% ethyl alcohol, the pellet easily dissolved in TE buffer. Using this method, DNA was extracted from samples of more than 1000Citrus spp., including young leaves, old leaves, frosted old leaves, withered old leaves, and callus lines. The average yield of DNA ranged from 50–500 μg/g of sample. DNA was suitable for PCR and RFLP analyses and long-term storage. Recently, the procedure was used to isolate DNA from withered old leaves of more than 20 tropical and subtropical fruit crops.  相似文献   

9.
A novel method of ancient DNA (aDNA) purification was developed using ion-exchange columns to improve PCR-amplifiable DNA extraction from ancient bone samples. Thirteen PCR-resistant ancient bone samples aged 500-3,300 years were tested to extract aDNA using a recently reported, silica-based aDNA extraction method and an ion-exchange column method for the further purification. The PCR success rates of the aDNA extracts were evaluated for the amplification ability of the fragments of mitochondrial DNA, a high-copy DNA, and amelogenin, a low-copy DNA. The results demonstrate that the further purification of silica-based aDNA extracts using ion-exchange columns considerably improved PCR amplification. We suggest that the ion-exchange column-based method will be useful for the improvement of PCR-amplifiable aDNA extraction, particularly from the poorly preserved, PCR-resistant, ancient samples.  相似文献   

10.
Here, we describe an ethylenediaminetetraacetic acid (EDTA)-based bone demineralization procedure that uses cation-exchange resin and dialysis tubing. This method does not require solution changes or special equipment, is faster than EDTA alone, is cost-effective, and is environmentally friendly. Like other EDTA-based methods, this procedure yields superior tissue preservation than formic acid demineralization. Greater protein antigenicity using EDTA as opposed to formic acid has been described, but we also find significant improvements in carbohydrate-based histological staining. Histological staining using this method reveals cartilage layers that are not distinguishable with formic acid demineralization. Carbohydrate preservation is relevant to many applications of bone demineralization, including the assessment of osteoarthritis from bone biopsies and the use of demineralized bone powder for tissue culture and surgical implants. The improvements in time, expense, and tissue quality indicate this method is a practical and often superior alternative to formic acid demineralization:  相似文献   

11.
Extraction of high-quality RNA from Arabidopsis seeds has been a challenge. Here we report a two-step TRIzol-based procedure for RNA extraction from Arabidopsis siliques and dry seeds. This procedure employs a modified, high pH (pH 9.5) extraction buffer. High pH plus the addition of either DTT or β-mercaptoethanol in the extraction buffer effectively inhibits RNase activity during the extraction, and removes most polysaccharides, polyphenols and other insoluble material. TRIzol reagent was subsequently used to purify the RNA. Using this procedure we isolated high-quality DNA-free RNA samples without DNase I treatment from Arabidopsis seeds or siliques in less than 3 h.  相似文献   

12.
A method is presented for the direct extraction of the recombinant protein Long-R3-IGF-I from inclusion bodies located in the cytoplasm of intact Escherichia coli cells. Chemical treatment with 6M urea, 3 mM EDTA, and 20 mM dithiothreitol (DTT) at pH 9.0 proved an effective combination for extracting recombinant protein from intact cells. Comparable levels of Long-R3-IGF-I were recovered by direct extraction as achieved by in vitro dissolution following mechanical disruption. However, the purity of directly extracted recombinant protein was lower due to contamination by bacterial cell components. The kinetics of direct extraction are described using a first-order equation with the time constant of 3 min. Urea appears important for permeabilization of the cell and dissolution of the inclusion body. Conversely, EDTA is involved in permeabilization of the cell wall and DTT enhances protein release. pH proved to be important with lower levels of protein release achieved at low pH values (<9). Cell concentration also had a minor effect on Long-R3-IGF-I release and caused an observable increase in viscosity. Advantages of the direct extraction method include its speed, simplicity, and efficiency at releasing product.  相似文献   

13.
A very simple procedure for the isolation of high-quality, high-molecular-weight genomic DNA from embryonic stem cells is described. The DNA is very stable once dried and can be stored for long periods of time without refrigeration. Living cells are lysed in a sodium dodecyl sulfate and EDTA buffer containing proteinase K and then air-dried. Samples can be processed in bulk, and an individual can easily process thousands of samples for extraction and shipment on a daily basis using only common laboratory materials such as plastic ware and a multichannel pipetteman.  相似文献   

14.
We compared five methods for improved extraction of very-large parapoxvirus DNA from infected cells: (i) alkaline-lysis procedure followed by phenol extraction; (ii) modified Hirt procedure, which was a neutral lysis procedure followed by phenol extraction; (iii) Hirt procedure; (iv) method used for extraction of vaccinia virus DNA; and (v) standard procedure using virus purification with an ultracentrifuge and protease-sodium dodecyl sulfate-phenol treatment. The alkaline-lysis procedure was more rapid, inexpensive and simpler than the other methods. Moreover, with this method it is not necessary to prepare any special facilities, reagents and kits. Although the extracted DNA was still crude, we could reproducibly prepare viral DNA from 2 X 10(6) infected cells in less than 2 hr and it could be readily digested by restriction endonuclease. This method will aid rapid genetic classification of parapoxvirus.  相似文献   

15.
为建立适于黄瓜悬浮细胞蛋白质组分析的双向电泳体系,对黄瓜悬浮细胞蛋白质双向电泳分析所采用的胶条pH范围、样品制备方法、裂解液配方及分离胶浓度等参数进行研究。结果表明,采用pH范围为4~7的IPG胶条,直接裂解后丙酮沉淀法制备黄瓜悬浮细胞蛋白质,裂解液为8mol/L尿素、2mol/L硫脲、2%IPG Buffer、4%CHAPS、1%TBP、65mmol/L DTT、2mmol/L EDTA、0.001%溴酚蓝和1%鸡尾酒,分离胶浓度为11%,可获得蛋白质点分离清晰的双向电泳图谱。  相似文献   

16.
The demineralization of routine histological specimens in buffers of weakly ionized organic acids, unbuffered formic acid, and EDTA was investigated. The rate of demineralization was measured by a chemical method and from radiographs. Lactate-containing buffers and buffers of formic acid with its potassium salt were more rapid in effect than any other agent. Acidic buffers and unbuffered formic acid produced rapid diffuse demineralization with secondary precipitation of calcium salts. Preservation of dental enamel in such buffers resulted from the significantly slower rate of enamel demineralization than that for bone and dentine. In rapid demineralizing agents the secondary salts were quickly redissolved while in slow buffers these salts persisted. Multivalent ions such as citrate and maleate slowed the rate of demineralization, and a citrate-containing buffer was the slowest of all the agents tested. Demineralization in EDTA exhibited a different pattern with the establishment of a well-defined front of demineralization without apparent reprecipitation. EDTA attacked enamel, bone and dentine at the same rate. An attempt was made to relate the observed rates of demineralization to current theories of the demineralization process.  相似文献   

17.
Rapid demineralization in acidic buffers   总被引:1,自引:0,他引:1  
Summary The demineralization of routine histological specimens in buffers of weakly ionized organic acids, unbuffered formic acid, and EDTA was investigated. The rate of demineralization was measured by a chemical method and from radiographs. Lactate-containing buffers and buffers of formic acid with its potassium salt were more rapid in effect than any other agent. Acidic buffers and unbuffered formic acid produced rapid diffuse demineralization with secondary precipitation of calcium salts. Preservation of dental enamel in such buffers resulted from the significantly slower rate of enamel demineralization than that for bone and dentine. In rapid demineralizing agents the secondary salts were quickly redissolved while in slow buffers these salts persisted. Multivalent ions such as citrate and maleate slowed the rate of demineralization, and a citrate-containing buffer was the slowest of all the agents tested. Demineralization in EDTA exhibited a different pattern with the establishment of a well-defined front of demineralization without apparent reprecipitation. EDTA attacked enamel, bone and dentine at the same rate. An attempt was made to relate the observed rates of demineralization to current theories of the demineralization process.Supported by the British Medical Research Council  相似文献   

18.
We compared and statistically evaluated the effectiveness of nine DNA extraction procedures by using frozen and dried samples of two silt loam soils and a silt loam wetland sediment with different organic matter contents. The effects of different chemical extractants (sodium dodecyl sulfate [SDS], chloroform, phenol, Chelex 100, and guanadinium isothiocyanate), different physical disruption methods (bead mill homogenization and freeze-thaw lysis), and lysozyme digestion were evaluated based on the yield and molecular size of the recovered DNA. Pairwise comparisons of the nine extraction procedures revealed that bead mill homogenization with SDS combined with either chloroform or phenol optimized both the amount of DNA extracted and the molecular size of the DNA (maximum size, 16 to 20 kb). Neither lysozyme digestion before SDS treatment nor guanidine isothiocyanate treatment nor addition of Chelex 100 resin improved the DNA yields. Bead mill homogenization in a lysis mixture containing chloroform, SDS, NaCl, and phosphate-Tris buffer (pH 8) was found to be the best physical lysis technique when DNA yield and cell lysis efficiency were used as criteria. The bead mill homogenization conditions were also optimized for speed and duration with two different homogenizers. Recovery of high-molecular-weight DNA was greatest when we used lower speeds and shorter times (30 to 120 s). We evaluated four different DNA purification methods (silica-based DNA binding, agarose gel electrophoresis, ammonium acetate precipitation, and Sephadex G-200 gel filtration) for DNA recovery and removal of PCR inhibitors from crude extracts. Sephadex G-200 spin column purification was found to be the best method for removing PCR-inhibiting substances while minimizing DNA loss during purification. Our results indicate that for these types of samples, optimum DNA recovery requires brief, low-speed bead mill homogenization in the presence of a phosphate-buffered SDS-chloroform mixture, followed by Sephadex G-200 column purification.  相似文献   

19.
We compared and statistically evaluated the effectiveness of nine DNA extraction procedures by using frozen and dried samples of two silt loam soils and a silt loam wetland sediment with different organic matter contents. The effects of different chemical extractants (sodium dodecyl sulfate [SDS], chloroform, phenol, Chelex 100, and guanadinium isothiocyanate), different physical disruption methods (bead mill homogenization and freeze-thaw lysis), and lysozyme digestion were evaluated based on the yield and molecular size of the recovered DNA. Pairwise comparisons of the nine extraction procedures revealed that bead mill homogenization with SDS combined with either chloroform or phenol optimized both the amount of DNA extracted and the molecular size of the DNA (maximum size, 16 to 20 kb). Neither lysozyme digestion before SDS treatment nor guanidine isothiocyanate treatment nor addition of Chelex 100 resin improved the DNA yields. Bead mill homogenization in a lysis mixture containing chloroform, SDS, NaCl, and phosphate-Tris buffer (pH 8) was found to be the best physical lysis technique when DNA yield and cell lysis efficiency were used as criteria. The bead mill homogenization conditions were also optimized for speed and duration with two different homogenizers. Recovery of high-molecular-weight DNA was greatest when we used lower speeds and shorter times (30 to 120 s). We evaluated four different DNA purification methods (silica-based DNA binding, agarose gel electrophoresis, ammonium acetate precipitation, and Sephadex G-200 gel filtration) for DNA recovery and removal of PCR inhibitors from crude extracts. Sephadex G-200 spin column purification was found to be the best method for removing PCR-inhibiting substances while minimizing DNA loss during purification. Our results indicate that for these types of samples, optimum DNA recovery requires brief, low-speed bead mill homogenization in the presence of a phosphate-buffered SDS-chloroform mixture, followed by Sephadex G-200 column purification.  相似文献   

20.
The purification is based on a set of solutions and a simple centrifugation procedure. Protocols are designed for an easy extraction and purification of genomic DNA from a wide range of samples, including whole blood, buffy coat, bone marrow, body fluids, buccal cells, tissues, mouse tails, etc. RBCs are lysed by dilution into a hypotonic solution. Tissues are broken down and digested by proteinase K in the presence of an anion detergent to release genomic DNA. After precipitation of the detergent and proteins, unique beads that bind proteins, lipids, and RNAs are added to achieve the supreme purity. Genomic DNA is then separated by alcohol precipitation. A proprietary nucleic acid precipitation reagent is used to enhance DNA recovery from low concentration samples. No DNA-binding beads or columns are used in the method, eliminating the problem of low yield and the risk of shearing of genomic DNA. The purified samples are free of proteins, lipids, salts, and RNA contamination. Purified samples are also stable for storage and suitable for all downstream applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号