首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This article examines the actions of taurine on models of renal dysfunction, the potential mechanisms of taurine action and the possible clinical significance of these findings. Our laboratory has written previously on the role of taurine in renal function and we have focused upon the normal physiology of the kidney and on the mechanisms and regulation of the renal transport of taurine. This review is a distinct change of emphasis in that we describe a number of studies which have evaluated various aspects of renal dysfunction, including hypertension and proteinuria, specific glomerular and tubular disorders, acute and chronic renal conditions, urinary tract conditions including infection and nephrolithiasis, and diabetic nephropathy. The subject of chronic kidney disease and renal transplantation will also be examined relative to β amino acid. The studies evaluated will be mainly recent ones, recognizing that older reviews of the role of this taurine in the kidney are available.  相似文献   

2.
Summary Taurine is an abundant free amino acid in the plasma and cytosol. The kidney plays a pivotal role in maintaining taurine balance. Immunohistochemical studies reveal a unique localization pattern of the amino acid along the nephron. Taurine acts as an antioxidant in a variety ofin vitro andin vivo systems. It prevents lipid peroxidation of glomerular mesangial cells and renal tubular epithelial cells exposed to high glucose or hypoxic culture conditions. Dietary taurine supplementation ameliorates experimental renal disease including models of refractory nephrotic syndrome and diabetic nephropathy. The beneficial effects of taurine are mediated by its antioxidant action. It does not attenuate ischemic or nephrotoxic acute renal failure or chronic renal failure due to sub-total ablation of kidney mass. Additional work is required to fully explain the scope and mechanism of action of taurine as a renoprotective agent in experimental kidney disease. Clinical trials are warranted to determine the usefulness of this amino acid as an adjunctive treatment of progressive glomerular disease and diabetic nephropathy.  相似文献   

3.
Osteopontin (OPN), a large phosphoglycoprotein adhesion molecule, which is up-regulated in the kidneys of humans and mice with diabetes, has emerged as a potentially key pathophysiological contributor in diabetic nephropathy. Here, we investigated the role of OPN in kidney injury caused by diabetic nephropathy and the effect of atorvastatin on the expression of OPN and on diabetic nephropathy. Diabetes was induced with streptozotocin in rats, and atorvastatin (5 mg/kg) was orally administered once a day for 8 weeks. We analyzed the expression and regulation of OPN in the kidneys of streptozotocin-induced diabetic Sprague–Dawley albino rats by immunohistochemistry and western blot analysis. The expression of OPN was increased in diabetic rat kidney, and atorvastatin inhibited this process. Atorvastatin also decreased the expression and phosphorylation of p38. In vitro, atorvastatin inhibited the high glucose-induced OPN expression in Madin-Darby canine kidney epithelial cells through the p38 MAPK signaling pathway. These results suggested that atorvastatin reduced the expression of OPN through inhibition of the p38 MAPK pathway. The expression of OPN was associated with kidney injury. These molecules may represent therapeutic targets for the prevention of acute kidney injury induced by diabetes.  相似文献   

4.
Endoplasmic reticulum stress has been suggested to play a crucial role in the pathogenesis of diabetic complications. However, whether it is involved in the renal injury of diabetic nephropathy is still not known. We investigated the involvement of ER-associated apoptosis in kidney disease of streptozocin (STZ)-induced diabetic rats. We used albuminuria examination, hematoxylin & eosin (H&E) staining and TUNEL analysis to identify the existence of diabetic nephropathy and enhanced apoptosis. We performed immunohistochemistry, Western blot, and real-time PCR to analyze indicators of ER molecule chaperone and ER-associated apoptosis. GRP78, the ER chaperone, was up-regulated significantly in diabetic kidney compared to control. Furthermore, three hallmarks of ER-associated apoptosis, C/EBP homologous protein (CHOP), c-JUN NH2-terminal kinase (JNK) and caspase-12, were found to have activated in the diabetic kidney. Taken together, those results suggested that apoptosis induced by ER stress occurred in diabetic kidney, which may contribute to the development of diabetic nephropathy.  相似文献   

5.
6.
The brush border (BB) Na(+)/H(+) exchanger NHE3 is rapidly activated or inhibited by changes in trafficking, which mimics renal and intestinal physiology. However, there is a paradox in that NHE3 has limited mobility in the BB due to its binding to the multi-PDZ domain containing the NHERF family. To allow increased endocytosis, as occurs with elevated intracellular Ca(2+), we hypothesized that NHE3 had to be, at least transiently, released from the BB cytoskeleton. Because NHERF1 and -2 are localized at the BB, where they bind NHE3 as well as the cytoskeleton, we tested whether either or both might dynamically interact with NHE3 as part of Ca(2+) signaling. We employed FRET to study close association of NHE3 and these NHERFs and fluorescence recovery after photobleaching to monitor NHE3 mobility in the apical domain in polarized opossum kidney cells. Under basal conditions, NHERF2 and NHE3 exhibited robust FRET signaling. Within 1 min of A23187 (0.5 μm) exposure, the NHERF2-NHE3 FRET signal was abolished, and BB NHE3 mobility was transiently increased. The dynamics in FRET signal and NHE3 mobility correlated well with a change in co-precipitation of NHE3 and NHERF2 but not NHERF1. We conclude the following. 1) Under basal conditions, NHE3 closely associates with NHERF2 in opossum kidney cell microvilli. 2) Within 1 min of elevated Ca(2+), the close association of NHE3-NHERF2 is abolished but is re-established in ~60 min. 3) The change in NHE3-NHERF2 association is accompanied by an increased BB mobile fraction of NHE3, which contributes to inhibition of NHE3 transport activity via increased endocytosis.  相似文献   

7.
8.
Cardiac Na(+)/H(+) exchanger (NHE1) hyperactivity is a central factor in cardiac remodeling following hypertension, myocardial infarction, ischemia-reperfusion injury, and heart failure. Treatment of these pathologies by inhibiting NHE1 is challenging because specific drugs that have been beneficial in experimental models were associated with undesired side effects in clinical practice. In the present work, small interference RNA (siRNA) produced in vitro to specifically silence NHE1 (siRNA(NHE1)) was injected once in vivo into the apex of the left ventricular wall of mouse myocardium. After 48 h, left ventricular NHE1 protein expression was reduced in siRNA(NHE1)-injected mice compared with scrambled siRNA by 33.2 ± 3.4% (n = 5; P < 0.05). Similarly, NHE1 mRNA levels were reduced by 20 ± 2.0% (n = 4). At 72 h, siRNA(NHE1) spreading was evident from the decrease in NHE1 expression in three portions of the myocardium (apex, medium, base). NHE1 function was assessed based on maximal velocity of intracellular pH (pH(i)) recovery (dpH(i)/dt) after an ammonium prepulse-induced acidic load. Maximal dpH(i)/dt was reduced to 14% in siRNA(NHE1)-isolated left ventricular papillary muscles compared with scrambled siRNA. In conclusion, only one injection of naked siRNA(NHE1) successfully reduced NHE1 expression and activity in the left ventricle. As has been previously suggested, extensive NHE1 expression reduction may indicate myocardial spread of siRNA molecules from the injection site through gap junctions, providing a valid technique not only for further research into NHE1 function, but also for consideration as a potential therapeutic strategy.  相似文献   

9.
Diabetic nephropathy (DN) is one of the main causes of end stage renal disease (ESRD) and a leading cause of diabetes mellitus related morbidity and mortality. Recently, sirtuin are reported to have emerging pathogenetic roles in cancer, muscle differentiation, heart failure, neurodegeneration, diabetes and aging. The aim of the present study was to study the role of intermittent fasting (IF) on DN and studying the expression of Sir2 and p53. At biochemical level, we found that IF causes significant improvement in blood urea nitrogen (BUN), creatinine, albumin and HDL cholesterol, parameters that are associated with the development of DN. Diabetic rats on IF also show significant improvement in onset of hypertension. Interestingly, the expression of Sir2, a NAD dependent histone deacetylase, decreases in diabetic rat kidney and this decrease is overcome by IF. Moreover, we provide evidence for involvement of mitogen activated protein kinases (MAPK) cascade in mediating the effects of IF as there is reduction in the expression of p38 which gets induced under diabetic condition. This was further accompanied by the concomitant decrease in cleavage of caspase3 and p53 expression. These findings suggest that IF significantly improves biochemical parameters associated with development of DN and changes the expression of Sir2 and p53.  相似文献   

10.
Na+/H+ exchanger-3 (NHE3) plays an essential role in maintaining sodium and fluid homeostasis in the intestine and kidney epithelium. Thus, NHE3 is highly regulated and its function depends on binding to multiple regulatory proteins. Ezrin complexed with NHE3 affects its activity via not well-defined mechanisms. This study investigates mechanisms by which ezrin regulates NHE3 activity in epithelial Opossum Kidney cells. Ezrin is activated sequentially by phosphatidylinositol-4,5-bisphosphate (PIP2) binding and phosphorylation of threonine 567. Expression of ezrin lacking PIP2 binding sites inhibited NHE3 activity (-40%) indicating that ezrin binding to PIP2 is required for preserving NHE3 activity. Expression of a phosphomimetic ezrin mutated at the PIP2 binding region was sufficient not only to reverse NHE3 activity to control levels but also to increase its activity (+80%) similar to that of the expression of ezrin carrying the phosphomimetic mutation alone. Calcineurin Homologous Protein-1 (CHP1) is part, with ezrin, of the NHE3 regulatory complex. CHP1-mediated activation of NHE3 activity was blocked by expression of an ezrin variant that could not be phosphorylated but not by an ezrin variant unable to bind PIP2. Thus, for NHE3 activity under baseline conditions not only ezrin phosphorylation, but also ezrin spatial-temporal targeting on the plasma membrane via PIP2 binding is required; however, phosphorylation of ezrin appears to overcome the control of NHE3 transport. CHP1 action on NHE3 activity is not contingent on ezrin binding to PIP2 but rather on ezrin phosphorylation. These findings are important in understanding the interrelation and dynamics of a CHP1-ezrin-NHE3 regulatory complex.  相似文献   

11.
Increased levels of reactive oxygen species (ROS) by hyperglycemia can induce apoptosis of renal cells and diabetic nephropathy. The redox balance in the renal cell seems, therefore, of the utmost importance. ROS-mediated apoptosis may be further aggravated by an inadequate cytoprotective response against ROS. When there are insufficient cytoprotective and ROS scavenging molecules, ROS lead to considerable cellular damage and to a point of no return in apoptosis. Induction of cytoprotective proteins may prevent or attenuate apoptosis, renal cell injury, and finally diabetic nephropathy. Here, we discuss some mechanisms of apoptosis and several strategies that have been probed to ameliorate, or to prevent apoptosis in the diabetic kidney.  相似文献   

12.
Mice lacking NHE3, the major absorptive Na(+)/H(+) exchanger in the intestine, are the only animal model of congenital diarrhea. To identify molecular changes underlying compensatory mechanisms activated in chronic diarrheas, cDNA microarrays and Northern blot analyses were used to compare global mRNA expression patterns in small intestine of NHE3-deficient and wild-type mice. Among the genes identified were members of the RegIII family of growth factors, which may contribute to the increased absorptive area, and a large number of interferon-gamma-responsive genes. The latter finding is of particular interest, since interferon-gamma has been shown to regulate ion transporter activities in intestinal epithelial cells. Serum interferon-gamma was elevated 5-fold in NHE3-deficient mice; however, there was no evidence of inflammation, and unlike conditions such as inflammatory bowel disease, levels of other cytokines were unchanged. In addition, quantitative PCR analysis showed that up-regulation of interferon-gamma mRNA was localized to the small intestine and did not occur in the colon, spleen, or kidney. These in vivo data suggest that elevated interferon-gamma, produced by gut-associated lymphoid tissue in the small intestine, is part of a homeostatic mechanism that is activated in response to the intestinal absorptive defect in order to regulate the fluidity of the intestinal tract.  相似文献   

13.
As a nicotinamide adenine dinucleotide (NAD)+-dependent protein deacetylase, SIRT3 is highly expressed in tissues with high metabolic turnover and mitochondrial content. It has been demonstrated that SIRT3 plays a critical role in maintaining normal mitochondrial biological function through reversible protein lysine deacetylation. SIRT3 has a variety of substrates that are involved in mitochondrial biological processes such as energy metabolism, reactive oxygen species production and clearance, electron transport chain flux, mitochondrial membrane potential maintenance, and mitochondrial dynamics. In the suppression of SIRT3, functional deficiencies of mitochondria contribute to the development of various cardiovascular disorders. Activation of SIRT3 may represent a promising therapeutic strategy for the improvement of mitochondrial function and the treatment of relevant cardiovascular disorders. In the current review, we discuss the emerging roles of SIRT3 in mitochondrial derangements and subsequent cardiovascular malfunctions, including cardiac hypertrophy and heart failure, ischemia-reperfusion injury, and endothelial dysfunction in hypertension and atherosclerosis.  相似文献   

14.
BNP及NT-proBNP是诊断心衰的重要指标。近年来BNP及NT-proBNP与2型糖尿病关系的研究有了新的进展。我们收集近年来国内外关于2型糖尿病中BNP及NT-proBNP的相关文献并进行研究。结果显示2型糖尿病合并冠心病、高血压、糖尿病肾病患者BNP或NT-proBNP有升高趋势。单纯2型糖尿病及糖尿病视网膜病变患者以及低血糖患者BNP或NT-proBNP差异无统计学意义。高血压、年龄、性别、体重指数、肾功能及心脏结构功能改变是2型糖尿病患者BNP及NT-proBNP的影响因素。降糖药物对2型糖尿病患者BNP及NT-proBNP水平的研究尚少,糖尿病病程、FPG以及HbA1c对BNP及NT-proBNP的影响尚存在争议。BNP及NT-proBNP升高对2型糖尿病合并冠心病、高血压、糖尿病肾病患者病情评估,预后判断及诊治具有非常重要的意义。降糖药物、糖尿病病程、FPG以及HbA1c对BNP及NT-proBNP的影响需要进一步研究。  相似文献   

15.
Zinc deficiency during diabetes projects a role for zinc nutrition in the management of diabetic nephropathy. The current study explored whether zinc supplementation protects against diabetic nephropathy through modulation of kidney oxidative stress and stress-induced expression related to the inflammatory process in streptozotocin-induced diabetic rats. Groups of hyperglycemic rats were exposed to dietary interventions for 6 weeks with zinc supplementation (5 times and 10 times the normal level). Supplemental-zinc-fed diabetic groups showed a significant reversal of increased kidney weight and creatinine clearance. There was a significant reduction in hyperlipidemic condition along with improved PUFA:SFA ratio in the renal tissue. Expression of the lipid oxidative marker and expression of inflammatory markers, cytokines, fibrosis factors and apoptotic regulatory proteins observed in diabetic kidney were beneficially modulated by zinc supplementation, the ameliorative effect being concomitant with elevated antiapoptosis. There was a significant reduction in advanced glycation, expression of the receptor of the glycated products and oxidative stress markers. Zinc supplementation countered the higher activity and expression of polyol pathway enzymes in the kidney. Overexpression of the glucose transporters, as an adaptation to the increased need for glucose transport in diabetic condition, was minimized by zinc treatment. The pathological abnormalities in the renal architecture of diabetic animals were corrected by zinc intervention. Thus, dietary zinc supplementation has a significant beneficial effect in the control of diabetic nephropathy. This was exerted through a protective influence on oxidative-stress-induced cytokines, inflammatory proliferation and consequent renal injury.  相似文献   

16.
The Wnt gene family, which encodes secreted growth and differentiation factors, has been implicated in kidney organogenesis. The Wnts control both ureteric bud development and signaling, but they also serve as inductive factors to regulate nephrogenesis in the mesenchcymal cells. Several of the Wnt genes are expressed in the developing kidney, and gene knock-out studies have revealed specific developmental functions for these. Consistent with this, changes in Wnt ligands and pathway components are associated with many kidney diseases, including kidney cancers, renal fibrosis, cystic kidney diseases, acute renal failure, diabetic nephropathy and ischaemic injury. It is these associations of the Wnt signaling system with kidney development and kidney diseases that form to topic of this review.Key words: Wnt signaling, tubule induction, ureter development, kidney diseases, kidney cancer  相似文献   

17.
Diabetes mellitus and its complications are a public health problem. Diabetic nephropathy has become the main cause of renal failure, and furthermore is associated with a dramatic increase in cardiovascular risk. Unfortunately, the mechanisms leading to the development and progression of renal injury in diabetes are not yet fully known. There is now evidence that activated innate immunity and inflammation are relevant factors in the pathogenesis of diabetes. Furthermore, different inflammatory molecules, including pro-inflammatory cytokines such as tumor necrosis factor-alpha (TNF-alpha), play a critical role in the development of microvascular diabetic complications, including nephropathy. This review discusses the role of TNF-alpha as a pathogenic factor in renal injury, focusing on diabetic nephropathy, and describes potential treatment strategies based on modulation of TNF-alpha activity.  相似文献   

18.
糖尿病肾病发病分子机制   总被引:4,自引:0,他引:4       下载免费PDF全文
糖尿病肾病(DN)是高血糖所导致的一种主要的微血管并发症。在全世界糖尿病病人中,糖尿病肾病都有着非常高的发病率和致死率。并且在中国,糖尿病肾病已经成为一种常见的导致末期肾衰竭的因素。由于糖尿病肾病患者不断增多,传统的单纯通过控制血糖来控制糖尿病肾病并没有取得理想的效果,因此临床上迫切需要一些新的治疗方法来控制糖尿病肾病的发生和发展。最近的研究表明肾素-血管紧张素-醛固酮系统(RAAS)、蛋白激酶-C(PKC)、还原型烟酰胺腺嘌呤二核苷酸磷酸(NADPH)氧化酶、转化生长因子-β(TGF-β)等都单独的或共同的参与了DN的发生和发展过程。这些通路彼此交叉,十分复杂,因此需要对糖尿病肾病发病分子机制进行全面的综合的理解。这篇文章旨在讨论已发现的与糖尿病肾病密切相关的分子机制以及下调通路。  相似文献   

19.
The major mechanism by which the heart cell regulates intracellular pH is the Na(+)-H(+) exchanger (NHE) with the NHE-1 isoform as the primary cardiac subtype. Although NHE-1 has been implicated in mediating ischemic injury, more recent evidence implicates the antiporter as a key mediator of hypertrophy, which is produced by various autocrine, paracrine and hormonal factors such as endothelin-1, angiotensin II, and alpha(1) adrenoceptor agonists. These agonists activate the antiporter via phosphorylation-dependent processes. NHE-1 inhibition is likely conducive to attenuating the remodelling process after myocardial infarction. These effects probably occur independently of infarct size reduction and involve attenuation of subsequent postinfarction heart failure. As such, inhibitors of NHE offer substantial promise for clinical development that will attenuate acute responses to myocardial postinfarction and chronic pos t infarction, which evolve toward heart failure. The regulation of NHE-1 is discussed as is its potential role in mediating cardiomyocyte hypertrophy.  相似文献   

20.
Podocytes are the key cells involved in protein filtration in the glomerulus. Once proteins appear in the urine when podocytes fail, patients will end with renal failure due to the progression of glomerular damage if no proper treatment is applied. The injury and loss of podocytes can be attributed to diverse factors, such as genetic, immunologic, toxic, or metabolic disorders. Recently, autophagy has emerged as a key mechanism to eliminate the unwanted cytoplasmic materials and to prolong the lifespan of podocytes by alleviating cell damage and stress. Typically, the fundamental function of extracellular vesicles (EVs) is to mediate the intercellular communication. Recent studies have suggested that, EVs, especially exosomes, play a certain role in information transfer by communicating proteins, mRNAs, and microRNAs with recipient cells. Under physiological and pathological conditions, EVs assist in the bioinformation interchange between kidneys and other organs. It is suggested that EVs are related to the pathogenesis of acute kidney injury and chronic kidney disease, including glomerular disease, diabetic nephropathy, renal fibrosis and end-stage renal disease. However, the role of EVs in podocyte autophagy remains unclear so far. Here, this study integrated the existing information about the relevancy, diagnostic value and therapeutic potential of EVs in a variety of podocytes-related diseases. The accumulating evidence highlighted that autophagy played a critical role in the homeostasis of podocytes in glomerular disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号