首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Salmonella enterica subsp. enterica Typhimurium and Salmonella enterica subsp. enterica Derby strains isolated from different seafood were genotyped by PCR-ribotyping and ERIC-PCR assays. This study has ascertained the genetic relatedness among serovars prevalent in tropical seafood. PCR-ribotyping exhibited genetic variation in both Salmonella serovars, and ribotype profile (II) was most predominant, which was observed in 10/18 of Salmonella enterica subsp. enterica Typhimurium and 7/17 Salmonella enterica subsp. enterica Derby isolates. Cluster analysis of ERIC-PCR for Salmonella enterica subsp. enterica Typhimurium strains exhibited nine different banding patterns and four strains showed >95% genetic homology within the cluster pairs. ERIC-PCR produced more genetic variations in Salmonella enterica subsp. enterica Typhimurium; nevertheless, both methods were found to be comparable for Salmonella enterica subsp. enterica Derby isolates. Discrimination index of PCR-ribotyping for Salmonella enterica subsp. enterica Typhimurium isolates was obtained at 0.674 and index value 0.714 was observed for Salmonella enterica subsp. enterica Derby strains. Molecular fingerprinting investigation highlighted the hypothesis of diverse routes of Salmonella contamination in seafood as multiple clones of Salmonella enterica subsp. enterica Typhimurium and Salmonella enterica subsp. enterica Derby were detected in same or different seafood throughout the study period.  相似文献   

2.
The genome of Salmonella enterica subsp. enterica serovar Weltevreden strain 2007-60-3289-1 was sequenced. The genome sequence of this fresh-vegetable isolate from Scandinavia will be useful for the elucidation of plant host factors in comparison to other serovars of S. enterica subsp. enterica.  相似文献   

3.
Multilocus sequence typing of 56 Salmonella enterica subsp. enterica strains isolated from Australian wildlife hosts was performed. The results of population assignment algorithms revealed that the 56 strains could be subdivided into two distinct clades. Strains belonging to the two clades were further distinguished phenotypically, genotypically, and with respect to host distribution.  相似文献   

4.
The study was undertaken to understand effects and survival of S. enterica subspecies enterica serovar Typhimurium (S. Typhimurium), a zoonotic serovar, on maize seed germination and plant growth. All the four strains of S. enterica subspecies enterica serovar Typhimurium significantly reduced germination of maize seeds in sprouting plates as well as in soil. About > or =2.7x10(3) Salmonella cfu ml(-1) of soaking water, while > or =2.7x10(7) Salmonella cfu g(-1) soil were required to significantly inhibit germination of maize. Similar inhibition of germination could be observed using > or = 16 mg of bacteria free Salmonella cell lysate (CL) protein per g of soil or > or =0.5 mg of CL protein per ml of soaking water in sprouting plates. At the constant dose of 3.6x10(7) to 3.8x10(7) Salmonella cfu or 5 mg cell lysate protein ml(-1) of soaking water, four strains of Salmonella significantly reduced germination, however difference between strains was insignificant. After germination too, maize growth was affected both by Salmonella organism and CL with little strain-to-strain variation. All Salmonella persisted in growing plants from 15 to 35 days of plant age and up to 190 days in soil. Maize plants once grown for a week in sterile soil were resistant to invasion of S. enterica subspecies enterica serovar Typhimurium in their leaves even in doses as high as 7.6x10(9) cfu g(-1) of soil. Salmonella persisted better and longer in plants grown from contaminated seed sown in loam soil, but rarely in plants grew in sandy soil. All maize plants had Salmonella in their stumps even after 35 days of sowing irrespective of kind of soil, primary source of infection (soil or seed) and type of S. enterica subspecies enterica serovar Typhimurium strain. The study revealed that Salmonella is not only zoonotic but a phytopathogen also.  相似文献   

5.
The evolving genome of Salmonella enterica serovar Pullorum   总被引:9,自引:0,他引:9       下载免费PDF全文
Salmonella enterica serovar Pullorum is a fowl-adapted bacterial pathogen that causes dysentery (pullorum disease). Host adaptation and special pathogenesis make S. enterica serovar Pullorum an exceptionally good system for studies of bacterial evolution and speciation, especially regarding pathogen-host interactions and the acquisition of pathogenicity. We constructed a genome map of S. enterica serovar Pullorum RKS5078, using I-CeuI, XbaI, AvrII, and SpeI and Tn10 insertions. Pulsed-field gel electrophoresis was employed to separate the large DNA fragments generated by the endonucleases. The genome is 4,930 kb, which is similar to most salmonellas. However, the genome of S. enterica serovar Pullorum RKS5078 is organized very differently from the majority of salmonellas, with three major inversions and one translocation. This extraordinary genome structure was seen in most S. enterica serovar Pullorum strains examined, with different structures in a minority of S. enterica serovar Pullorum strains. We describe the coexistence of different genome structures among the same bacteria as genomic plasticity. Through comparisons with S. enterica serovar Typhimurium, we resolved seven putative insertions and eight deletions ranging in size from 12 to 157 kb. The genomic plasticity seen among S. enterica serovar Pullorum strains supported our hypothesis about its association with bacterial evolution: a large genomic insertion (157 kb in this case) disrupted the genomic balance, and rebalancing by independent recombination events in individual lineages resulted in diverse genome structures. As far as the structural plasticity exists, the S. enterica serovar Pullorum genome will continue evolving to reach a further streamlined and balanced structure.  相似文献   

6.
Salmonella enterica subsp. enterica serotype Senftenberg is an emerging serotype in poultry production which has been found to persist in animals and the farm environment. We report the genome sequence and annotation of the SS209 strain of S. Senftenberg, isolated from a hatchery, which was identified as persistent in broiler chickens.  相似文献   

7.
Salmonella enterica subsp. enterica serotype Enteritidis is one of the major causes of gastroenteritis in humans due to consumption of poultry derivatives. Here we report the whole-genome sequence and annotation, including the virulence plasmid, of S. Enteritidis LA5, which is a chicken isolate used by numerous laboratories in virulence studies.  相似文献   

8.
Randomly amplified polymorphic DNA (RAPD) analysis was performed for the molecular genetic typing of 30 Salmonella enterica subsp. enterica strains isolated from chickens and ducks in Thailand. Six different primers were tested for their discriminatory ability. While some of the primers could only differentiate between the different serovars, the use of multiple primers showed that the RAPD method could also subdivide within a given serovar. The Ready-To-Go RAPD analysis beads used, resulted in reproducible and stable banding patterns. As the RAPD technique is simple, rapid and rather cheap, we suggest that it may be a valuable new tool for studying the molecular genetic epidemiology of S. enterica ssp. enterica, both inter- and intra-serovars.  相似文献   

9.
Extended-spectrum beta-lactamases (ESBLs) are enzymes manifesting considerable hydrolyzing activity on a wide variety of beta-lactam antibiotics including oxyiminocephalosporins and aztreonam. In the study reported here we investigated the types of ESBL produced by Salmonella enterica subsp. enterica strains isolated from clinical samples in the microbiological laboratories of sanitary-epidemiological units in Poland from 1999 to 2004. Among 239 ampicillin-resistant Salmonella enterica subsp. enterica strains isolated from clinical samples in the microbiological laboratories of sanitary-epidemiological units in Poland, 68 isolates of oximino-beta-lactams resistant of 6 serovars were found. There were 16 epidemiological unrelated strains (6 isolates of S. Enteritidis, 5 isolates of S. Thompson, 3 isolates of S. Typhimurium, one-fold isolate of S. Muenster and S. enterica 1,9,12:-:-) coming from different areas of country and 52 epidemiologically related isolates of S. Oranienburg, coming from a prolonged outbreak in an orphanage in Lód?. All the strains were identified as the ESBLs producers. The molecular analysis revealed that most of them expressed CTX-M-3 ESBL which is widely observed in Poland and additional enzyme TEM-1. All tested isolates of S. Thompson and one of three S. Typhimurium isolates were found to produce SHV-5 ESBL. This is the first report regarding the presence of SHV-5 in the genus Salmonella in Poland.  相似文献   

10.
Currently, 2,610 different Salmonella serovars have been described according to the White-Kauffmann-Le Minor scheme. They are routinely differentiated by serotyping, which is based on the antigenic variability at lipopolysaccharide moieties (O antigens), flagellar proteins (H1 and H2 antigens), and capsular polysaccharides (Vi antigens). The aim of this study was to evaluate the potential of matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry for rapid screening and identification of epidemiologically important Salmonella enterica subsp. enterica serovars based on specific sets of serovar-identifying biomarker ions. By analyzing 913 Salmonella enterica subsp. enterica strains representing 89 different serovars using MALDI-TOF mass spectrometry, several potentially serovar-identifying biomarker ions were selected. Based on a combination of genus-, species-, subspecies-, and serovar-identifying biomarker ions, a decision tree classification algorithm was derived for the rapid identification of the five most frequently isolated Salmonella enterica serovars, Enteritidis, Typhimurium/4,[5],12:i:-, Virchow, Infantis, and Hadar. Additionally, sets of potentially serovar-identifying biomarker ions were detected for other epidemiologically interesting serovars, such as Choleraesuis, Heidelberg, and Gallinarum. Furthermore, by using a bioinformatic approach, sequence variations corresponding to single or multiple amino acid exchanges in several biomarker proteins were tentatively assigned. The inclusivity and exclusivity of the specific sets of serovar-identifying biomarker ions for the top 5 serovars were almost 100%. This study shows that whole-cell MALDI-TOF mass spectrometry can be a rapid method for prescreening S. enterica subsp. enterica isolates to identify epidemiologically important serovars and to reduce sample numbers that have to be subsequently analyzed using conventional serotyping by slide agglutination techniques.  相似文献   

11.
Molecular Biology Reports - In the era of emerging antibiotic resistance, Salmonella enterica subsp. enterica serovar Typhi the causative agent of typhoid, is a threat for healthcare systems in...  相似文献   

12.
Salmonella enterica is a bacterial pathogen that causes enteric fever and gastroenteritis in humans and animals. Although its population structure was long described as clonal, based on high linkage disequilibrium between loci typed by enzyme electrophoresis, recent examination of gene sequences has revealed that recombination plays an important evolutionary role. We sequenced around 10% of the core genome of 114 isolates of enterica using a resequencing microarray. Application of two different analysis methods (Structure and ClonalFrame) to our genomic data allowed us to define five clear lineages within S. enterica subspecies enterica, one of which is five times older than the other four and two thirds of the age of the whole subspecies. We show that some of these lineages display more evidence of recombination than others. We also demonstrate that some level of sexual isolation exists between the lineages, so that recombination has occurred predominantly between members of the same lineage. This pattern of recombination is compatible with expectations from the previously described ecological structuring of the enterica population as well as mechanistic barriers to recombination observed in laboratory experiments. In spite of their relatively low level of genetic differentiation, these lineages might therefore represent incipient species.  相似文献   

13.
The ability of salmonellae to become internalized and to survive and replicate in amoebae was evaluated by using three separate serovars of Salmonella enterica and five different isolates of axenic Acanthamoeba spp. In gentamicin protection assays, Salmonella enterica serovar Dublin was internalized more efficiently than Salmonella enterica serovar Enteritidis or Salmonella enterica serovar Typhimurium in all of the amoeba isolates tested. The bacteria appeared to be most efficiently internalized by Acanthamoeba rhysodes. Variations in bacterial growth conditions affected internalization efficiency, but this effect was not altered by inactivation of hilA, a key regulator in the expression of the invasion-associated Salmonella pathogenicity island 1. Microscopy of infected A. rhysodes revealed that S. enterica resided within vacuoles. Prolonged incubation resulted in a loss of intracellular bacteria associated with morphological changes and loss of amoebae. In part, these alterations were associated with hilA and the Salmonella virulence plasmid. The data show that Acanthamoeba spp. can differentiate between different serovars of salmonellae and that internalization is associated with cytotoxic effects mediated by defined Salmonella virulence loci.  相似文献   

14.
Australian isolates (79) of Salmonella enterica subsp. enterica serovar Virchow ( Salmonella Virchow) were characterized by phage typing. Thirteen phage types were identified, of which phage type (PT) 8, representing 54 of 79 isolates, was predominant, as it had been in England and Wales up to 1994 when it was replaced by PT26. Other phage types identified in Australia were distinct from those observed in England and Wales. This suggests that PT8 may be a global phage type, while others may be distinct to particular geographical regions.  相似文献   

15.
The O-antigen is a part of the lipopolysaccharide molecule present in the outer membrane of Gram-negative bacteria, and is essential for the full function of the microorganisms. Salmonella enterica and Escherichia coli are taxonomically closely related species. In this study, the O-antigen structures of S. enterica O16 and O38 and E. coli O11 were determined. Salmonella enterica O38 and E. coli O21 were found to have identical O-antigen structures, whereas S. enterica O16 and E. coli O11 had closely related structures, differing only in the presence of a lateral glucose residue and O-acetylation of a mannose residue in the former. The O-antigen gene clusters of S. enterica O16 and O38 and E. coli O11 were sequenced and analyzed together with that of E. coli O21 retrieved from the GenBank. Each S. enterica/E. coli pair was found to contain the same set of genes organized in the same manner and to share 56-78% overall DNA identity. These data suggest that the O-antigen gene clusters of each pair studied originated from a common ancestor. Thus, it has become evident that in the past, the degree of relatedness between the O-antigens of S. enterica and E. coli was underestimated.  相似文献   

16.
Salmonella enterica serovar Enteritidis has remained a major food-borne pathogen in humans. We isolated a virulent S. enterica serovar Enteritidis bacteriophage, SE2, which belongs to the family Siphoviridae. Phage SE2 could lyse S. enterica serovar Enteritidis PT-4, and its virulence was maintained even at ambient temperature. The genomic sequence of phage SE2 was composed of 43,221 bp with close similarity to those of Salmonella phage SETP3 and Salmonella phage SS3e. The strong and stable lytic activity of this phage might enable its use as a therapeutic or biocontrol agent against S. enterica serovar Enteritidis.  相似文献   

17.
18.
AIM: Application of MALDI-TOF MS for characterization of strains of Salmonella enterica subsp. enterica. METHODS AND RESULTS: Whole cells were analysed by MALDI-TOF MS. Spectra with a maximum of 500 mass peaks between (m/z) 0 and 25000 were examined for consensus peaks manually and by a computer software algorithm. Consensus peaks were observed by both methods for spectra of Salmonella enterica serovars Derby, Hadar, Virchow, Anatum, Typhimurium and Enteritidis. CONCLUSIONS: Differences in numbers of consensus peaks in spectra obtained by manual and computer comparison indicated that development of the software involving statistical analysis of peak accuracy is necessary. SIGNIFICANCE AND IMPACT OF THE STUDY: Development of an analysis system for peak profiles in whole cell MALDI-TOF MS spectra to enable intra and interlaboratory comparison.  相似文献   

19.
Free-range geese were sampled longitudinally and Salmonella isolates characterized to reveal highly diverging colonization dynamics. One flock was intermittently colonized with one strain of Salmonella enterica serovar Enteritidis from 2 weeks of age, while in another, S. enterica serovar Mbandaka appeared after 9 weeks, without dissemination but with multiple serovars appearing at later stages.  相似文献   

20.
Salmonella enterica consists of over 2,000 serovars that are major causes of morbidity and mortality associated with contaminated food. Despite similarities among serovars of Salmonella enterica, many demonstrate unique host specificities, epidemiological characteristics, and clinical manifestations. One of the unique epidemiological characteristics of the serovar Enteritidis is that it is the only bacterium routinely transmitted to humans through intact chicken eggs. Therefore, Salmonella enterica serovar Enteritidis must be able to persist inside chicken eggs to be transmitted to humans, and its survival in egg is important for its transmission to the human population. The ability of Salmonella enterica serovar Enteritidis to survive in and transmit through eggs may have contributed to its drastically increased prevalence in the 1980s and 1990s. In the present study, using transposon-mediated mutagenesis, we have identified genes important for the association of Salmonella enterica serovar Enteritidis with chicken eggs. Our results indicate that genes involved in cell wall structural and functional integrity, and nucleic acid and amino acid metabolism are important for Salmonella enterica serovar Enteritidis to persist in egg albumen. Two regions unique to Salmonella enterica serovar Enteritidis were also identified, one of which enhanced the survival of a Salmonella enterica serovar Typhimurium isolate in egg albumen. The implication of our results to the serovar specificity of Salmonella enterica is also explored in the present study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号