首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study we develop a sequence-specific precipitation separation system of oligonucleotide (ODN) using a conjugate between poly(N-isopropylacrylamide) (PNIPAM) and ODN. PNIPAM is known as a thermoresponsive polymer and dehydrates to precipitate above its phase transition temperature in an aqueous milieu. The principal advantage of this separation system using the conjugate is that the hybridization reaction between the conjugate and oligonucleotide is conducted in homogeneous solution. The conjugate was prepared by copolymerization between N-isopropylacrylamide and a vinyl-derivatized (dT)(8). The obtained conjugate efficiently precipitated (dA)(8) from solution when the solution contained more than 1.5 M NaCl. The conjugate containing 3 nmol of (dT)(8) residue was able to precipitate 1.4 nmol of (dA)(8), suggesting that the (dT)(8) residue of the conjugate formed a triple helix with (dA)(8). From an equimolar mixture of (dA)(8) and its one point mutant, the conjugate selectively precipitated (dA)(8): the highest selectivity was obtained for the isolation of (dA)(8) from the mixture consisting of (dA)(4)dT(dA)(3) and (dA)(8). When the conjugate was applied for the precipitation of five oligo(dA)s having different chain lengths, the longer oligo(dA)s tended to be precipitated by the conjugate more efficiently than the shorter ones. The conjugate could be used repeatedly for precipitation of (dA)(8) without showing any loss in precipitation efficiency.  相似文献   

2.
UV absorption and fluorescence techniques with a thermal denaturation procedure were used in studies of the anchorage of an oligonucleotide hybridization by a covalently tethered nucleoside analogue of an intercalating imidazophenazine derivative (Pzn). The formation by the (dT)(10)Pzn conjugate of the duplex complex with (dA)(15) and the triplex complex with (dA)(15) or poly(dA).poly(dT) was studied in buffered solutions with 0.11 and/or 1M sodium ions at the oligomer strand concentration of 10 microM. Because of the Pzn emission sensitivity to the interaction with adenine bases, a fluorescence technique was found to be effective in the detection of melting transitions. The attached Pzn substantially enhanced the thermal stability of complexes formed by (dT)(10) because of the intercalation mechanism, which increased the temperature of half-dissociation of the duplex by 10-12 degrees C and of the triplexes by approximately 13 degrees C. With the assumption of a two-state model of transition, the thermodynamic parameters for duplex formations were derived. The investigated variant of conjugation has a certain advantage over the widely used attachment via a flexible linker, consisting of a predetermined location of the Pzn chromophore in target sequences that makes it useful as a fluorescent reporter of the hybridization correctness. Molecular modeling was used to construct the geometries of the intercalation sites that turned out to be in conformity with the behavior of the Pzn fluorescence.  相似文献   

3.
Transplantation of islets of Langerhans (islets) has been proposed as a safe, effective approach to treating patients with insulin-dependent diabetes mellitus (type I diabetes). It has been reported, however, that many islets are lost in the early phase after intraportal transplantation by instant blood coagulation-mediated inflammatory reactions. In this study, DNA hybridization was applied to conjugate the fibrinolytic enzyme urokinase on the islet surface. We synthesized amphiphilic polymers, PEG-lipids carrying oligo(dT)(20) (oligo(dT)(20)-PEG-lipid; PEG MW = 5000) and urokinase (UK) carrying oligo(dA)(20). The oligo(dT)(20)-PEG-lipid was spontaneously incorporated into the cell membrane through interactions between the hydrophobic parts of the PEG-lipids and the lipid bilayer, and UK was conjugated on the cell surface through DNA hybridization between oligo(dT)(20) on the cell and complementary oligo(dA)(20) on the UK. The activity of UK was maintained on the islet surface. The surface modification with UK did not influence islet morphology or islet ability to secrete insulin in response to changes in glucose concentration. No practical volume increase was observed with our method, indicating that islet graft loss could be suppressed at the early stage of intraportal islet transplantation.  相似文献   

4.
Carboxyalkyl derivative of the intercalating agent imidazo[4,5-b]phenazine was used for the postsynthetic oligonucleotide modification. Model pentadecathymidylate-imidazophenazine conjugate was prepared from 5′-aminoalkyl-modified (dT)15 by using phosphonium coupling reagent BOP in the presence of 1-hydroxybenzotriazole. Spectral-fluorescent properties of the conjugate were studied. The attachment of the dye was found to increase the thermal stability of (dT)15 duplex with poly(dA) by more than 4°C, probably by the intercalation mechanism.  相似文献   

5.
Replication protein A (RPA) is a single-stranded DNA-binding protein which plays a role in DNA replication, repair, and recombination. We used gel mobility shift, super gel mobility shift, and Western blot to determine the fate of RPA during Hoechst 33342-induced apoptosis in HL-60 cells. Multiple bands were detected by gel mobility shift after the incubation of single-stranded gamma-(32)P-labeled oligo(dT)(30) with the nuclear extracts of HL-60 cells. Super gel mobility shift results indicated that only the highest molecular weight protein/oligo(dT)(30) complexes bound with anti-human RPA-32 and/or anti-human RPA-70 antibodies forming RPA/oligo(dT)(30) complexes. After the treatment of HL-60 cells with 15 microg/ml Hoechst 33342 for 3 h, the bands of RPA/oligo(dT)(30) complexes were decreased and bands of the lowest molecular weight protein/oligo(dT)(30) complexes were significantly increased when compared to the control group. These low-molecular-weight bands did not bind with RPA-32 or RPA-70 antibodies. Western blotting results showed that both RPA-32 and RPA-70 were decreased significantly in a time-dependent manner after 1 h of incubation with Hoechst 33342. These results demonstrate that in HL-60 cells, Hoechst 33342-induced apoptosis is associated with a rapid loss of the binding capacity of RPA to oligo(dT)(30) as well as immunoactive RPA-70 and RPA-32.  相似文献   

6.
G F Gerard 《Biochemistry》1981,20(2):256-265
The mechanism of action of the ribonuclease H (RNase H) activity associated with Moloney murine leukemia virus RNA-directed DNA polymerase (RNase H I) and the two-subunit (alpha beta) form of avian myeloblastosis virus DNA polymerase were compared by utilizing the model substrate (A)n.(dT)n and polyacrylamide gel electrophoresis in 7 M urea to analyze digestion products. Examination on 25% polyacrylamide gels revealed that a larger proportion of the RNase H I oligonucleotide products generated by limited digestion of [3H](A)(1100).(dT)n were acid insoluble (15-26 nucleotides long) than acid soluble (less than 15 nucleotides long), while the opposite was true for products generated by alpha beta RNase H. RNase H I was capable of attacking RNA in RNA.DNA in the 5' to 3' and 3' to 5' directions, as demonstrated by the use of [3H,3'- or 5'-32P](A)(380).(dT)n and cellulose--[3H](A)n.(dT)n. Both RNase H I and alpha beta RNase H degraded [3H]-(A)n.(dT)n with a partially processive mechanism, based upon classical substrate competition experiments and analyses of the kinetics of degradation of [3H,3'- or 5'-32P](A)(380).(dT)n. That is, both enzymes remain bound to a RNA.DNA substrate through a finite number of hydrolytic events but dissociate before the RNA is completely degraded. Both RNase H I and alpha beta RNase H were capable of degrading [14C](A)n in [3H](C)n-[14C](A)n-[32P](dA)n.(dT)n, suggesting that retroviral RNase H is capable of removing the tRNA primer at the 5' terminus of minus strand DNA at the appropriate time during retroviral DNA synthesis in vitro.  相似文献   

7.
A novel application of a single stranded (ss) oligonucleotide as an active component of polymeric membrane in an ion-selective electrode (ISE) is described. The original oligonucleotides, oligo(dA)(15), modified by cholesterol, triphenylmethyl and hexadecyl derivatives, were immobilized into poly(vinyl chloride) (PVC) membrane using extraction protocol. In parallel, the adsorption protocol was used to immobilize unmodified oligo(dA)(15) on the PVC membrane based on tridodecylmethyammonium chloride (TDDMA(+)Cl(-)). Immobilization of ss oligonucleotide probe through spacer was more effective for the potentiometric detection of the hybridization between complementary oligonucleotides. It was found that cholesterol-oligo(dA)(15) modified membranes were sensitive toward complementary oligo(dT)(15) in the concentration range 2-80 nM at pH 7. An explanation for the detection mechanism is proposed.  相似文献   

8.
A streptavidin-biotin system was utilized to prepare an antibody-polyadenylic acid conjugate which was subsequently attached to commercially available magnetic beads, Dynabeads oligo(dT)25. Biotinylated polyadenylic acid was combined with streptavidin and the resulting polyadenylic acid-streptavidin was conjugated with an antibody-biotin derivative. The immobilized antibody-polyadenylic acid conjugate was separated from the reaction mixture by hybridization with complementary oligonucleotide immobilized on the surface of Dynabeads oligo(dT)25. The immobilized antibody-polyadenylic acid can be released from the carrier, utilizing low-ionic-strength buffers. The system is intended to be utilized in cell sorting, using immobilized antibodies against cell surface antigens. Dissociation of antibody-containing conjugate from magnetic beads is essential for the isolation of viable cells via positive cell sorting.  相似文献   

9.
Tethering an ethylene diamine linker to the 5' terminus of an oligothymidine sequence provides a site for complexation with K(2)PtCl(4). Due to the low reactivity of dT toward a platinum source, we chose dT(8) and dT(15) as our initial synthetic targets for platination. Post-synthetic reaction of the platinum reagent with the diamino oligothymidine generates the diamino dichloro platinum-DNA conjugate that can be used for DNA duplex targeting by oligodeoxyncleotide-mediated triplex formation. The dT(8) sequence is not sufficiently long to facilitate triplex formation and Pt-cross-linking, whereas with a dT(15) sequence cross-linking between the third strand and the duplex occurs exclusively with the duplex target strand directly involved in triplex formation. No examples of cross-linking to the complementary target strand, or of cross-linking to both target strands are observed. Most efficient cross-linking occurs when the dinucleotide d(GpG) is present in the target strand and no cross-linking occurs with the corresponding 7-deazaG dinucleotide target. Cross-linking is also observed when dC or dA residues are present in the target strand, or even with a single dG residue, but it is not observed in any cases to dT residues. Triplex formation provides the ability to target specific sequences of double-stranded DNA and the orientational control arising from triplex formation is sufficient to alter the binding preferences of platinum. Conjugates of the type described here offer the potential of delivering a platinum complex to a specific DNA site.  相似文献   

10.
Kozlov AG  Lohman TM 《Biochemistry》2002,41(19):6032-6044
We have examined the kinetic mechanism for binding of the homotetrameric Escherichia coliSSB protein to single-stranded oligodeoxynucleotides [(dT)(70) and (dT)(35)] under conditions that favor the formation of a fully wrapped ssDNA complex in which all four subunits interact with DNA. Under these conditions, a so-called (SSB)(65) complex is formed in which either one molecule of (dT)(70) or two molecules of (dT)(35) bind per tetramer. Stopped-flow studies monitoring quenching of the intrinsic SSB Trp fluorescence were used to examine the initial binding step. To examine the kinetics of ssDNA wrapping, we used a single-stranded oligodeoxythymidylate, (dT)(66), that was labeled on its 3'-end with a fluorescent donor (Cy3) and on its 5'-end with a fluorescent acceptor (Cy5). Formation of the fully wrapped structure was accompanied by extensive fluorescence resonance energy transfer (FRET) from Cy3 to Cy5 since the two ends of (dT)(66) are in close proximity in the fully wrapped complex. Our results indicate that initial ssDNA binding to the tetramer is very rapid, with a bimolecular rate constant, k(1,app), of nearly 10(9) M(-1) s(-1) in the limit of low salt concentration (<0.2 M NaCl, pH 8.1, 25.0 degrees C), whereas the rate of dissociation is very low at all salt concentrations that were examined (20 mM to 2 M NaCl or NaBr). However, the rate of initial binding and the rate of formation of the fully wrapped complex are identical, indicating that the rate of wrapping of the ssDNA around the SSB tetramer is very rapid, with a lower limit rate of 700 s(-1). The implications of this rapid binding and wrapping reaction are discussed.  相似文献   

11.
We examined the equilibrium binding of Escherichia coli RecBC and RecBCD helicases to duplex DNA ends possessing pre-existing single-stranded (ss) DNA ((dT)(n)) tails varying in length (n=0 to 20 nucleotides) in order to determine the contributions of both the 3' and 5' single strands to the energetics of complex formation. Protein binding was monitored by the fluorescence enhancement of a reference DNA labeled at its end with a Cy3 fluorophore. Binding to unlabeled DNA was examined by competition titrations with the Cy3-labeled reference DNA. The affinities of both RecBC and RecBCD increase as the 3'-(dT)(n) tail length increases from zero to six nucleotides, but then decrease dramatically as the 3'-(dT)(n) tail length increases from six to 20 nucleotides. Isothermal titration calorimetry experiments with RecBC show that the binding enthalpy is negative and increases in magnitude with increasing 3'-(dT)(n) tail length up to n=6 nucleotides, but remains constant for n > or =6. Hence, the decrease in binding affinity for 3'-(dT)(n) tail lengths with n > or =6 is due to an unfavorable entropic contribution. RecBC binds optimally to duplex DNA with (dT)6 tails on both the 3' and 5'-ends while RecBCD prefers duplex DNA with 3'-(dT)6 and 5'-(dT)10 tails. These data suggest that both RecBC and RecBCD helicases can destabilize or "melt out" six base-pairs upon binding to a blunt DNA duplex end in the absence of ATP. These results also provide the first evidence that a loop in the 3'-ssDNA tail can form upon binding of RecBC or RecBCD with DNA duplexes containing a pre-formed 3'-ssDNA tail with n > or =6 nucleotides. Such loops may be representative of those hypothesized to form upon interaction of a Chi site contained within the unwound 3' ss-DNA tail with the RecC subunit during DNA unwinding.  相似文献   

12.
The ability of non-ionic methoxyethylphosphoramidate (PNHME) alpha-oligodeoxynucleotides (ODNs), alpha dT(15) and alpha dCT dodecamer, to form triplexes with their double-stranded DNA targets was evaluated. Thermal stability of the formed complexes was studied by UV thermal denaturation and the data showed that these PNHME alpha-ODNs formed much more stable triplexes than phosphodiester (PO) beta-ODNs did (Delta Tm = + 20 degrees C for alpha dCT PNHME). In addition, FTIR spectroscopy was used to determine the base pairing and the strand orientations of the triplexes formed by alpha dT(15) PNHME compared to phosphodiester ODNs with beta or alpha anomeric configuration. While beta dT(15) PO failed to form a triplex with a long beta dA(n) x beta dT(n) duplex, the Tm of the Hoogsteen part of the triplex formed by alpha dT(15) PNHME reached 40 degrees C. Moreover alpha dT(15) PNHME displaced the beta dT(15) strand of a shorter beta dA(15) x beta dT(15) duplex. The alpha dCT PNHME and alpha dT(15) PNHME third strands were found antiparallel in contrast to alpha dT(15) PO which is parallel to the purine strand of their duplex target. The uniform preferential Hoogsteen pairing of the nucleotides alpha dT and alpha dC combining both replacements might contribute to the improve stability of the triplexes.  相似文献   

13.
Large enhancement in the luminescence intensity of the Delta- and Lambda-Ru(phenanthroline)(2)dipyrido[3,2-a:2',3'-c]phenazine](2+) ([Ru(phen)(2)DPPZ](2+)) complexes upon their association with single stranded poly(dA) and poly(dT) is reported in this work. As the mixing ratio ([[Ru(phen)(2)DPPZ](2+)]/[DNA base]) increases, the luminescence intensity increase in a sigmoidal manner, indicating that the enhancement involves some cooperativity. At a high mixing ratio, the luminescence properties are affected by the nature of the DNA bases and not by the absolute configuration of the [Ru(phen)(2)DPPZ](2+) complex, indicating that the single stranded poly(dA) and poly(dT) do not recognize the configuration of the metal complex. In the case of the Lambda-[Ru(phen)(2)DPPZ](2+)-poly(dT) complex, the manner of the enhancement is somewhat different from the other Ru(II) complex-polynucelotide combinations: the luminescence intensity reached a maximum at an intermediate mixing ratio of 0.32, and gradually decreased as the mixing ratio increased. In contrast to other complexes at high mixing ratios, an upward bending curve was found in the Stern-Volmer plot, which indicates that the micro-environment of the Lambda-[Ru(phen)(2)DPPZ](2+) is heterogeneous. In the Delta-[Ru(phen)(2)DPPZ](2+)-poly(dT) complex case, formation of this highly luminescent species at an intermediate mixing ratio is far less effective.  相似文献   

14.
15.
We have labeled the primer binding domain of HIV1-RT with 5'-32P-labeled (dT)15 primer using ultraviolet light energy. The specificity of the primer cross-linking to HIV1-RT was demonstrated by competition experiments. Both synthetic and natural primers, e.g., p(dA)15, p(dC)15, and tRNA(Lys), inhibit p(dT)15 binding and cross-linking to the enzyme. The observed binding and cross-linking of the primer to the enzyme were further shown to be functionally significant by the observation that tRNA(Lys) inhibits the polymerase activity on poly(rA).(dT)15 template-primer as well as the cross-linking of p(dT)15 to the enzyme to a similar extent. At an enzyme to p(dT)15 ratio of 1:3, about 15% of the enzyme can be cross-linked to the primer. To identify the domain cross-linked to (dT)15, tryptic peptides were generated and purified by a combination of HPLC on a C-18 reverse-phase column and DEAE-Sephadex chromatography. A single peptide cross-linked to p(dT)15 was identified. This peptide corresponded to amino acid residues 288-307 in the primary sequence of HIV1-RT as judged by amino acid composition and sequence analyses. Further, Leu(289)-Thr(290) and Leu(295)-Thr(296) of HIV1-RT appear to be the probable sites of cross-linking to the primer p(dT)15.  相似文献   

16.
The conjugate between oligo(dT)16 and thermo-responsive polymer, poly(N-isopropylacrylamide), was prepared for isolation of poly(A)+ RNA from total RNA. The hybridization reaction between the conjugate and poly(A) (average length: 320 base) was equilibrated in 10 min, and all the poly(A) (16 nmol base for 24 nmol base of conjugate) was precipitated when raising the solution temperature to 35 degrees C. The precipitate was dissolved in water, and poly(A) was dissociated from the conjugate by heating to 65 degrees C. This separation system was successfully applied to the isolation of poly(A)+ RNA from total RNA.  相似文献   

17.
Non-denaturing gel retardation assay, DNA melting experiments and FTIR spectroscopy were used to characterize the triple helix formed by a 15mer 2'-deoxythymidylate with N3'-->P5'phosphoramidate linkages with its target sequence. The results indicate that: (i) the pentadecadeoxythymidylate with phosphoramidate linkages [dT15(np)] is highly potent to form a triple helix with a dT15*dA15target duplex through Hoogsteenbase-pairing; (ii) it forms a dT15(np)*dA15xdT15(np) triplex with the single-stranded oligo-2'-deoxyadenylate (dA15) without detectable double-helical intermediate; (iii) it does not only form a triple helix on the dT15*dA15target duplex, but also partially displaces the dT15 strand from the dT15*dA15duplex to form a dT15(np)*dA15xdT15(np) complex.  相似文献   

18.
19.
The presence of A(n) and A(n)T(n) tracts in double-helical sequences perturbs the structural properties of DNA molecules, resulting in the formation of an alternate conformation to standard B-DNA known as B'-DNA. Evidence for a transition occurring prior to duplex melting in molecules containing A(n) tracts was previously detected by circular dichroism (CD) and calorimetric studies. This premelting transition was attributed to a conformational change from B'- to B-DNA. Structural features of A(n) and A(n)T(n) tracts revealed by X-ray crystallography include a large degree of propeller twisting of adenine bases, narrowed minor grooves, and the formation of three-centered H-bonds between dA and dT bases. We report UV resonance Raman (UVRR) and CD spectroscopic studies of two related DNA dodecamer duplexes, d(CGCAAATTTGCG)(2) (A(3)T(3)) and d(CGCATATATGCG)(2) [(AT)(3)]. These studies address the presence of three-centered H-bonds in the B' conformation and gauge the impact of these putative H-bonds on the structural and thermodynamic properties of the A(3)T(3) duplex. UVRR and CD spectra reveal that the premelting transition is only observed for the A(3)T(3) duplex, is primarily localized to the dA and dT bases, and is associated with base stacking interactions. Spectroscopic changes associated with the premelting transition are not readily detectable for the sugar-phosphate backbone or the cytosine and guanosine bases. The temperature-dependent concerted frequency shifts of dA exocyclic NH(2) and dT C4=O vibrational modes suggest that the A(3)T(3) duplex forms three-centered hydrogen bonds at low temperatures, while the (AT)(3) duplex does not. The enthalpy of this H-bond, estimated from the thermally induced frequency shift of the dT C4=O vibrational mode, is approximately 1.9 kJ/mol or 0.46 kcal/mol.  相似文献   

20.
A A Komissarov  S L Deutscher 《Biochemistry》1999,38(44):14631-14637
The recombinant anti-ssDNA Fab, DNA-1, and 16 heavy chain complementarity determining region 3 (HCDR3) mutant variants were selected for thermodynamic characterization of ssDNA binding. The affinity of Fab to (dT)(15) under different temperatures and cation concentrations was measured by equilibrium fluorescence quenching titration. Changes in the standard Gibbs free binding energy (DeltaG degrees ), enthalpy (DeltaH degrees ), entropy (DeltaS degrees ), and the number of ionic pairs (Z) formed upon interaction were determined. All Fab possessed an enthalpic nature of interaction with ssDNA, that was opposite to the previously reported entropically driven binding to dsDNA [Tanha, J., and Lee, J. S. (1997) Nucleic Acids Res. 25, 1442-1449]. The contribution of separate residues of HCDR3 to ssDNA interaction was investigated. Analysis of the changes in DeltaH degrees and TDeltaS degrees, induced by substitutions in HCDR3, revealed a complete entropy/enthalpy compensation. Mutations R98A and D108A at the ends of the HCDR3 loop produced increases in TDeltaS degrees ( )()by 10.4 and 15.9 kcal/mol, respectively. Substitution of proline for arginine at the top of HCDR3 resulted in a new electrostatic contact with (dT)(15). The observed linear correlation of Z and DeltaG degrees ( )()of nonelectrostatic interactions (DeltaG degrees (nonel)) at the anti-ssDNA combining site was used for the estimation of the specific DeltaG degrees (nonel) [-20 to -25 cal/(mol.A(2))], the average contact area (450-550 A(2)), the maximal Z (6-7), and the limit in affinity under standard cation concentrations [(0.5-1) x 10(8) M(-)(1)] for this family of Fab. Results suggested that rational engineering of HCDR3 could be utilized to control the affinity and likely the specificity of Ab-DNA interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号