首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Studies were conducted in rats to determine if the increase in lymph triacylglycerol output on pre-feeding a 20% glyceryltrioleate diet (Mansbach, C.M., II and Arnold, A. (1986) Am. J. Physiol. 251, G263-269) was due to an increase in phosphatidylcholine output into bile. Rats who were fed chow or pre-fed the 20% fat diet were equipped with biliary and duodenal cannulas and infused with glucose-saline while bile was collected hourly. The next day a taurocholate-glyceryltrioleate infusion was given and bile collected for 5 h. Bile flow, bile acid, phosphatidylcholine and cholesterol output were greater in the chow fed group than controls during the 6 h of the glucose saline period. Outputs were low overnight. During the taurocholate-glyceryltrioleate infusion, bile flow, bile acid, phosphatidylcholine and cholesterol output were all greater in the fat pre-fed group than the chow fed controls. We conclude that fat pre-feeding profoundly influences biliary composition and flow. The 2-fold increase in biliary phosphatidylcholine output during duodenal lipid infusion offers a potential explanation for the increased delivery of triacylglycerol into the lymph in rats on a similar fat pre-feeding program.  相似文献   

2.
Intestinal lipid absorption is associated with marked increases in the synthesis and secretion of apolipoprotein A-IV (apoA-IV) by the small intestine. Whether the increased intestinal apoA-IV synthesis and secretion results from increased fat uptake, increased cellular triglyceride (TG) content, or increased secretion of TG-rich lipoproteins by the enterocytes is unknown. Previous work from this laboratory has shown that a hydrophobic surfactant, Pluronic L-81 (L-81), is a potent inhibitor of intestinal formation of chylomicrons (CM), without reducing fat uptake or re-synthesis to TG. Furthermore, this inhibition can be reversed quickly by the cessation of L-81 infusion. Thus L-81 offers a unique opportunity to study the relationship between lymphatic TG, apoA-I and A-IV secretion. In this study, we studied the lymphatic transport of TG, apoA-I, and apoA-IV during both the inhibitory phase (L-81 infused together with lipid) and the subsequent unblocking phase (saline infusion). Two groups of lymph fistula rats were used, the control and the experimental rats. In the experimental rats, a phosphate-buffered taurocholate-stabilized emulsion containing 40 mumol [3H]triolein, 7.8 mumol of phosphatidylcholine, and 1 mg L-81 per 3 ml was infused at 3 ml/h for 8 h. This was then replaced by glucose-saline infusion for an additional 12 h. The control rats received the same lipid emulsion as the experimental rats, but without L-81 added, for 8 h. Lymph lipid was determined both by radioactivity and by glyceride-glycerol determination, and the apoA-I and apoA-IV concentrations were determined by rocket electroimmunophoresis assay. L-81 inhibited the rise in lymphatic lipid and apoA-IV output in the experimental rats after the beginning of lipid + L-81 infusion. Upon cessation of L-81 infusion, the mucosal lipid accumulated as a result of L-81 treatment was rapidly cleared into lymph as CM. This was associated with a marked increase in apoA-IV output; the maximal output was about 3 times that of the fasting level. There was a time lag of 4-5 h between the peak lymph lipid output and the peak lymph apoA-IV output during the unblocking phase in the experimental rats. There was also a comparable time lag between the maximal lipid and apoA-IV outputs in the control animals. Incorporation studies using [3H]leucine showed that apoA-IV synthesis was not stimulated during lipid + L-81 infusion, perhaps explaining the lack of increase in lymphatic A-IV secretion.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
Rats with acquired immunity to the intestinal nematode Nippostrongylus brasiliensis develop anaphylaxis after i.v. challenge with an extract of worm antigen, with the small intestine being the primary shock organ. In the present study we have shown that these events were associated with significant elevations in intestinal and plasma concentrations of leukotrienes LTB4 and LTC4. The changes were observed in immune rats over 10-, 30-, and 60-min intervals after antigen challenge but were absent in control animals. These lipid mediators were identified both in the perfusate of the gut lumen, which contained large quantities of mucus, and in homogenates of intestinal tissue. In addition, significant elevations in the concentrations of plasma LTB4 and LTC4 were detected in immune challenged rats but not in controls. Leukotrienes were identified by radioimmunoassay and validated by reverse-phase high-performance liquid chromatography (RP-HPLC). RP-HPLC analysis of SRS-A leukotrienes in immune challenged rats indicated that LTC4 was the predominant sulfidopeptide leukotriene at 10 min, with almost complete biodegradation to LTD4 and LTE4 within 30 min. Infected rats also had significant increases in the numbers of intestinal mucosal mast cells (MMC) and eosinophils. Evidence of MMC activation during anaphylaxis was obtained by showing significant elevations of intestinal and systemic concentrations of their exclusive serine enzyme, rat mast cell proteinase II (RMCPII). Thus, the release of substantial amounts of leukotrienes in the gut and plasma of N. brasiliensis-primed rats after interaction with worm antigens suggests that these potent mediators may play an important role in allergic-type hypersensitivity known to occur during immune reactions against parasitic helminths.  相似文献   

4.
An intestinal lipodystrophy induced by dietary fat in female Mongolian gerbils (Meriones unguiculatus) was reversed to normal by myo-inositol given in the diet or by injection within 1-4 days. An increase in plasma chylomicron and lipid concentrations was observed before the occurrence of rapid disappearance of accumulated lipids from the intestine. Dietary myo-inositol also caused an increase in triacylglycerol release from everted gut sacs. Thus, myo-inositol might act on the intestine to stimulate the production and secretion of chylomicrons, travelling via the lymphatic pathway into the bloodstream. The activity of pH 9.0 microsomal lipase (EC 3.1.1.3) of gerbil intestine was decreased due to myo-inositol deficiency. The lowered activity could be restored to high levels by feeding of injecting myo-inositol in vivo. A time-course study during intestinal recovery indicates that the increase in microsomal lipase activity correlated with the rapid lipid removal phase of the intestine, but not the initial increase in plasma chylomicron and triacylglycerol concentrations.  相似文献   

5.
We investigated whether chylomicron formation is involved in the dietary phosphatidylcholine (PC)-induced increase in triglyceride (TG) absorption using an inhibitor of chylomicron formation, pluronic L-81 (L-81). In rats, cannulas were implanted into the duodenum (exps. 1 and 2) and the mesenteric lymph duct (exp. 1), and an emulsified lipid solution containing the test lipids (soybean oil, SO or soybean oil plus phosphatidylcholine, LE) with or without L-81 was infused through a duodenal cannula at a rate 3 ml/h for 2 h, and followed by infusion of a glucose–NaCl solution for 2 h. Mesenteric lymph was collected for 4 h (exp. 1). In exp. 2, the mucosa and contents of the small intestine were collected at 20, 40, or 90 min after the start of duodenal infusion of the test lipid to evaluate accumulation of lipids incorporated into the mucosa in the rats without a lymph cannula. In exp. 1, lymphatic TG outputs rapidly increased with infusion of both test lipids without L-81, but L-81 abolished these increases. TG accumulated in the small intestinal mucosa with L-81 treatment in a time-dependent manner, but the levels of accumulation were similar between the SO and LE groups (exp. 2). There were no differences in the amounts of lipid remaining in the small intestinal lumen between the L-81-treated SO and LE groups. These results indicate that uptake of lipid into the mucosal cells was not increased by LE. We conclude that the formation of chylomicron is responsible for increases in the promotive effect of a high level of dietary PC on the lymphatic absorption of TG.  相似文献   

6.
We investigated whether chylomicron formation is involved in the dietary phosphatidylcholine (PC)-induced increase in triglyceride (TG) absorption using an inhibitor of chylomicron formation, pluronic L-81 (L-81). In rats, cannulas were implanted into the duodenum (exps. 1 and 2) and the mesenteric lymph duct (exp. 1), and an emulsified lipid solution containing the test lipids (soybean oil, SO or soybean oil plus phosphatidylcholine, LE) with or without L-81 was infused through a duodenal cannula at a rate 3 ml/h for 2 h, and followed by infusion of a glucose-NaCl solution for 2 h. Mesenteric lymph was collected for 4 h (exp. 1). In exp. 2, the mucosa and contents of the small intestine were collected at 20, 40, or 90 min after the start of duodenal infusion of the test lipid to evaluate accumulation of lipids incorporated into the mucosa in the rats without a lymph cannula. In exp. 1, lymphatic TG outputs rapidly increased with infusion of both test lipids without L-81, but L-81 abolished these increases. TG accumulated in the small intestinal mucosa with L-81 treatment in a time-dependent manner, but the levels of accumulation were similar between the SO and LE groups (exp. 2). There were no differences in the amounts of lipid remaining in the small intestinal lumen between the L-81-treated SO and LE groups. These results indicate that uptake of lipid into the mucosal cells was not increased by LE. We conclude that the formation of chylomicron is responsible for increases in the promotive effect of a high level of dietary PC on the lymphatic absorption of TG.  相似文献   

7.
Our previous study has shown that the lymphatic absorption of both fat and alpha-tocopherol (alphaTP) is lowered markedly in rats fed a low zinc diet, with a parallel decrease in lymphatic phospholipid (PL) output. This study was conducted to determine if enteral infusion of phosphatidylcholine (PC) could restore lymphatic absorption of fat and alphaTP in zinc-deficient rats. One group of rats was fed an AIN-93G diet containing 3 mg Zn/kg (low zinc; LZ) and the other was fed the same diet but containing 30 mg Zn/kg (adequate zinc; AZ). Rats were trained to consume two meals daily of equal amounts of food. At 6 wk, each rat with lymph fistula was infused at 3 mL/h with a lipid emulsion containing 3.6 &mgr;mol alphaTP and 565 &mgr;mol [carboxyl-14C]-triolein (14C-OA), with or without 40 &mgr;mol 1,2-dilinoleoyl-PC in 24 mL PBS at pH 6.4. The lymphatic absorptions of fat and alphaTP were determined by measuring 14C-radioactivity and alphaTP appearing in the mesenteric lymph collected hourly for 8 h. When the emulsion devoid of PC was infused, the absorptions of both 14C-OA (41 +/- 4% dose) and alphaTP (431 +/- 55 nmol) in LZ rats were significantly lower than in AZ rats (48 +/- 2% 14C-OA dose and 581 +/- 70 nmol alphaTP). When the emulsion containing PC was infused, the absorption of 14C-OA was restored rapidly to normal in LZ rats, along with a parallel increase in lymphatic PL output. However, PC infusion further lowered the absorption of alphaTP to 311 +/- 20 nmol/8 h in LZ rats and also lowered the absorption of alphaTP in AZ rats (347 +/- 48 nmol/8 h). The results demonstrate that low zinc intake results in impaired intestinal absorption of both alphaTP and fat. The findings also indicate that PC significantly improves the intestinal absorption of fat, but inhibits alphaTP absorption, suggesting that PC affects the intestinal absorption of alphaTP and fat via distinctly different mechanisms.  相似文献   

8.
Glucagon-like peptide 1 (GLP-1) is a gastrointestinal hormone secreted in response to meal ingestion by enteroendocrine L cells located predominantly in the lower small intestine and large intestine. GLP-1 inhibits the secretion and motility of the upper gut and has been suggested to play a role in the "ileal brake." In this study, we investigated the effect of recombinant GLP-1-(7-36) amide (rGLP-1) on lipid absorption in the small intestine in intestinal lymph duct-cannulated rats. In addition, the effects of rGLP-1 on intestinal production of apolipoprotein (apo) B and apo A-IV, two apolipoproteins closely related to lipid absorption, were evaluated. rGLP-1 was infused through the jugular vein, and lipids were infused simultaneously through a duodenal cannula. Our results showed that infusion of rGLP-1 at 20 pmol.kg(-1).min(-1) caused a dramatic and prompt decrease in lymph flow from 2.22 +/- 0.15 (SE) ml/h at baseline (n = 6) to 1.24 +/- 0.06 ml/h at 2 h (P < 0.001). In contrast, a significant increase in lymph flow was observed in the saline (control) group: 2.19 +/- 0.20 and 3.48 +/- 0.09 ml/h at baseline and at 6 h of lipid infusion, respectively (P < 0.001). rGLP-1 also inhibited intestinal triolein absorption (P < 0.05) and lymphatic apo B and apo A-IV output (P < 0.05) but did not affect cholesterol absorption. In conclusion, rGLP-1 dramatically decreases intestinal lymph flow and reduces triglyceride absorption and apo B and apo A-IV production. These findings suggest a novel role for GLP-1 in lipid absorption.  相似文献   

9.
Diamine oxidase activity was measured in the intestinal mucosa, lymph, and in the serum of rats, to determine whether histamine, a substrate of diamine oxidase, liberates this enzyme from its mucosal storage site(s). Histamine induced a sharp rise in intestinal lymph flow, lymph protein, and lymph diamine oxidase, lasting less than 1 h after the histamine injection. The rise in lymph diamine oxidase activity was dose dependent over a narrow concentration range (0.05-0.2 mmol/kg, i.v. and 0.15-0.6 mmol/kg i.d.). It did not correlate with the dose dependent increase in lymph flow or lymph protein. A single maximal intraduodenal dose of histamine caused a 41.6-fold increase in the lymph diamine oxidase activity and a 2.4-fold increase in the serum enzyme level temporarily. A second injection of histamine, 2 h after the first, resulted in a comparatively smaller increase in the lymph enzyme. The extent of the reduction was dependent on the magnitude of the first injection. The results suggest that histamine causes a limited liberation of diamine oxidase from the intestinal mucosa. The function of this enzyme release may be a protective response by the mucosa to reduce toxic levels of free histamine, either liberated by the mucosal tissue or absorbed from the intestinal lumen.  相似文献   

10.
Infection with the nematode N. brasiliensis is accompanied by a marked increase of the number of mucosal mast cells (MMC) and the mucosal content of histamine and 5-hydroxytryptamine (5-HT). We compared amine levels, determined by ion exchange and high performance liquid chromatography (HPLC) with numbers of MMC and enterochromaffin cells (ECC). Furthermore, we measured 5-HT cytofluorometrically in individual MMC and ECC. The cellular distribution of 5-HT was studied immunohistochemically. Our results corroborate previous findings that histamine is stored in MMC. Quotients between histamine content and numbers of MMC decreased throughout the period of worm expulsion, followed by a recovery, suggesting a histamine release during this defense reaction. The HPLC analysis gave no evidence for a storage of dopamine in MMC. ECC and MMC of normal and infected rats showed a formaldehyde induced fluorescence and 5-HT immunoreactivity. The formaldehyde induced fluorescence of MMC from normal rats was about 10% that of ECC, but MMC exceeded ECC three times by numbers. These findings suggest that a considerable proportion of the intestinal 5-HT in the normal rat is stored in MMC. ECC numbers did not change during the infection and their content of 5-HT was unchanged, as judged by cytofluorometry. The cytofluorometric measurements showed that the intensity of the monoamine fluorescence from the MMC of infected animals was about three times as high as that of controls. It was concluded that the increased tissue levels of 5-HT was due to both an increase in MMC numbers and an increase in the 5-HT content of individual MMC. The results suggest a different role for histamine and 5-HT in the defense reaction towards the nematode infection.  相似文献   

11.
Chylomicrons produced by the human gut contain apolipoprotein (apo) B48, whereas very-low-density lipoproteins made by the liver contain apo B100. To study how these molecules function during lipid absorption, we examined the process as it occurs in apobec-1 knockout mice (able to produce only apo B100; KO) and in wild-type mice (of which the normally functioning intestine makes apo B48, WT). Using the lymph fistula model, we studied the process of lipid absorption when animals were intraduodenally infused with a lipid emulsion (4 or 6 micromol/h of triolein). KO mice transported triacylglycerol (TG) as efficiently as WT mice when infused with the lower lipid dose; when infused with 6 micromol/h of triolein, however, KO mice transported significantly less TG to lymph than WT mice, leading to the accumulation of mucosal TG. Interestingly, the size of lipoprotein particles from both KO and WT mice were enlarged to chylomicron-size particles during absorption of the higher dose. These increased-size particles produced by KO mice were not associated with increased apo AIV secretion. However, we found that the gut of the KO mice secreted fewer apo B molecules to lymph (compared with WT), during both fasting and lipid infusion, leading us to conclude that the KO gut produced fewer numbers of TG-rich lipoproteins (including chylomicron) than the wild-type animals. The reduced apo B secretion in KO mice was not related to reduced microsomal triglyceride transfer protein lipid transfer activity. We propose that apo B48 is the preferred protein for the gut to coat chylomicrons to ensure efficient chylomicron formation and lipid absorption.  相似文献   

12.
A mouse spleen-derived mast cell line (PT-18) was employed to examine the mechanisms of adenosine 3':5'-monophosphate (cAMP)-mediated inhibition of antigen-induced lipid mediator biosynthesis. Specifically, we tested the hypothesis that increasing cAMP in mast cells inhibits lipid mediator biosynthesis by a mechanism independent of effects on histamine release (degranulation) or changes in cytosolic calcium concentration. Forskolin inhibited antigen-induced prostaglandin D2 (PGD2), leukotriene C4 (LTC4), and leukotriene B4 (LTB4) production by 30-50%. In contrast, forskolin had no inhibitory effect on antigen-induced increases in cytosolic calcium concentration, as monitored by the calcium indicator fura-2, or histamine release from the cells. The combination of the phosphodiesterase inhibitor isobutylmethylxanthine with forskolin inhibited the antigen-induced production of PGD2 and LTC4 by 90-100% and histamine release by about 60%. These responses were accompanied by a virtual abolition of the antigen-induced increase in cytosolic calcium. To test further the hypothesis that increasing cAMP can lead to inhibition of lipid mediator biosynthesis in the absence of effects on cytosolic calcium, we employed the calcium ionophores A23187 and ionomycin. Forskolin alone or in combination with isobutylmethylxanthine had no effect on ionophore-induced increases in cytosolic calcium but effectively inhibited leukotriene biosynthesis. In addition, increasing cyclic AMP led to an inhibition of ionophore-induced production of platelet-activating factor and liberation of arachidonic acid. These data suggest that a relatively modest increase in cAMP-dependent protein kinase activity in mast cells leads to inhibition of the lipase-catalyzed cleavage of arachidonic acid from membrane phospholipids in the absence of measurable effects on either histamine release or changes in cytosolic calcium concentration. This effect results in a selective inhibition of the biosynthesis of lipid mediators including LTC4, LTB4, PGD2, and platelet-activating factor.  相似文献   

13.
Intestinal lipoproteins in the rat with D-(+)-galactosamine hepatitis   总被引:2,自引:0,他引:2  
D-(+)-galactosamine (GalN) induces severe reversible hepatocellular injury in the rat accompanied by lecithin: cholesterol acyltransferase (LCAT) deficiency, defective chylomicron (CM) catabolism, and accumulation of abnormal plasma lipoproteins (Lps), including discoidal high density lipoproteins (HDL). These abnormalities are presumed to result from hepatic injury alone, but the effect of GalN on intestinal Lps has not been studied. To assess possible effects on intestinal Lp formation and secretion, mesenteric lymph fistula rats were injected with GalN or saline. Twenty-four hours later a 2-hr fasting lymph sample was collected; this was followed by an 8-hr duodenal infusion of a lipid emulsion containing 17.7 mM [3H]triolein at 3 ml/hr. Fasting lymph and fat-infused lymph flow rates, 3H, triglyceride, and cholesterol output, residual 3H in intestinal lumen and mucosa, total 3H recovery, and d less than 1.006 g/ml Lp size and lipid composition were unchanged by GalN treatment, but d less than 1.006 g/ml Lps were depleted of apoE and C. Fat-infused lymph phospholipid (PL) output was higher in GalN rats due to PL-enriched d greater than 1.006 g/ml Lps. Electron microscopy of lymph and plasma LDL and HDL revealed spherical Lps in all samples. GalN plasma, fasting lymph, and fat-infused lymph also contained large abnormal LDL and discoidal HDL. Control lymph LDL and HDL did not differ in size from control plasma LDL and HDL. Control lymph LDL contained both apoB240K and B335K. However, spherical LDL and discoidal HDL in fasting lymph from GalN rats differed significantly in size from the corresponding plasma particles and became closer in size to the plasma particles with fat infusion. GalN lymph LDL contained only apoB240K and had a lower PL/CE than GalN plasma LDL. GalN fasting lymph HDL, depleted of apoC and having a PL/CE of 5, became enriched in apoE and the PL/CE increased to 10 with fat infusion to closely resemble GalN plasma HDL. GalN reduces apoE and C (mainly of hepatic origin) in d less than 1.006 g/ml gut Lps, which may contribute to the CM catabolic defect in GalN rats. Lymph LDL and HDL, especially in fasting lymph, may be partially gut-derived with increased filtration of plasma Lps into lymph with fat infusion. GalN fat-infused lymph HDL is enriched in apoE, but unable to transfer apoE to d less than 1.006 g/ml intestinal Lps. We conclude that GalN hepatitis is a model that allows study of intestinal Lps with normal lipid digestion and absorption in the face of severe hepatic injury and LCAT deficiency.  相似文献   

14.
Intestinal alkaline phosphatase (IAP) is one of the major sources of alkaline phosphatase in circulation. It is secreted into the intestinal lumen, serum, and lymph. After the ingestion of lipid, lymphatic alkaline phosphatase secretion increases significantly. We have found that the nonabsorbable fat olestra is unable to stimulate lymphatic alkaline phosphatase secretion. We also found that the hydrophobic surfactant Pluronic L-81, which blocks chylomicron formation, fails to inhibit this increase in lymphatic alkaline phosphatase secretion. These results suggest that it is the lipid uptake into the mucosa and/or reesterification to form triacylglycerols, but not the formation of chylomicrons, that is necessary for the stimulation of the secretion of alkaline phosphatase into the lymph.  相似文献   

15.
Mucosal mast cells (MMC) were isolated from the intestine of Nippostrongylus brasiliensis-infected rats and then activated with Ag or with anti-IgE in order to assess their metabolism of arachidonic acid to leukotriene (LT) C4, LTB4, and prostaglandin D2 (PGD2). After challenge of MMC preparations of 19 +/- 1% purity with five worm equivalents of N. brasiliensis Ag, the net formation of immunoreactive equivalents of LTC4, LTB4, and PGD2 was 58 +/- 8.3, 22 +/- 4.5, and 22 +/- 3.4 ng/10(6) mast cells, respectively (mean +/- SE, n = 7). When MMC preparations of 56 +/- 9% purity were activated by Ag, the net generation of immunoreactive equivalents of LTC4, LTB4, and PGD2/10(6) MMC was 107 +/- 15, 17 +/- 5.4, and 35 +/- 18 ng, respectively. These data indicate that the three eicosanoids originated from the MMC rather than from a contaminating cell. Analysis by reverse phase HPLC of the C-6 sulfidopeptide leukotrienes present in the supernatants of the activated MMC preparations of lower purity revealed LTC4, LTD4, and LTE4. In a higher purity MMC preparation only LTC4 was present, suggesting that other cell types in the mucosa are able to metabolize LTC4 to LTD4 and LTE4. The release of histamine and the generation of eicosanoids from intestinal MMC and from peritoneal cavity-derived connective tissue-type mast cells (CTMC) isolated from the same N. brasiliensis-infected rats were compared. When challenged with anti-IgE, these MMC released 165 +/- 41 ng of histamine/10(6) mast cells, and generated 29 +/- 3.6, 12 +/- 4.2, and 4.7 +/- 1.0 ng (mean +/- SE, n = 3) of immunoreactive equivalents of LTC4, LTB4, and PGD2/10(6) mast cells, respectively. In contrast, CTMC isolated from the same animals and activated with the same dose of anti-IgE released approximately 35 times more histamine (5700 +/- 650 ng/10(6) CTMC), generated 7.5 +/- 2.3 ng of PGD2/10(6) mast cells, and failed to release LTC4 or LTB4. These studies establish, that upon immunologic activation, rat MMC and CTMC differ in their quantitative release of histamine and in their metabolism of arachidonic acid to LTC4 and LTB4.  相似文献   

16.
Inhibitory action of gemfibrozil on cholesterol absorption in rat intestine   总被引:7,自引:0,他引:7  
This study was designed to determine whether gemfibrozil inhibits intestinal lipid absorption. Male Sprague-Dawley rats received an oral dose of 30 mg gemfibrozil/kg body weight for 14 days. Mesenteric lymph cannulation was performed, and a lipid infusion containing 40 micromol/h (35.4 mg/h) of radiolabeled triolein and 2.74 micromol/h (1.06 mg/h) of radiolabeled cholesterol with the addition of 1 mg/h of gemfibrozil was infused intraduodenally at a rate of 3 ml/h for 8 h. The lymph was collected, and the radioactivity levels of the lumen and gut mucosa were measured after the infusion. Lymph cholesterol transport was depressed in gemfibrozil-treated rats, in terms of mass measurements as well as radioactivity in a lesser degree. More radioactive cholesterol remained in the proximal portion of the intestinal lumen and mucosa in the treated rats than in the control rats. More radioactive triglycerides also remained in the proximal intestinal lumen of treated rats, although no difference in lymphatic triglyceride transport was observed between the groups. A significant portion of the radioactive cholesterol remained in the lumen in the gemfibrozil-treated rats. Gemfibrozil increased biliary cholesterol excretion. Thus, this study shows that gemfibrozil inhibits cholesterol absorption in rat intestine.  相似文献   

17.
Glucagon-like peptide-1 (GLP-1) is an important incretin produced in the L cells of the intestine. It is essential in the regulation of insulin secretion and glucose homeostasis. Systemic GLP-1 concentrations are typically low in rodents, so it can be difficult to assay physiological levels or detect changes in response to nutrients. We have established a method of assaying GLP-1 in response to nutrients using the intestinal lymph fistula model. Intraduodenal infusion of Intralipid (4.43 kcal/3 ml) induced a significant increase of lymphatic GLP-1 concentration compared with saline control at the peak of 30 min. (P < 0.001). Isocaloric and isovolumetric treatment with dextrin, a glucose polymer, also caused a significant fourfold increase in peak concentration at 60 min (P = 0.001). These findings indicate that intestinal lymph contains high concentrations of postprandial GLP-1. Second, they reveal that GLP-1 secretion into lymph occurs in response to both enteral carbohydrate and fat, but the response to dextrin occurs later than to Intralipid with peak times at 60 and 30 min, respectively. Third, the combination of Intralipid plus dextrin demonstrated an additive effect in the stimulation of GLP-1 with peak at 30 min. These results indicate that assessment of levels in lymph is a novel and powerful means of studying the secretion of GLP-1 and potentially other gastrointestinal hormones in vivo. Furthermore, the lymph fistula rat model provides insight into the gut hormone concentrations to which the neurons and cells in the lamina propria of the gut are likely exposed.  相似文献   

18.
Limited information is available about selection of the threshold for arterial blood pressure in critically ill patients, particularly in sepsis when normal organ blood flow autoregulation may be altered. The present experimental study investigated whether increasing perfusion pressure using norepinephrine in normotensive hyperdynamic porcine bacteremia affects intestinal macro- and microcirculation. Nine pigs received continuous i.v. administration of Pseudomonas aeruginosa (PSAE) to develop hyperdynamic, normotensive (mean arterial pressure [MAP] 65 mm Hg) sepsis. Norepinephrine was used to achieve 10-15 % increase in MAP. Mesenteric arterial blood flow (Q(gut)), ileal mucosal microvascular perfusion (LDF(gut)) and ileal-end-tidal PCO(2) gap (PCO(2) gap) were measured before norepinephrine, after 60 min of norepinephrine infusion and 60 min after norepinephrine infusion had been discontinued. During a 12 h period of PSAE infusion all pigs developed hyperdynamic circulation with significantly decreased MAP. Although the mesenteric blood flow remained unchanged, infusion of PSAE resulted in a gradual fall of ileal microvascular perfusion, which was associated with progressively rising PCO(2) gap. Norepinephrine which induced a 10-15 % increase in perfusion pressure (i.e. titrated to attain near baseline values of MAP) affected neither Q(gut) nor the intestinal blood flow distribution (Q(gut)/CO). Similarly, norepinephrine did not change either LDF(gut) or PCO(2) gap. In this hyperdynamic, normotensive porcine bacteremia, norepinephrine-induced increase in perfusion pressure exhibited neither beneficial nor deleterious effects on intestinal macrocirculatory blood flow and ileal mucosal microcirculation. The lack of changes suggests that the gut perfusion was within its autoregulatory range.  相似文献   

19.
目的

探讨双歧杆菌三联活菌对高脂饮食诱导的肥胖小鼠的改善作用及其机制。

方法

将24只LDLR-/-小鼠随机分为正常组(n = 8,普通饲料,灌胃生理盐水)、高脂组(n = 8,高脂饲料,灌胃生理盐水)和干预组(n = 8,高脂饲料,灌胃双歧杆菌三联活菌)。所有小鼠均干预16周,每2周记录小鼠体质量,第15周进行口服葡萄糖耐量试验。小鼠处死后,检测血清中脂质和胰岛素指标;采用RT-PCR分析回肠中炎症因子和肠道紧密连接蛋白ZO-1、Occludin的mRNA相对表达量;采用HE染色评估回肠组织病理变化;采用16S rDNA高通量测序分析小鼠肠道微生物群变化特点。

结果

与正常组相比,高脂组小鼠表现出明显的体质量增加、糖脂代谢紊乱、回肠炎症水平增加和肠道微生物群紊乱。干预后,干预组小鼠体质量下降,糖脂代谢紊乱改善,回肠炎症因子TLR4和TNF-α相对表达量显著下降(均P<0.05);而肠道紧密连接蛋白ZO-1和Occludin相对表达量显著增加(均P<0.05)。测序结果表明,干预组小鼠肠道菌群中Firmicutes和Bifidobacterium丰度增加。

结论

双歧杆菌三联活菌可能通过优化肥胖小鼠的肠道微生物群结构,增加Firmicutes和Bifidobacterium丰度,进而减轻肥胖小鼠体质量,调节糖脂代谢,降低肠道内炎症和修复肠黏膜屏障。

  相似文献   

20.
This study explored further the hypothesis that intestinal cells have two pathways for producing large triacylglycerol-rich lipoprotein particles. The hydrophobic surfactant Pluronic L-81 (L-81) inhibits formation of chylomicrons (containing triacylglycerol synthesized from dietary fatty acids and monoacylglycerol, through the monoacylglycerol pathway), but not formation of very-low-density lipoproteins. L-81 does not inhibit lymphatic lipid transport during infusion of egg phosphatidylcholine, whose fatty acid is processed through the alpha-glycerol phosphate pathway and is transported in lymph in very-low-density lipoproteins. Thus, the first part of this study tested whether L-81 cannot inhibit the alpha-glycerol phosphate pathway, and thus L-81 can only affect chylomicron lipid secretion. Intestinal lymph fistula rats were infused with a lipid emulsion containing [1-14C]oleic acid, but no monoacylglycerol, to ensure that the oleic acid will be channeled to the alpha-glycerol phosphate pathway. Experimental rats received 1 mg/h of L-81 in their emulsion whereas control rats lacked L-81. Lymphatic triacylglycerol output, measured both chemically and radioactively, was markedly suppressed in the experimental rats as compared to the controls. Thus, these data indicate that the reason why lipid transport was unaffected by L-81 when egg phosphatidylcholine was infused was not because of the pathway used for the resynthesis of triacylglycerol from phosphatidylcholine. In the second part of this study, we measured the appearance time for chylomicron (in control rats) and for very-low-density lipoprotein (in L-81-treated rats). The appearance time is defined as the time between placement of radioactive fatty acid into the intestinal lumen and the appearance of radioactive lipid in the central lacteal. The average appearance time for the control rats was 10.8 min, which was significantly shorter than the 16.2 min in the L-81-treated experimental rats. This difference in appearance time further supports the hypothesis that chylomicron and very-low-density lipoprotein are packaged separately in the enterocytes and only the formation of chylomicron is inhibited by L-81.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号