首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Upon infection and development within human erythrocytes, P. falciparum induces alterations to the infected RBC morphology and bio-mechanical properties to eventually rupture the host cells through parasitic and host derived proteases of cysteine and serine families. We used previously reported broad-spectrum inhibitors (E64d, EGTA-AM and chymostatin) to inhibit these proteases and impede rupture to analyze mechanical signatures associated with parasite escape. Treatment of late-stage iRBCs with E64d and EGTA-AM prevented rupture, resulted in no major RBC cytoskeletal reconfiguration but altered schizont morphology followed by dramatic re-distribution of three-dimensional refractive index (3D-RI) within the iRBC. These phenotypes demonstrated several-fold increased iRBC membrane flickering. In contrast, chymostatin treatment showed no 3D-RI changes and caused elevated fluctuations solely within the parasitophorous vacuole. We show that E64d and EGTA-AM supported PV breakdown and the resulting elevated fluctuations followed non-Gaussian pattern that resulted from direct merozoite impingement against the iRBC membrane. Optical trapping experiments highlighted reduced deformability of the iRBC membranes upon rupture-arrest, more specifically in the treatments that facilitated PV breakdown. Taken together, our experiments provide novel mechanistic interpretations on the role of parasitophorous vacuole in maintaining the spherical schizont morphology, the impact of PV breakdown on iRBC membrane fluctuations leading to eventual parasite escape and the evolution of membrane stiffness properties of host cells in which merozoites were irreversibly trapped, recourse to protease inhibitors. These findings provide a comprehensive, previously unavailable, body of information on the combined effects of biochemical and biophysical factors on parasite egress from iRBCs.  相似文献   

2.
3.
The surface ionogenicity of five enteropathogenicEscherichia coli serogroups (O111:H2, O111:H12, O125:H9, O119:H6, and O26:H11) was investigated by electrokinetical approaches. All of the studied surfaces are negatively charged with their mean values of zeta potential (ZP) varying from −9.0 (O26:H11) to −11.9 mV (O111:H2). The populational behavior of the all bacteria are similar since very high ZP values varying from −26 to −30 mV were obtained in experiments carried out with the slip plane calculated at 6.83 nm from the cell surface. All the surfaces are extremely acidic, because the isoelectrophoretic points are localized at pH values below 3.0. Treatment of the microorganisms with neuraminidase did not alter their surface anionogenicity, while treatment with trypsin or phospholipase C reduced their negative charge.  相似文献   

4.
Traditional approaches to measuring the level of malaria infection involve counting the proportion of parasite-infected red blood cells (iRBC) in circulating blood, known as parasitaemia. However, iRBC can also accumulate within the microvasculature of tissues and organs, a process called sequestration. Thus measurements of parasitemia do not necessarily reflect the total parasite burden (TPB). Recent experimental advances have allowed TPB measurements to be made in humans and experimental models. TPB is particularly important because it is the best current predictor of malaria disease severity and death in humans. Understanding the relationship between freely circulating iRBC versus tissue-sequestered iRBC is an important question in infection dynamics. The recent ability to experimentally measure the dynamics of iRBC in blood and tissue during murine malaria provides an exciting potential window into sequestration, but new modeling approaches are clearly required to understand these interactions. We present a model of malaria dynamics during early infection that incorporates iRBC that both circulate in the blood and sequester in tissue microvasculature. We explore the effect that perturbations to the system have on the ratio of the number of iRBC between these compartments, and consider which changes are most consistent with experimental data from mice. Using this model we predict an increase in the clearance rate of sequestered iRBCs around the time when mild symptoms become apparent, but a more pronounced increase in the rate of sequestration of iRBCs associated with the onset of severe malaria symptoms.  相似文献   

5.
Most human malaria deaths are caused by blood-stage Plasmodium falciparum parasites. Cerebral malaria, the most life-threatening complication of the disease, is characterised by an accumulation of Plasmodium falciparum infected red blood cells (iRBC) at pigmented trophozoite stage in the microvasculature of the brain(2-4). This microvessel obstruction (sequestration) leads to acidosis, hypoxia and harmful inflammatory cytokines (reviewed in (5)). Sequestration is also found in most microvascular tissues of the human body(2, 3). The mechanism by which iRBC attach to the blood vessel walls is still poorly understood. The immortalized Human Brain microvascular Endothelial Cell line (HBEC-5i) has been used as an in vitro model of the blood-brain barrier(6). However, Plasmodium falciparum iRBC attach only poorly to HBEC-5i in vitro, unlike the dense sequestration that occurs in cerebral malaria cases. We therefore developed a panning assay to select (enrich) various P. falciparum strains for adhesion to HBEC-5i in order to obtain populations of high-binding parasites, more representative of what occurs in vivo. A sample of a parasite culture (mixture of iRBC and uninfected RBC) at the pigmented trophozoite stage is washed and incubated on a layer of HBEC-5i grown on a Petri dish. After incubation, the dish is gently washed free from uRBC and unbound iRBC. Fresh uRBC are added to the few iRBC attached to HBEC-5i and incubated overnight. As schizont stage parasites burst, merozoites reinvade RBC and these ring stage parasites are harvested the following day. Parasites are cultured until enough material is obtained (typically 2 to 4 weeks) and a new round of selection can be performed. Depending on the P. falciparum strain, 4 to 7 rounds of selection are needed in order to get a population where most parasites bind to HBEC-5i. The binding phenotype is progressively lost after a few weeks, indicating a switch in variant surface antigen gene expression, thus regular selection on HBEC-5i is required to maintain the phenotype. In summary, we developed a selection assay rendering P. falciparum parasites a more "cerebral malaria adhesive" phenotype. We were able to select 3 out of 4 P. falciparum strains on HBEC-5i. This assay has also successfully been used to select parasites for binding to human dermal and pulmonary endothelial cells. Importantly, this method can be used to select tissue-specific parasite populations in order to identify candidate parasite ligands for binding to brain endothelium. Moreover, this assay can be used to screen for putative anti-sequestration drugs(7).  相似文献   

6.
Plasmodium falciparum, the deadliest form of human malaria, remains one of the major threats to human health in endemic regions. Its virulence is attributed to its ability to modify infected red blood cells (iRBC) to adhere to endothelial receptors by placing variable antigens known as PfEMP1 on the iRBC surface. PfEMP1 expression determines the cytoadhesive properties of the iRBCs and is implicated in severe malaria. To evade antibody‐mediated responses, the parasite undergoes continuous switches of expression between different PfEMP1 variants. Recently, it became clear that in addition to antibody‐mediated responses, PfEMP1 triggers innate immune responses; however, the role of neutrophils, the most abundant white blood cells in the human circulation, in malaria remains elusive. Here, we show that neutrophils recognize and kill blood‐stage P. falciparum isolates. We identify neutrophil ICAM‐1 and specific PfEMP1 implicated in cerebral malaria as the key molecules involved in this killing. Our data provide mechanistic insight into the interactions between neutrophils and iRBCs and demonstrate the important influence of PfEMP1 on the selective innate response to cerebral malaria.  相似文献   

7.
Whole amyloplasts were isolated from Zea mays L. coleoptiles. Electron microscopy confirmed that their envelopes consisted of two intact membranes. Their surface charge was quantified through electrokinetic measurements employing a vertically oriented cataphoresis cell. Amyloplasts from coleoptiles of different ages (5–9 d) and degree of exposure to light (0–9 d) all had negative zeta potentials (mean of -19.4 mV). Isolated starch granules had comparable values. The net negative surface charge was confirmed ultrastructurally by the binding of cationised ferritin to both amyloplasts and starch grains. Cationised ferritin tagged with a fluorescent label (fluorescein isothiocyanate) showed binding to some amyloplasts but not to starch grains. These results are discussed in the context of a hypothesized role for statolith charge in plant graviperception.  相似文献   

8.
Co-infection with HIV and P. falciparum worsens the prognosis of both infections; however, the mechanisms driving this adverse interaction are not fully delineated. To evaluate this, we studied HIV-1 and P. falciparum interactions in vitro using peripheral blood mononuclear cells (PBMCs) from human malaria na?ve volunteers experimentally infected with P. falciparum in a malaria challenge trial. PBMCs collected before the malaria challenge and at several time points post-infection were infected with HIV-1 and co-cultured with either P. falciparum infected (iRBCs) or uninfected (uRBCs) red blood cells. HIV p24Ag and TNF-α, IFN-γ, IL-4, IL-6, IL-10, IL-17, and MIP-1α were quantified in the co-culture supernatants. In general, iRBCs stimulated more HIV p24Ag production by PBMCs than did uRBCs. HIV p24Ag production by PBMCs in the presence of iRBCs (but not uRBCs) further increased during convalescence (days 35, 56, and 90 post-challenge). In parallel, iRBCs induced higher secretion of pro-inflammatory cytokines (TNF-α, IFN-γ, and MIP-1α) than uRBCs, and production increased further during convalescence. Because the increase in p24Ag production occurred after parasitemia and generalized immune activation had resolved, our results suggest that enhanced HIV production is related to the development of anti-malaria immunity and may be mediated by pro-inflammatory cytokines.  相似文献   

9.
Anionic phospholipids can confer a net negative charge on biological membranes. This surface charge generates an electric field that serves to recruit extrinsic cationic proteins, can alter the disposition of transmembrane proteins and causes the local accumulation of soluble counterions, altering the local pH and the concentration of physiologically important ions such as calcium. Because the phospholipid compositions of the different organellar membranes vary, their surface charges are similarly expected to diverge. Yet, despite the important functional implications, remarkably little is known about the electrostatic properties of the individual organellar membranes. We therefore designed and implemented approaches to estimate the surface charges of the cytosolic membranes of various organelles in situ in intact cells. Our data indicate that the inner leaflet of the plasma membrane is most negative, with a surface potential of approximately –35 mV, followed by the Golgi complex > lysosomes > mitochondria ≈ peroxisomes > endoplasmic reticulum, in decreasing order.

Lipids and (glyco)proteins are the main constituents of biological membranes. Sugar moieties of glycoproteins, glycolipids, and adherent glycocalyx components such as hyaluronic acid can bear ionizable groups that confer a net negative charge on the outer surface of the plasma membrane. The aggregate surface charge of the outer membrane has been estimated indirectly by measuring the ζ potential—the potential at the slipping plane—by electrophoretic means (e.g., Tippe, 1981; Silva Filho et al., 1987) or by measuring streaming potentials (Vandrangi et al., 2012). The plasma membrane, however, is highly asymmetric; its inner (cytosolic) aspect is virtually devoid of carbohydrate moieties. Nevertheless, the cytosolic leaflet is also thought to be negatively charged, due primarily to the accumulation of anionic phospholipids, namely phosphoinositides and phosphatidylserine (PtdSer). Based on biochemical determinations of its lipid composition, the net negative charge of the plasmalemmal inner leaflet is estimated to generate an electrical field of 105 V/cm (Olivotto et al., 1996). The membranes of intracellular organelles can also contain anionic lipids, but their precise lipid composition and topology have been difficult to assess and hence their surface charge has not been estimated.The surface potentials of biological membranes have important functional implications: they can alter the disposition of charged regions of transmembrane proteins, cause local accumulation of soluble counterions in the vicinity—altering the local pH as well as the concentration of physiologically important ions such as calcium—and serve to recruit extrinsic cationic proteins (McLaughlin, 1989). It is therefore important to determine the electrostatic properties of each of the organellar membranes. In principle, this could be accomplished by measuring the ζ potentials of isolated organelles. However, the purity of such preparations is imperfect, changes in lipid composition (particularly phosphoinositide degradation) and sidedness cannot be avoided, and loosely adherent components that may alter the surface charge can be removed during the isolation process. Alternative approaches to estimating the surface potential are therefore required.Here we used recombinant and synthetic polycationic peptides to obtain a quantitative estimate of the surface potential of the inner leaflet of the plasma membrane and to establish a hierarchical map of the potentials of the cytosolic surfaces of the major intracellular organelles in live cells.  相似文献   

10.
The Plasmodium falciparum ring-erythrocyte surface antigen (RESA)-like putative protein was identified and characterised. PCR and RT-PCR assays revealed that the gene encoding this protein was both present and being transcribed in P. falciparum strain FCB-2 16 h after erythrocyte invasion. Indirect immunofluorescence studies detected this protein in infected erythrocyte (IE) cytosol in dense fluorescent granules similar to Maurer's clefts at 16-20 h (parasites in ring and trophozoite stages) and very strongly on IE membranes at 22 h, suggesting that it is synthesised during early ring stages (16 h) and transported to the infected red blood cell (RBC) membrane surface during the trophozoite stage (22 h). Western blotting showed that antisera produced against polymerised synthetic peptides of this protein recognised a 72-kDa band in P. falciparum schizont lysate. P. falciparum RESA-like peptides used in normal RBC binding assays revealed that peptides 30326 ((101)NAEKI LGFDD KNILE ALDLFY(120)), 30334 ((281)RVTWK KLRTK MIKAL KKSLTY(300)) and 30342 ((431)SSPQR LKFTA GGGFC GKLRNY(450)) bind with high activity and saturability, presenting nM affinity constants. These peptides contain alpha-helical structural elements, as determined by circular dichroism, and inhibit P. falciparum in vitro invasion of normal RBCs by up to 91%, suggesting that some RESA-like protein regions are involved in intra-erythrocyte stage P. falciparum invasion.  相似文献   

11.
12.
Adhesion of mature asexual stage Plasmodium falciparum parasite-infected erythrocytes (iRBC) to the vascular endothelium is a critical event in the pathology of Plasmodium falciparum malaria. It has been suggested that the clag gene family is essential in cytoadherence to endothelial receptors. Primers used in PCR and RT-PCR assays allowed us to determine that the gene encoding CLAG 3 (GenBank accession no. NP_473155) is transcribed in the Plasmodium falciparum FCB2 strain. Western blot showed that antisera produced against polymerized synthetic peptides from this protein recognized a 142-kDa band in P. falciparum schizont lysate. Seventy-one 20-amino-acid-long nonoverlapping peptides, spanning the CLAG 3 (cytoadherence-linked asexual protein on chromosome 3) sequence were tested in C32 cell and erythrocyte binding assays. Twelve CLAG peptides specifically bound to C32 cells (which mainly express CD36) with high affinity, hereafter referred to as high-affinity binding peptides (HABPs). Five of them also bound to erythrocytes. HABP binding to C32 cells and erythrocytes was independent of peptide charge or peptide structure. Affinity constants were between 100 nM and 800 nM. Cross-linking and SDS-PAGE analysis allowed two erythrocyte binding proteins of around 26 kDa and 59 kDa to be identified, while proteins of around 53 kDa were identified as possible receptor sites for C-32 cells. The HABPs' role in Plasmodium falciparum invasion inhibition was determined. Such an approach analyzing various CLAG 3 regions may elucidate their functions and may help in the search for new antigens important for developing antimalarial vaccines.  相似文献   

13.
In our accompanying paper (Inouye and Kirschner, 1988) we calculated the surface charge density at the extracellular surfaces in peripheral and central nervous system (PNS; CNS) myelins from observations on the dependency of the width of the extracellular space on pH and ionic strength. Here, we have determined the surface charge density of the membrane surfaces in myelin from its chemical composition and the localization of some of its molecular components. We then analyzed the attractive and repulsive forces between the apposed surfaces and calculated equilibrium periods for comparison with the measured values. The biochemical model accounts for the observed isoelectric range of the myelin period and, with the surface charge reduced (possibly by divalent cation binding or a space charge approximation), the model also accounts for the dependency of period on pH above the isoelectric range. At the extracellular (and cytoplasmic) surfaces the contribution of lipid (with pI approximately 2) to the net surface charge is about the same in both PNS and CNS myelin, whereas the contribution of protein depends on which ones are exposed at the two surfaces. The protein conformation and localization modulate the surface charge of the lipid, resulting in positively-charged cytoplasmic surfaces (pI approximately 9) and negatively-charged extracellular surfaces (pI approximately 2-4). The net negative charge at the extracellular surface is due in CNS myelin to lipid, and in PNS myelin to both lipid and (PO) glycoprotein. The net positive charge at the cytoplasmic surface is due in CNS myelin mostly to basic protein, and in PNS myelin to PO glycoprotein and basic protein. The invariance of the cytoplasmic packing may be due to specific short-range interactions. Our models demonstrate how the particular myelin proteins and their localization and conformation can account for the differences in inter-membrane interactions in CNS and PNS myelins.  相似文献   

14.
Chronic ethanol intoxication oxidative stress participates in the development of many diseases. Nutrition and the interaction of food nutrients with ethanol metabolism may modulate alcohol toxicity. One such compound is blackcurrant, which also has antioxidant abilities. We investigated the effect of blackcurrant as an antioxidant on the composition and electrical charge of liver cell membranes in ethanol-intoxicated rats. Qualitative and quantitative phospholipid composition and the presence of integral membrane proteins were determined by high-performance liquid chromatography. Electrophoresis was used to determine the surface charge density of the rat liver cell membranes. Ethanol intoxication is characterized by changes in cell metabolism that alter the structure and function of cell membrane components. Ethanol increased phospholipid levels and altered the level of integral proteins as determined by decreased phenylalanine, cysteine, and lysine. Ethanol significantly enhanced changes in the surface charge density of the liver cell membranes. Administration of blackcurrant to rats intoxicated with ethanol significantly protected lipids and proteins against oxidative modifications. It is possible that the beneficial effect of blackcurrant is connected with its abilities to scavenge free radicals and to chelate metal ions.  相似文献   

15.
Plasmodium falciparum develops within the mature RBCs (red blood cells) of its human host in a PV (parasitophorous vacuole) that separates the host cell cytoplasm from the parasite surface. The pore-forming toxin, SLO (streptolysin O), binds to cholesterol-containing membranes and can be used to selectively permeabilize the host cell membrane while leaving the PV membrane intact. We found that in mixtures of infected and uninfected RBCs, SLO preferentially lyses uninfected RBCs rather than infected RBCs, presumably because of differences in cholesterol content of the limiting membrane. This provides a means of generating pure preparations of viable ring stage infected RBCs. As an alternative permeabilizing agent we have characterized EqtII (equinatoxin II), a eukaryotic pore-forming toxin that binds preferentially to sphingomyelin-containing membranes. EqtII lyses the limiting membrane of infected and uninfected RBCs with similar efficiency but does not disrupt the PV membrane. It generates pores of up to 100 nm, which allow entry of antibodies for immunofluorescence and immunogold labelling. The present study provides novel tools for the analysis of this important human pathogen and highlights differences between Plasmodium-infected and uninfected RBCs.  相似文献   

16.
To determine the potential contribution of innate immune responses to the early proinflammatory cytokine response to Plasmodium falciparum malaria, we have examined the kinetics and cellular sources of IFN-gamma production in response to human PBMC activation by intact, infected RBC (iRBC) or freeze-thaw lysates of P. falciparum schizonts. Infected erythrocytes induce a more rapid and intense IFN-gamma response from malaria-naive PBMC than do P. falciparum schizont lysates correlating with rapid iRBC activation of the CD3(-)CD56(+) NK cell population to produce IFN-gamma. IFN-gamma(+) NK cells are detectable within 6 h of coculture with iRBC, their numbers peaking at 24 h in most donors. There is marked heterogeneity between donors in magnitude of the NK-IFN-gamma response that does not correlate with mitogen- or cytokine-induced NK activation or prior malaria exposure. The NK cell-mediated IFN-gamma response is highly IL-12 dependent and appears to be partially IL-18 dependent. Exogenous rIL-12 or rIL-18 did not augment NK cell IFN-gamma responses, indicating that production of IL-12 and IL-18 is not the limiting factor explaining differences in NK cell reactivity between donors or between live and dead parasites. These data indicate that NK cells may represent an important early source of IFN-gamma, a cytokine that has been implicated in induction of various antiparasitic effector mechanisms. The heterogeneity of this early IFN-gamma response between donors suggests a variation in their ability to mount a rapid proinflammatory cytokine response to malaria infection that may, in turn, influence their innate susceptibility to malaria infection, malaria-related morbidity, or death from malaria.  相似文献   

17.
Ethanol intoxication is characterized by changes in cell metabolism which alter the structure and function of cell membrane components, including phospholipids and integral membrane proteins. The interaction of food nutrients with ethanol may modulate alcohol toxicity. One such compound is l-carnitine (l-3-hydroxy-4-N,N,N-trimethylaminobutyrate), which is also an antioxidant. Here we investigate l-carnitine as an antioxidant and assess its effect on the composition and electrical charge of liver cell membranes in ethanol-intoxicated rats. Qualitative and quantitative phospholipid composition and the presence of integral membrane proteins were determined by high performance liquid chromatography (HPLC). Electrophoresis was used to determine the surface charge density of the rat liver cell membranes. Ethanol increased phospholipid levels and altered the level of integral proteins as determined by decreased phenylalanine (Phe), cysteine (Cys) and lysine (Lys). Ethanol significantly enhanced changes in the surface charge density of the liver cell membranes. l-Carnitine administration to ethanol-intoxicated rats significantly protects phospholipids and proteins against oxidative modifications. Therefore, the beneficial effect of l-carnitine may be connected to its ability to scavenge free radicals.  相似文献   

18.
Several EBA-175 paralogues (EBA-140, EBA-165, EBA-175, EBA-181, and EBL-1) have been described among the Plasmodium falciparum malaria parasite proteins, which are important in the red blood cell (RBC) invasion process. EBA-181/JESEBL is a 181 kDa protein expressed in the late schizont stage and located in the micronemes; it belongs to the Plasmodium Duffy binding-like family and is able to interact with the erythrocyte surface. Here, we describe the synthesis of 78, 20-mer synthetic peptides derived from the reported EBA-181/JESEBL sequence and their ability to bind RBCs in receptor-ligand assays. Five peptides (numbered 30030, 30031, 30045, 30051, and 30060) displayed high specific binding to erythrocytes; their equilibrium binding parameters were then determined. These peptides interacted with 53 and 33 kDa receptor proteins on the erythrocyte surface, this binding being altered when RBCs were pretreated with enzymes. They were able to inhibit P. falciparum merozoite invasion of RBCs when tested in in vitro assays. According to these results, these five EBA-181/JESEBL high specific erythrocyte binding peptides, as well as the entire protein, were seen to be involved in the molecular machinery used by the parasite for invading RBCs. They are thus suggested as potential candidates in designing a multi-sub-unit vaccine able to combat the P. falciparum malaria parasite.  相似文献   

19.
Synthetic 20-mer long non-overlapped peptides, from STEVOR protein, were tested in RBC binding assays for identifying STEVOR protein regions having high RBC binding activity and evaluating whether these regions inhibit Plasmodium falciparum in vitro invasion. Affinity constants, binding site number per cell and Hill coefficients were determined by saturation assay with high activity binding peptides (HABPs). HABP binding assays using RBCs previously treated with enzymes were carried out to study the nature of the receptor. The molecular weight of RBC surface proteins interacting with HABPs was determined by cross-linking assays and SDS-PAGE analysis. RBC binding assays revealed that peptides 30561 (41MKSRRLAEIQLPKCPHYNND60), 30562 (61PELKKIIDKLNEERIKKYIE80) and 30567 (161ASCCKVHDNYLDNLKKGCFG180) bound saturably and with high binding activity, presenting nanomolar affinity constants. HABP binding activity to RBCs previously treated with neuraminidase and trypsin decreased, suggesting that these peptides bound to RBC surface proteins and that such binding could be sialic acid dependent. Cross-linking and SDS-PAGE assays showed that the three HABPs specifically bound to 30 and 40 kDa molecular weight RBC membrane proteins. Peptides 30561, 30562 and 30567 inhibited P. falciparum in vitro invasion of red blood cells in a concentration-dependent way. Goat sera having STEVOR protein polymeric peptides antibodies inhibit parasite in vitro invasion depending on concentration. Three peptides localized in STEVOR N-terminal and central regions had high, saturable, binding activity to 30 and 40 kDa RBC membrane proteins. These peptides inhibited the parasite's in vitro invasion, suggesting that STEVOR protein regions are involved in P. falciparum invasion processes during intra-erythrocyte stage.  相似文献   

20.
Splenic filtration of infected red blood cells (RBCs) may contribute to innate immunity and variable outcomes of malaria infections. We show that filterability of individual RBCs is well predicted by the minimum cylindrical diameter (MCD) which is calculated from a RBC's surface area and volume. The MCD describes the smallest diameter tube or smallest pore that a cell may fit through without increasing its surface area. A microfluidic device was developed to measure the MCD from thousands of individual infected RBCs (IRBCs) and uninfected RBCs (URBCs). Average MCD changes during the blood-stage cycle of Plasmodium falciparum were tracked for the cytoadherent strain ITG and the knobless strain Dd2. The MCD values for IRBCs and URBCs raise several new intriguing insights into how the spleen may remove IRBCs: some early-stage ring-IRBCs, and not just late-stage schizont-IRBCs, may be highly susceptible to filtration. In addition, knobby parasites may limit surface area expansions and thus confer high MCDs on IRBCs. Finally, URBCs, in culture with IRBCs, show higher surface area loss which makes them more susceptible to filtration than naive URBCs. These findings raise important basic questions about the variable pathology of malaria infections and metabolic process that affect volume and surface area of IRBCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号