首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cyclic GMP (cGMP)-dependent protein kinase II (Prkg2, cGK II) was identified as a potential target of the progesterone receptor (Nr3c3) in the mouse ovary based on microarray analyses. To document this further, the expression patterns of cGK II and other components of the cGMP signaling pathway were analyzed during follicular development and ovulation using the pregnant mare serum gonadotropin (PMSG)-human chorionic gonadotropin (hCG)-primed immature mice. Levels of cGK II mRNA were low in ovaries of immature mice, increased 4-fold in response to pregnant mare serum gonadotropin and 5-fold more within 12 h after hCG, the time of ovulation. In situ hybridization localized cGK II mRNA to granulosa cells and cumulus oocyte complexes of periovulatory follicles. In progesterone receptor (PR) null mice, cGK II mRNA was reduced significantly at 12 h after hCG in contrast to heterozygous littermates. In primary granulosa cell cultures, cGK II mRNA was induced by phorbol 12-myristate 13-acetate enhanced by adenoviral expression of PR-A and blocked by RU486 and trilostane. PR-A in the absence of phorbol 12-myristate 13-acetate was insufficient to induce cGK II. Expression of cGK I (Prkg1) was restricted to the residual tissue and not regulated by hormones. Guanylate cyclase-A (Npr1; GC-A) mRNA expression increased 6-fold by 4 h after hCG treatment in contrast to pregnant mare serum gonadotropin alone and was localized to granulosa cells of preovulatory follicles. Collectively, these data show for the first time that cGK II (not cGK I) and GC-A are selectively induced in granulosa cells of preovulatory follicles by LH- and PR-dependent mechanisms, thereby providing a pathway for cGMP function during ovulation.  相似文献   

2.
3.
4.
The matrix metalloproteinases (MMPs) are postulated to facilitate follicular rupture. In the present study, expression of the stromelysins (MMP3, MMP10, MMP11) was analyzed in the periovulatory human and rat ovary. Human granulosa and theca cells were collected from the dominant follicle at various times after human chorionic gonadotropin (hCG). Intact rat ovaries, granulosa cells, and residual tissue (tissue remaining after granulosa cell collection) were isolated from equine CG (eCG)-hCG-primed animals. Mmp10 mRNA was highly induced in human granulosa and theca cells and intact rat ovaries, granulosa cells, and residual tissue. Localization of MMP10 to granulosa and theca cells in both human and rat ovarian follicles was confirmed by immunohistochemistry. Mmp3 mRNA was unchanged in human cells and rat granulosa cells, but increased in intact rat ovaries and residual tissue. Mmp11 mRNA decreased following hCG treatment in human granulosa and theca cells as well as rat granulosa cells. Regulation of Mmp10 in cultured rat granulosa cells revealed that the EGF inhibitor AG1478 and the progesterone receptor antagonist RU486 suppressed the induction of Mmp10 mRNA, whereas the prostaglandin inhibitor NS398 had no effect. Studies on the Mmp10 promoter demonstrated that forskolin plus PMA stimulated promoter activity, which was dependent upon a proximal AP1 site. In conclusion, there are divergent patterns of stromelysin expression associated with ovulation, with a marked induction of Mmp10 mRNA and a decrease in Mmp11 mRNA, yet a species-dependent pattern on Mmp3 mRNA expression. The induction of Mmp10 expression suggests an important role for this MMP in the follicular changes associated with ovulation and subsequent luteinization.  相似文献   

5.
6.
Prostaglandin E2 (PGE2) mediates many effects of the midcycle luteinizing hormone (LH) surge within the periovulatory follicle. Differential expression of the four PGE2 (EP) receptors may contribute to the specialized functions of each granulosa cell subpopulation. To determine if EP receptors are differentially expressed in granulosa cells, monkeys received gonadotropins to stimulate ovarian follicular development. Periovulatory events were initiated with human chorionic gonadotropin (hCG); granulosa cells and whole ovaries were collected before (0 h) and after (24-36 h) hCG to span the 40-h primate periovulatory interval. EP receptor mRNA and protein levels were quantified in granulosa cell subpopulations. Cumulus cells expressed higher levels of EP2 and EP3 mRNA compared with mural cells 36 h after hCG. Cumulus cell EP2 and EP3 protein levels also increased between 0 and 36 h after hCG. Overall, mural granulosa cells expressed low levels of EP1 protein at 0 h and higher levels 24-36 h after hCG. However, EP1 protein levels were higher in granulosa cells away from the follicle apex compared with apex cells 36 h after hCG. Higher levels of PAI-1 protein were measured in nonapex cells, consistent with a previous study showing EP1-stimulated PAI-1 protein expression in monkey granulosa cells. EP4 protein levels were low in all subpopulations. In summary, cumulus cells likely respond to PGE2 via EP2 and EP3, whereas PGE2 controls rupture of a specific region of the follicle via EP1. Therefore, differential expression of EP receptors may permit each granulosa cell subpopulation to generate a unique response to PGE2 during the process of ovulation.  相似文献   

7.
Feedback regulations are integral components of the cAMP signaling required for most cellular processes, including gene expression and cell differentiation. Here, we provide evidence that one of these feedback regulations involving the cyclic nucleotide phosphodiesterase PDE4D plays a critical role in cAMP signaling during the differentiation of granulosa cells of the ovarian follicle. Gonadotropins induce PDE4D mRNA and increase the cAMP hydrolyzing activity in granulosa cells, demonstrating that a feedback regulation of cAMP is operating in granulosa cells in vivo. Inactivation of the PDE4D by homologous recombination is associated with an altered pattern of cAMP accumulation induced by the gonadotropin LH/human chorionic gonadotropin (hCG), impaired female fertility, and a markedly decreased ovulation rate. In spite of a disruption of the cAMP response, LH/hCG induced P450 side chain cleavage expression and steroidogenesis in a manner similar to wild-type controls. Morphological examination of the ovary of PDE4D-/- mice indicated luteinization of antral follicles with entrapped oocytes. Consistent with the morphological finding of unruptured follicles, LH/hCG induction of genes involved in ovulation, including cyclooxygenase-2, progesterone receptor, and the downstream genes, is markedly decreased in the PDE4D-/- ovaries. These data demonstrate that PDE4D regulation plays a critical role in gonadotropin mechanism of action and suggest that the intensity and duration of the cAMP signal defines the pattern of gene expression during the differentiation of granulosa cells.  相似文献   

8.
9.
Abe T  Toida D  Satoh H  Yonezawa T  Kawaminami M  Kurusu S 《Steroids》2011,76(10-11):1116-1125
Inhibition of preovulatory synthesis and action of progesterone impairs ovulation in rodents. We evaluated effects of supplementation of exogenous progesterone on human chorionic gonadotropin (hCG)-induced ovulatory response in immature rats. Equine CG-primed mature follicles responded to hCG with induction of immunoreactive steroidogenic acute regulatory protein (StAR) mainly in thecal layers and a transient enhancement in progesterone synthesis peaking at 6h after hCG (hCG6h). A single dose of natural progesterone or a synthetic agonist (MP) at hCG0h both decreased ovulation rates in dose-dependent manners. MP was still effective when treated at hCG4h. Treatment with these agents at hCG0h reduced circulating progesterone and thecal expression of StAR at hCG6h. The treatments further attenuated induction of cyclooxygenase (COX)-2 in mural granulosa cells and ovarian prostaglandin (PG) E(2) level at hCG8h. We also found a significant reduction in bromo-deoxyuridine incorporation by mural granulosa cells. Obtained results show that the early treatment with exogenous progesterone agonist caused attenuated amplitude of endogenous progesterone surge, reduced COX-2/PGE(2) system, dysregulated mitosis of granulosa cells, and decreased oocytes release. We suggest that optimal progesterone synthesis and action are an early critical component of hCG-initiated ovulatory cascade that regulates biochemical function of granulosa cells.  相似文献   

10.
11.
The aim of this study was to examine the expression and regulation of angiopoietin-2 (Ang-2) in murine ovaries during sexual maturation, gonadotropin treatment and luteal development by in situ hybridization and RT-PCR. By in situ hybridization Ang-2 mRNA was mainly localized in granulosa cells, thecal cells and corpus luteum, otherwise in oocytes. Moreover, Ang-2 mRNA was highly expressed in corpus luteum and granulosa cells of atretic follicles. According to RT-PCR data, Ang-2 mRNA was lowly expressed on day 10 after birth, then expression levels gradually increased and reached their highest values on day 25 after birth. In the superovulated model of immature mice, Ang-2 expression was strongly induced by equine chorionic gonadotropin (eCG) 48 h post the eCG injection, and was high from 0.5 to 13 h after hCG treatment. in situ hybridization showed that Ang-2 mRNA was highly expressed in corpus luteum from day 2 to 9 post the hCG injection, then the expression levels gradually declined on days 11 and 13 after hCG treatment. According to RT-PCR data, the levels of Ang-2 mRNA expression showed a decline after the hCG injection, with a nadir on day 3, followed by an increase, reaching the highest level on day 9 post-hCG injection. Then again Ang-2 expression gradually declined from day 11 to 15 after hCG injection. These results suggest that Ang-2 may be involved in follicular development, atresia, ovulation, and corpus luteum formation and regression.  相似文献   

12.
We have observed that levels of the antioxidant glutathione (GSH) and protein levels of the catalytic and modifier subunits of the rate-limiting enzyme in GSH synthesis, GCLc and GCLm, increase in immature rat ovaries after treatment with gonadotropin. The goals of the present studies were to delineate the time course and intraovarian localization of changes in GSH and GCL after pregnant mare's serum gonadotropin (PMSG) and after an ovulatory gonadotropin stimulus. Twenty-four hours after PMSG, there was a shift from predominantly granulosa cell expression of gclm mRNA, and to a lesser extent gclc, to predominantly theca cell expression. GCLc immunostaining increased in granulosa and theca cells and in interstitial cells. Next, prepubertal female rats were primed with PMSG, followed 48 h later by 10 IU of hCG. GCLm protein and mRNA levels increased dramatically from 0 to 4 h after hCG and then declined rapidly. There was minimal change in GCLc. The increase in gclm mRNA expression was localized mainly to granulosa and theca cells of preovulatory follicles. To verify that GCL responds similarly to an endogenous preovulatory gonadotropin surge, we quantified ovarian GCL mRNA levels during the periovulatory period in adult rats. gclm mRNA levels increased after the gonadotropin surge on proestrus and then declined rapidly. Finally, we assessed the effects of gonadotropin on ovarian GCL enzymatic activity. GCL enzymatic activity increased significantly at 48 h after PMSG injection and did not increase further after hCG. These results demonstrate that gonadotropins regulate follicular GCL expression in a follicle stage-dependent manner and in a GCL subunit-dependent manner.  相似文献   

13.
Progesterone produced in response to the midcycle gonadotropin surge is essential for ovulation and luteinization of the primate follicle. Because cell-cycle arrest is associated with the initiation of luteinization, this study was designed to determine the dynamics and regulation of granulosa cell proliferation by gonadotropin and progesterone during the periovulatory interval in the primate follicle. Granulosa cells or ovaries were obtained from macaques undergoing controlled ovarian stimulation either before (0 h) or as long as 36 h following the administration of an ovulatory hCG bolus with or without a 3beta-hydroxysteroid dehydrogenase inhibitor with or without a nonmetabolizable progestin. The percentage of cells staining positive for Ki-67, a nuclear marker for cell proliferation, decreased (P < 0.05) within 12 h of hCG administration in a steroid-independent manner. Levels of cyclin D2 and E mRNA did not decline during the periovulatory interval; however, cyclin B1 mRNA was reduced significantly by 12 h. Steroid depletion increased (P < 0.05) cyclin B1 mRNA at both 12 and 36 h post-hCG and was reversible by progestin replacement at 36 h. The cyclin-dependent kinase inhibitor p21(Cip1) was transiently increased 12 h post-hCG, whereas p27(Kip1) mRNA levels increased at 36 h in a steroid-independent fashion. These data suggest that a gonadotropin bolus inhibits mitosis in granulosa cells early (12 h) in the periovulatory interval, whereas progesterone may play a later, antiproliferative role in luteinized cells of primates.  相似文献   

14.
The protein PAIRBP1, which was initially referred to as RDA288, is involved in mediating the antiapoptotic action of progesterone (P4) in spontaneously immortalized granulosa cells (SIGCs). The present studies were designed to assess the expression and function of PAIRBP1 in the different cell types within the immature rat ovary. Western blot analysis detected PAIRBP1 within whole-cell lysates of immature rat ovaries. Equine gonadotropin (eCG) induced a 3-fold increase in ovarian levels of PAIRBP1. Moreover, human chorionic gonadotropin (hCG), given 48 h after eCG, maintained these elevated levels for up to 4 days. Immunohistochemical analysis confirmed this and further demonstrated that interstitial, thecal, and surface epithelial cells also expressed PAIRBP1. The level of PAIRBP1 in these cells was not influenced by gonadotropin treatment. In contrast, eCG stimulated an increase in PAIRBP1 within the granulosa cells of the developing follicles. Treatment with hCG induced ovulation and ultimately the formation of corpora lutea (CL). High levels of PAIRBP1 expression were also observed within the luteal cells. Immunocytochemical studies on living, nonpermeabilized granulosa and luteal cells revealed that some PAIRBP1 localized to the extracellular surface of these cells. The presence of PAIRBP1 on the extracellular surface was consistent with the observation that an antibody to PAIRBP1 attenuated P4's antiapoptotic action in both granulosa and luteal cells. Although the PAIRBP1 antibody attenuated P4's action, it did not reduce the capacity of cells to specifically bind (3)H-P4. Immunoprecipitation with the PAIRBP1 antibody pulled down the membrane P4 binding protein known as progesterone receptor membrane complex-1 (PGRMC1; rat homolog accession number AJ005837). Taken together, these findings suggest that gonadotropins regulate the expression of PAIRBP1 in granulosa and luteal cells and that PAIRBP1 plays an important role in mediating P4's antiapoptotic action in these ovarian cell types. The exact mechanism of PAIRBP1's action remains to be elucidated, but it may involve an interaction with PGRMC1.  相似文献   

15.
Immunocytochemical localization of aromatase cytochrome P-450 was examined in immature rat ovaries treated with pregnant mare serum gonadotropin (PMSG) and human chorionic gonadotropin (hCG), and in pregnant rat ovaries. It is well known that PMSG and hCG treatments induce ovulation about 12 h after hCG injection. At 24 h after hCG injection, many antral follicles were recognized in immature rat ovaries and only the granulosa cells in the antral follicles were stained weakly with the anti-aromatase antibody. At 0 to 9 h after hCG injection, in addition to the antral follicles, some large Graafian follicles could be observed in the rat ovaries, and the granulosa cells of these follicles were positively stained for aromatase. Each follicle was surrounded by the basal lamina which shows lineally distinct positive reaction against anti-laminin antibody. At 12 h after hCG injection, some large Graafian follicles without oocyte were weakly positive to the anti-aromatase antisera, and the outline of their basal lamina stained with anti-laminin antibody became irregular in shape and fragmentous. At 15 to 18 h after hCG injection, the luteinized cysts could be seen, and the granulosa-lutein cells of these cysts were almost negative for aromatase. Fragmentous reaction to the anti-laminin antibody was observed around the luteinized cysts. In the ovaries of day 4 in pregnancy, only the granulosa cells of the large antral follicles were weakly stained, but corpora lutea negatively reacted to the anti-aromatase antibody. At 7 to 19 days in gestation, both the granulosa cells of antral follicles and pregnant luteal cells were positively stained against aromatase antisera.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
We report the isolating and sequencing of three cDNA clones encoding rat P-450scc, the nucleotide and protein sequences of which are highly homologous to those of bovine and human P-450scc, especially in the putative heme and steroid binding domains. We document that different molecular mechanisms regulate P-450scc in granulosa cells of preovulatory (PO) follicles prior to and after luteinization. Luteinizing hormone/human chorionic gonadotropin (LH/hCG) and cAMP are obligatory to induce P-450scc mRNA in PO granulosa cells in vivo and in vitro. Once P-450scc mRNA is induced as a consequence of the LH/hCG surge it is constitutively maintained by luteinized cells in vivo (0-4 days) and in vitro (0-9 days) in the absence of gonadotropins, is susceptible to modulation by prolactin and is no longer regulated by cAMP. Exposure to elevated concentrations of hCG in vivo for 5-7 h was required for PO granulosa cells to undergo a functional transition establishing the stable luteal cell phenotype. Transient exposure of PO + hCG (7 h) follicles in vitro to the RNA synthesis inhibitor actinomycin D (1 microgram/ml) or the protein synthesis inhibitor cycloheximide (10 micrograms/ml), for 1-5 h prior to culturing the granulosa cells failed to disrupt the induction of P-450scc mRNA, progesterone biosynthesis, and appearance of the luteal cell morphology. Inhibitors of protein kinase A (Rp-cAMPS; 1-500 microM and N-[2-(methylamino)ethyl]-5-isoquinolinesulfonamide dihydrochloride (H8); 1-200 microM) added directly to the luteinized cell cultures also failed to alter P-450scc mRNA in these cells, although the cells contain in vivo amounts of mRNA for RII beta, RI alpha, and C alpha, the primary subunits of protein kinase A found in the rat ovary. These data suggest that expression of the P-450scc gene in rat ovarian follicular cells is regulated in a sequential manner by cAMP-dependent and cAMP-independent mechanisms associated with granulosa cells and luteal cells, respectively.  相似文献   

17.
The tumor suppressor gene KCTD11 plays a critical role in cell proliferation, differentiation and invasion. The current study investigated the regulation and the spatiotemporal expression pattern of Kctd11 in the rat ovary during the periovulatory period. Ovaries, granulosa cells, or theca-interstitial cells were collected at various times after hCG administration using an established gonadotropin-primed immature rat model that induces follicular development and ovulation. Real-time quantitative PCR analysis revealed that mRNA for Kctd11 was significantly induced both in theca-intersititial and granulosa cells after hCG treatment although their temporal expression patterns differed. In situ hybridization analysis demonstrated that Kctd11 mRNA expression was induced in theca-intersititial cells at 6 h after hCG, and the expression remained elevated until 12 h after hCG. Kctd11 mRNA was stimulated in granulosa cells at 6 h and reached the highest expression at 12 h. There was negligible Kctd11 mRNA signal observed in newly forming corpora lutea. In addition, the data indicate that both the protein kinase A and the protein kinase C pathway regulate the expression of Kctd11 mRNA in granulosa cells. Either forskolin or phorbol 12 myristate 13-acetate can mimic hCG induction of Kctd11 expression. Furthermore, the stimulation of Kctd11 by hCG requires new protein synthesis. Inhibition of progesterone action and the EGF pathway blocked Kctd11 mRNA expression, whereas inhibition of prostaglandin synthesis had no effect. Our finding suggest that the induction of the Kctd11 may be important for theca and granulosa cell differentiation into luteal cells.  相似文献   

18.
To assess the role of inhibitors of proteolytic enzymes, such as plasminogen activator (PA) and collagenase in the ovulatory process, inhibitor activity and mRNA levels were examined in periovulatory rat and human ovaries. In the rat, immature animals received 20 IU of pregnant mare serum gonadotropin (PMSG) followed 52 h later by 10 IU of hCG. Ovaries were removed at intervals from 0 to 20 h after human chorionic gonadotropin (hCG) administration. Inhibitor activity for metalloproteinases, such as collagenase, increased from 60.5 +/- 4.1 inhibitor units/ovary at 0 h (i.e., time of hCG treatment) to a maximum of 218.2 +/- 11.4 units/ovary at 8 h after hCG before decreasing at 12 h (time of ovulation) and 20 h (122.2 +/- 7.9 and 71.6 +/- 8.1 units/ovary, respectively). Human follicular fluid and granulosa cells were obtained from preovulatory follicles of patients in our in vitro fertilization program. Metalloproteinase inhibitor activity was evaluated in follicular fluid as well as the levels of PA and PA inhibitor (PAI) mRNA by Northern analysis. Increasing metalloproteinase inhibitor activity was positively correlated with follicular levels of estradiol (p less than 0.001) and progesterone (p less than 0.02, N = 26). Chromatographic separation of follicular fluid resulted in two peaks of metalloproteinase inhibitor activity. The large molecular weight (MW) inhibitor had an approximate size of 700 kilodaltons (kDa) and may represent alpha 2-macroglobulin, a serum-derived inhibitor. The small MW inhibitor shared many of the characteristics of tissue-derived inhibitors of metalloproteinases. Partial purification of the small MW inhibitor by Concanavalin A-Sepharose and Heparin-Sepharose chromatography demonstrated the inhibitor to be a glycoprotein with an approximate MW = 28-29 K. Northern analysis of human granulosa cell total RNA from preovulatory follicles showed little or no detectable tissue-type PA or urokinase-type PA mRNA. In contrast, two species of PA inhibitor type-1 mRNA were detected in relative abundance. The present findings demonstrate the presence of proteolytic inhibitors in periovulatory ovaries of the rat and human. These ovarian inhibitors may play a role in regulating connective tissue remodeling during follicular rupture.  相似文献   

19.
The midcycle LH surge stimulates a rise in follicular fluid prostaglandin E2 (PGE2), which is necessary for normal ovulation. To examine PGE2-regulated processes in primate follicles, monkey granulosa cells were cultured with hCG alone or with hCG and PGE2, and the resulting total RNA was subjected to microarray analysis. Twenty PGE2-regulated mRNAs were identified, and we selected a lipid droplet protein, adipose differentiation-related protein (ADRP), for further study. To determine whether hCG and PGE2 regulate ADRP expression in vivo, monkeys received gonadotropins to stimulate multiple follicular development. Human chorionic gonadotropin was then administered alone or with the PG synthesis inhibitor celecoxib, and follicular aspirates or whole ovaries were obtained at times that span the 40-h periovulatory interval. Administration of hCG increased granulosa cell ADRP mRNA and protein, with peak levels measured just before the expected time of ovulation. Treatment with hCG and celecoxib decreased granulosa cell ADRP mRNA levels compared with those of animals treated with hCG only. ADRP was detected by immunocytochemistry in many monkey tissues that synthesize prostaglandins but was not consistently expressed by steroidogenic tissues. Granulosa cells of periovulatory follicles immunostained for ADRP after, but not before, hCG administration; ADRP colocalized with large lipid droplets within the granulosa cell cytoplasm. These studies identify ADRP as a novel gonadotropin- and PGE2-regulated protein in the granulosa cells of primate periovulatory follicles. Because ADRP facilitates arachidonic acid uptake in non-ovarian cells, ADRP-associated lipid droplets may enhance arachidonic acid uptake by granulosa cells to provide a precursor for periovulatory prostaglandin production.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号